Item \#	Response A/F	Response B/G	Response C/H	Response D/J
1	A is incorrect because the graph shows a line that goes through the origin, which makes the linear relationship proportional.	B is correct because the graph shows a line that does not go through the origin, which makes the linear relationship non-proportional.	C is incorrect because the graph shows a line that goes through the origin, which makes the linear relationship proportional.	D is incorrect because the graph shows a line that goes through the origin, which makes the linear relationship proportional.
2	F is correct because the pentagon is translated 1 unit to the left and 10 units down, which is described by the transformation rule (x-1, y 10).	G is incorrect because the pentagon is translated 1 unit to the left and 10 units down, which is described by the transformation rule ($\mathrm{x}-1, \mathrm{y}$ $10)$, $\operatorname{not}(x+1, y-10)$.	His incorrect because the pentagon is translated 1 unit to the left and 10 units down, which is described by the transformation rule ($\mathrm{x}-1, \mathrm{y}$ 10), not ($x-1, y+10$).	J is incorrect because the pentagon is translated 1 unit to the left and 10 units down, which is described by the transformation rule ($\mathrm{x}-1, \mathrm{y}$ 10), not ($x+1, y+10$).
3	A is incorrect because π is between the $\sqrt{9} / 3$ and 2π. This comparison is true.	B is incorrect because $\sqrt{9}$ is between the $\sqrt{9} / 3$ and 2π. This comparison is true.	C is correct because $\pi / 9$ is not between the $\sqrt{9} / 3$ and 2π. This comparison is NOT true.	D is incorrect because $\pi^{2} / 9$ is between the $\sqrt{9} / 3$ and 2π. This comparison is true.
4	F is correct because the graph represents a line with a slope of 45 gallons per minute.	G is incorrect because the graph represents a line with a slope of 15 gallons per minute.	His incorrect because the graph represents a line with a slope of 0 gallons per minute.	J is incorrect because the graph represents a line with a slope of 60 gallons per minute
5	A is incorrect because the dilation rule for P^{\prime} can be found by multiplying each of the coordinates of $(6,-3)$ by the scale factor, u, which is represented by ($6 u,-3 u$), not $(6+u,-3+u)$.	B is incorrect because the dilation rule for P^{\prime} can be found by multiplying each of the coordinates of $(6,-3)$ by the scale factor, u, which is represented by ($6 u,-3 u$), not (6/u, -3/u).	C is incorrect because the dilation rule for P^{\prime} can be found by multiplying each of the coordinates of $(6,-3)$ by the scale factor, u, which is represented by ($6 u,-3 u$), not $(6+1 / u,-3+1 / u)$.	D is correct because the dilation rule for P^{\prime} can be found by multiplying each of the coordinates of $(6,-3)$ by the scale factor, u, which is represented by ($6 u,-3 u$).
6	F is incorrect because the slope can be found by the change in the gallons of gasoline, y, divided by the change in the number of miles driven, x, which is $-1 / 25$, not $1 / 25$. The y-intercept is 15 , the number of gallons of gasoline when 0 miles were driven, not 375.	G is correct because the slope can be found by the change in the gallons of gasoline, y, divided by the change in the number of miles driven, x , which is $-1 / 25$. The y-intercept is 15 , the number of gallons of gasoline when 0 miles were driven.	H is incorrect because the slope can be found by the change in the gallons of gasoline, y, divided by the change in the number of miles driven, x, which is $-1 / 25$, not 25 . The y-intercept is 15 , the number of gallons of gasoline when 0 miles were driven.	J is incorrect because the slope can be found by the change in the gallons of gasoline, y, divided by the change in the number of miles driven, x, which is $-1 / 25$, not 25 . The y-intercept is 15 , the number of gallons of gasoline when 0 miles were driven, not 15.
7	A is incorrect because the formula for volume of a cylinder is $V=\pi r^{2} h$ and the radius $=2.5$, so $V=\pi(2.5)^{2} h$, not $V=\pi(2.5 \mathrm{~h})^{2}$.	B is incorrect because the formula for volume of a cylinder is $V=\pi r^{2} h$ and the radius $=2.5$, so $V=\pi(2.5)^{2} h$, not $V=\pi(5 h)^{2}$.	C is correct because the formula for the volume of a cylinder is $V=\pi r^{2} h$ and the radius $=2.5$, so $V=\pi(2.5)^{2} h$, the radius $=2.5$.	D is incorrect because the formula for volume of a cylinder is $V=\pi r^{2} h$ and the radius $=2.5$, so $V=\pi(2.5)^{2} h$, not $V=\pi(5)^{2} h$.
8	F is incorrect because it shows the values in the milliliters column, m, to be 29.57 divided by the corresponding values in the fluid ounces column, f , not multiplied.	G is incorrect because it does not show the values in the milliliters column, m , to be 29.57 multiplied by the corresponding values in the fluid ounces column, f.	H is incorrect because it does not show the values in the milliliters column, m, to be 29.57 multiplied by the corresponding values in the fluid ounces column, f .	J is correct because it shows the values in the milliliters column, m, to be 29.57 multiplied by the corresponding values in the fluid ounces column, f.

Item \#	Response A/F	Response B/G	Response C/H	Response D/J
9	$A ; 32.5$ is correct because using the Pythagorean Theorem, $a^{2}+b^{2}=c^{2}$ gives, $26^{2}+19.5^{2}=1056.25$ and the square root of 1056.25 is 32.5 .	B; Students may have added $19.5+26=45.5$ or multiplied $19.5 \times 26=507$.		
10	F is correct because based on the scatterplot, the best prediction of the average amount of money spent on groceries for 7 people is closest to 240.	G is incorrect because based on the scatterplot, the best prediction of the average amount of money spent on groceries for 7 people is closest to 240, not 190.	H is incorrect because based on the scatterplot, the best prediction of the average amount of money spent on groceries for 7 people is closest to 240, not 210.	J is incorrect because based on the scatterplot, the best prediction of the average amount of money spent on groceries for 7 people is closest to 240, not 300.
11	A is correct because each value of x is paired more than once with a corresponding value of y. This graph does NOT represent y as a function of x .	B is incorrect because each x value is paired only once with a corresponding y value. This graph represents y as a function of x.	C is incorrect because each x value is paired only once with a corresponding y value. This graph represents y as a function of x.	D is incorrect because each x value is paired only once with a corresponding y value. This graph represents y as a function of x.
12	F is incorrect because $x / 3-3$ $=x / 9+3$, this simplifies to $2 x$ $=54$, and dividing both sides by 2 simplifies to $x=27$, not 3 .	G is incorrect because $x / 3-3$ $=x / 9+3$, this simplifies to $2 x$ $=54$, and dividing both sides by 2 simplifies to $x=27$, not - 9.	H is incorrect because $x / 3-3$ $=x / 9+3$, this simplifies to $2 x$ $=54$, and dividing both sides by 2 simplifies to $x=27$, not - 1.	J is correct because $\mathrm{x} / 3-3=$ x/9 +3 , this simplifies to $2 \mathrm{x}=$ 54 , and dividing both sides by 2 simplifies to $x=27$.
13	A is correct because the cost for two years of college is $2(8,800)=17,600$, so the amount the student still needs is $17,600-5,000=12,600$. A monthly deposit of $\$ 200$ is the smallest option from the table that will result in at least $\$ 12,600$ at the end of five years.	B is incorrect because the cost for two years of college is $2(8,800)=17,600$, so the amount the student still needs is $17,600-5,000=12,600$. A monthly deposit of $\$ 300$ is not the smallest option from the table that will result in at least $\$ 12,600$ at the end of five years.	C is incorrect because the cost for two years of college is $2(8,800)=17,600$, so the amount the student still needs is $17,600-5,000=12,600$. A monthly deposit of $\$ 100$ will result in \$12,273 according to the table, which is less than $\$ 12,600$ the student needs at the end of five years.	D is incorrect because the cost for two years of college is $2(8,800)=17,600$, so the amount the student still needs is $17,600-5,000=12,600$. A monthly deposit of $\$ 400$ is not the smallest option from the table that will result in at least $\$ 12,600$ at the end of five years.
14	F is incorrect because the formula for lateral surface area of a cylinder is $S=2 \pi r h$ and the radius $=4.2$, not 8.4, so S $=2(\pi)(4.2)(10.9)$, which is closest to 287.6, not 575.3.	G is correct because the formula for lateral surface area of a cylinder is $S=2 \pi r h$ and the radius $=4.2$, so $\mathrm{S}=$ 2(π)(4.2)(10.9), which is closest to 287.6.	H is incorrect because the formula for lateral surface area of a cylinder is $S=2 \pi r h$ and the radius $=4.2$, so $\mathrm{S}=$ 2(π)(4.2)(10.9) which is closest to 287.6, not 398.5.	J is incorrect because the formula for lateral surface area of a cylinder is $S=2 \pi r h$ and the radius $=4.2$, so $\mathrm{S}=$ 2(π)(4.2)(10.9) which is closest to 287.6, not 604.1.
15	A is incorrect because the situation is represented by the equation $2.50 t+350=3 t+$ 225 , not $3 t+350=2.50 t+$ 225.	B is incorrect because the situation is represented by the equation $2.50 t+350=3 t+$ 225 , not $350 \mathrm{t}+2.5=225 \mathrm{t}+$ 3.	C is correct because the situation is represented by the equation $2.50 t+350=3 t+$ 225.	D is incorrect because the situation is represented by the equation $2.50 t+350=3 t+$ 225 , which is answer choice C.
16	F is correct because the formula for compound interest is $A=P(1+r)^{t}$, so $A=2,500(1$ $+0.065)^{2}$ which is closest to 2,835.56.	G is incorrect because the formula for compound interest is $A=P(1+r)^{t}$, so $A=2,500(1$ $+0.065)^{2}$ which is closest to 2,835.56, not 2,513.00.	H is incorrect because the formula for compound interest is $A=P(1+r)^{t}$, so $A=2,500(1$ $+0.065)^{2}$ which is closest to 2,835.56, not 2,662.50.	J is incorrect because the formula for compound interest is $A=P(1+r)^{t}$, so $A=2,500(1$ $+0.065)^{2}$ which is closest to 2,835.56, not 2,825.00.

Item \#	Response A/F	Response B/G	Response C/H	Response D/J
17	A is incorrect because AE/XY = CD/VZ does not represent a true proportion of the lengths of the corresponding sides of the given similar figures.	B is incorrect because $A B / V W$ $=$ YZIDE does not represent a true proportion of the lengths of the corresponding sides of the given similar figures.	C is incorrect because BC/XY = DE/YZ does not represent a true proportion of the lengths of the corresponding sides of the given similar figures.	D is correct because $A B / N W=$ CD/XY represents a true proportion of the lengths of the corresponding sides of the given similar figures.
18	F is incorrect because 0.00165 is written as 1.65×10^{-3} in scientific notation, not 165 x 10^{-5}.	G is correct because 0.00165 is written as $1.65 \times 10^{-3} \mathrm{in}$ scientific notation.	H is incorrect because 0.00165 is written as 1.65×10 ${ }^{3}$ in scientific notation, not 16.5 $\times 10^{-4}$.	J is incorrect because 0.00165 is written as 1.65×10^{-3} in scientific notation, not 0.165 x 10^{-2}.
19	A is correct because the graph shows the cost of 5 dollars for every pound of pecan, which is represented by the function $y=5 x$.	B is incorrect because the graph shows the cost of 5 dollars for every pound of pecan, which is represented by the function $y=5 x$, not $y=$ $1 / 5 \mathrm{x}$.	C is incorrect because the graph shows the cost of 5 dollars for every pound of pecan, which is represented by the function $y=5 x$, not $y=$ 2x.	D is incorrect because the graph shows the cost of 5 dollars for every pound of pecan, which is represented by the function $y=5 x$, not $y=$ 1/2x.
20	F is incorrect because the dilation rule (1/4x, 1/4y) creates a pentagon that is smaller than the original pentagon, not a larger pentagon. The $1 / 4$ scale factor is less than 1 , not greater than 1.	G is correct because the dilation rule ($1 / 4 \mathrm{x}, 1 / 4 \mathrm{y}$) creates a pentagon that is smaller than the original pentagon. The $1 / 4$ scale factor is less than 1.	H is incorrect because the dilation rule ($1 / 4 \mathrm{x}, 1 / 4 \mathrm{y}$) creates a pentagon that is smaller than the original pentagon. The $1 / 4$ scale factor is less than 1, not greater than 1.	J is incorrect because the dilation rule ($1 / 4 x, 1 / 4 y$) creates a pentagon that is smaller than the original pentagon, not a larger pentagon. The $1 / 4$ scale factor is less than 1.
21	A is correct because the formula for simple interest is I = Prt, so I = 2,500(0.0475) (1.5), which is about 178.13. This option has the least amount of interest for the loan.	B is incorrect because the formula for simple interest is I $=$ Prt, so I = 2,500(0.0475) (1.5), which is about 178.13 . This option has the least amount of interest for the loan, not 2,500(0.04)(2.5) = 250.	C is incorrect because the formula for simple interest is I $=$ Prt, so I = 2,500(0.0475) (1.5), which is about 178.13 . This option has the least amount of interest for the loan, not 2,500(0.0425)(2) = 212.5	D is incorrect because the formula for simple interest is I $=$ Prt, so I = 2,500(0.0475) (1.5), which is about 178.13. This option has the least amount of interest for the loan, not 2,500(0.0450)(3) = 337.5.
22	Fis incorrect because the Pythagorean Theorem is $\mathrm{a}^{2}+$ $b^{2}=c^{2}$, so $102+82=$ c^{2}, which simplifies to $164=$ c^{2}, and the square root of 164 is closest to 13 , not 18.	G is incorrect because the Pythagorean Theorem is $\mathrm{a}^{2}+$ $b^{2}=c^{2}$, so $102+82=$ c^{2}, which simplifies to $164=$ c^{2}, and the square root of 164 is closest to 13 , not 6 .	H is correct because the Pythagorean Theorem is $\mathrm{a}^{2}+$ $b^{2}=c^{2}$, so $102+82=c^{2}$, which simplifies to $164=c^{2}$, and the square root of 164 is closest to 13.	J is incorrect because the Pythagorean Theorem is $\mathrm{a}^{2}+$ $b^{2}=c^{2}$, so $102+82=c^{2}$, which simplifies to $164=c^{2}$, and the square root of 164 is closest to 13 , not 9 .
23	A; 6 is correct because if the perimeter is equal to the area then $2 l+2 w=\mid w$, so $2 l+$ 2(3) $=I(3)$, which simplifies to $6=1$.	B; Students may have multiplied $4 \times 3=12$.		
24	F is incorrect because the formula for the volume of a cone is $V=(1 / 3) \pi r^{2} h$, so V $=(1 / 3)(\pi)(2.8125)^{2}(7.5)$ which is closest to 62.13 , not 186.38 .	G is incorrect because the formula for the volume of a cone is $V=(1 / 3) \pi r^{2} h$, so $V=$ $(1 / 3)(\pi)(2.8125)^{2}(7.5)$ which is closest to 62.13, not 248.50.	H is incorrect because the formula for the volume of a cone is $V=(1 / 3) \pi r^{2} \mathrm{~h}$, so $\mathrm{V}=$ $(1 / 3)(\pi)(2.8125)^{2}(7.5)$ which is closest to 62.13, not 745.51.	J is correct because the formula for the volume of a cone is $V=(1 / 3) \pi r^{2} h$, so $V=$ $(1 / 3)(\pi)(2.8125)^{2}(7.5)$ which is closest to 62.13.

Item \#	Response A/F	Response B/G	Response C/H	Response D/J
25	A is incorrect because two of the ordered pairs have the same x value. To be a function, every x value is paired with exactly one y value.	B is correct because each x value is paired only once with a corresponding y value. To be a function, every x value is paired with exactly one y value.	C is incorrect because two of the ordered pairs have the same x value. To be a function, every x value is paired with exactly one y value.	D is incorrect because all of the ordered pairs have the same x value. To be a function, every x value is paired with exactly one y value.
26	Fis incorrect because the combined area of the smaller squares, $3^{2}+4^{2}$, is the same as the area of the largest square, 25 . These squares support this statement.	G is incorrect because the combined area of the smaller squares, $5^{2}+12^{2}$, is the same as the area of the largest square, 13^{2}. These squares support this statement.	H is correct because the combined area of the smaller squares, $9^{2}+144$, is not the same as the area of the largest square, 21^{2}. These squares do NOT support this statement.	J is incorrect because the combined area of the smaller squares, $6^{2}+64$, is the same as the area of the largest square, 100. These squares support this statement.
27	A is incorrect because after the reflection across the y axis, the center of the new circle will be at $(-x, y)$, not (x, y).	B is incorrect because after the reflection across the y axis, the center of the new circle will be at $(-x, y)$, not (x, y).	C is correct because after a reflection across the y-axis, the center of the new circle will be at $(-x, y)$.	D is incorrect because after the reflection across the y axis, the center of the new circle will be at $(-x, y)$, not ($-x$, y).
28	F is correct because the graph shows a unit rate of 2.75 , which models the same rate as the cost to dry-clean each shirt, $16.50 / 6=2.75$.	G is incorrect because the graph shows a unit rate of 16.50, which does not model the same rate as the cost to dry-clean each shirt, 16.50/6 = 2.75.	H is incorrect because the graph shows a unit rate of 10.50, which does not model the same rate as the cost to dry-clean each shirt, 16.50/6 = 2.75.	J is incorrect because the graph shows a unit rate of 22.50, which does not model the same rate as the cost to dry-clean each shirt, 16.50/6 = 2.75.
29	$\begin{aligned} & \mathrm{A} \text { is incorrect because } \sqrt{0.02} \\ & \text { is about } 0.141 \text {, which is } \\ & \text { between } 1 / 8=0.125 \text { and } 18 \% \\ & =0.18, \text { not } 1 / 5=0.2 \text {. } \end{aligned}$	$\begin{aligned} & \mathrm{B} \text { is incorrect because } \sqrt{0.02} \\ & \text { is about } 0.141 \text {, which is } \\ & \text { between } 1 / 8=0.125 \text { and } 18 \% \\ & =0.18 \text {, not } 1.6 \text {. } \end{aligned}$	$\begin{aligned} & C \text { is incorrect because } \sqrt{0.02} \\ & \text { is about } 0.141 \text {, which is } \\ & \text { between } 1 / 8=0.125 \text { and } 18 \% \\ & =0.18, \text { not } 0.09 \text {. } \end{aligned}$	D is correct because $\sqrt{0.02}$ is about 0.141 , which is between $1 / 8=0.125$ and $18 \%=0.18$.
30	F is incorrect because the ratios simplify to $7 / 8=6 / 9$, which do not show the correct slope for segments $\overline{\mathrm{J}}$ and $\overline{\mathrm{MP}}$.	G is correct because the ratios simplify to $-4 / 3=-12 / 9$, which show the correct slope for segments $\overline{\mathrm{J}}$ and $\overline{\mathrm{MP}}$.	H is incorrect because the ratios simplify to $4 / 11 \neq-3 / 18$, which do not show the correct slope for segments \bar{J} and $\overline{\mathrm{MP}}$.	J is incorrect because the ratios simplify to $3 /-4 \neq 9 /-12$, which do not show the correct slope for segments $\overline{J L}$ and MP.
31	A is incorrect because the formula for the area of a square is $A=s^{2}$, so $87.5=s^{2}$, the side length is the square root of 87.5 , which is closest to 9, not 22.	B is incorrect because the formula for the area of a square is $A=s^{2}$, so $87.5=s^{2}$, the side length is the square root of 87.5 , which is closest to 9 , not 44.	C is correct because the formula for the area of a square is $A=s^{2}$, so $87.5=s^{2}$, the side length is the square root of 87.5 , which is closest to 9 .	D is incorrect because the formula for the area of a square is $A=s^{2}$, so $87.5=s^{2}$, the side length is the square root of 87.5 , which is closest to 9 , not 7 .
32	F is incorrect because based on the scatterplot, the best prediction of the resting heart of a person exercising at an average of 8 hours each week is 50 beats per minute, not 30 beats per minute.	G is correct because based on the scatterplot, the best prediction of the resting heart of a person exercising at an average of 8 hours each week is 50 beats per minute.	H is incorrect because based on the scatterplot, the best prediction of the resting heart of a person exercising at an average of 8 hours each week is 50 beats per minute, not 55 beats per minute.	J is incorrect because based on the scatterplot, the best prediction of the resting heart of a person exercising at an average of 8 hours each week is 50 beats per minute, not 60 beats per minute.

Item \#	Response A/F	Response B/G	Response C/H	Response D/J
33	A is correct because the Pythagorean Theorem is $\mathrm{a}^{2}+$ $b^{2}=c^{2}$, so $12^{2}+x^{2}=39^{2}$ which simplifies to $x^{2}=1,377$ and the square root of 1,377 is closest to 37.1.	B is incorrect because the Pythagorean Theorem is $\mathrm{a}^{2}+$ $b^{2}=c^{2}$, so $12^{2}+x^{2}=39^{2}$ which simplifies to $x^{2}=1,377$ and the square root of 1,377 is closest to 37.1 , not 40.8 .	C is incorrect because the Pythagorean Theorem is $\mathrm{a}^{2}+$ $b^{2}=c^{2}$, so $12^{2}+x^{2}=39^{2}$ which simplifies to $x^{2}=1,377$ and the square root of 1,377 is closest to 37.1 , not 27.	D is incorrect because the Pythagorean Theorem is $\mathrm{a}^{2}+$ $b^{2}=c^{2}$, so $12^{2}+x^{2}=39^{2}$ which simplifies to $x^{2}=1,377$ and the square root of 1,377 is closest to 37.1, not 51.
34	F; 40 is correct because if Nicki can make 4 baskets in $1 / 2$ hour, she can make 40 baskets in 8 hours.	G; Students may have multiplied 4 baskets times 5 hours to get 20 or multiplied 2 times 5 to get 10 .		
35	A is incorrect because the formula for simple interest is I $=$ Prt and the interest is 6,500 $5,000=1,500$, so $1,500=$ $5,000(r)(4)$, and dividing both sides by 20,000 gives $r=$ $0.075=7.5 \%$, not 5.8%.	B is correct because the formula for simple interest is I = Prt and the interest is 6,500 $5,000=1,500$, so $1,500=$ $5,000(r)(4)$, and dividing both sides by 20,000 gives $r=$ $0.075=7.5 \%$.	C is incorrect because the formula for simple interest is I = Prt and the interest is 6,500 $5,000=1,500$, so $1,500=$ 5,000(r)(4), and dividing both sides by 20,000 gives $r=$ $0.075=7.5 \%$, not 3.3%.	D is incorrect because the formula for simple interest is I = Prt and the interest is 6,500 $5,000=1,500$, so $1,500=$ $5,000(r)(4)$, and dividing both sides by 20,000 gives $r=$ $0.075=7.5 \%$, not 1.9%.
36	F is incorrect because the coordinates of $\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime} \mathrm{J}^{\prime}$ are found by multiplying the coordinates of FGHJ by $1 / 4$ which is described by the dilation rule $(\mathrm{x}, \mathrm{y}) \rightarrow(1.4 \mathrm{x}$, $1.4 y)$, not $(x, y) \rightarrow(5 / 7 x$, 5/7y).	G is incorrect because the coordinates of $F^{\prime} G^{\prime} H^{\prime} \mathrm{J}^{\prime}$ are found by multiplying the coordinates of FGHJ by $1 / 4$ which is described by the dilation rule $(x, y) \rightarrow(1.4 x$, 1.4y), not (x, y) $\rightarrow(x+1, y+$ 2).	H is correct because the coordinates of $\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime} \mathrm{J}^{\prime}$ are found by multiplying the coordinates of FGHJ by $1 / 4$ which is described by the dilation rule $(x, y) \rightarrow(1.4 x$, 1.4y).	J is incorrect because the coordinates of $\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime} \mathrm{J}$ ' are found by multiplying the coordinates of FGHJ by $1 / 4$ which is described by the dilation rule $(x, y) \rightarrow(1.4 x$, 1.4y), not (x, y) $\rightarrow(x-2, y+$ 1).
37	A is correct because the amount of money can be found by multiplying 10 times the number of weeks, n, and adding her saving of 25 , which is represented by the function t $=10 n+25$.	B is incorrect because the amount of money can be found by multiplying 10 times the number of weeks, n , and adding her saving of 25 , which is represented by the function t $=10 n+25, n o t t=25 n+10$.	C is incorrect because the amount of money can be found by multiplying 10 times the number of weeks, n, and adding her saving of 25 , which tis represented by the function t $=10 n+25, n o t t=35 n$.	D is incorrect because the amount of money can be found by multiplying 10 times the number of weeks, n, and adding her saving of 25 , which is represented by the function t $=10 n+25, n o t=15 n$.
38	F; 237.5 is correct because the formula for the total surface area of a rectangular prism is $S=P h+2 B$ which is $25(6.5)+2(37.5)=237.5$.	G; Students may have multiplied 7.5(5)(6.5) $=243.75$ or $(7.5+5+6.5)(4)=76$.		
39	A is correct because the graph describes the profit to be $\$ 7.50$ for each box.	B is incorrect because the graph describes the profit to be $\$ 7.50$ for each box, not 10.00 for each box.	C is incorrect because the graph describes the profit to be $\$ 7.50$ for each box, not 4.00 for 30 boxes.	D is incorrect because the graph describes the profit to be $\$ 7.50$ for each box, not 3.00 for 4 boxes.

Item \#	Response A/F	Response B/G	Response C/H	Response D/J
40	F is incorrect because the scatterplot models a positive linear association, not a nonlinear association, between the lanes rented and the number of people who bowl.	G is incorrect because the scatterplot models a positive linear association, not a negative linear association, between the lanes rented and the number of people who bowl.	H is incorrect because the scatterplot models a positive linear association, not a no apparent association, between the lanes rented and the number of people who bowl.	J is correct because the scatterplot models a positive linear association between the lanes rented and the number of people who bowl.
41	A is incorrect because the formula for volume of a cylinder is $V=\pi r^{2} h$, so $V=$ $\pi(3)^{2}(10.5)$ which is closest to 296.88, not 254.47.	B is correct because the formula for volume of a cylinder is $V=\pi r^{2} h$, so $V=$ $\pi(3)^{2}(10.5)$ which is closest to 296.88.	C is incorrect because the formula for volume of a cylinder is $V=\pi r^{2} h$, so $V=$ $\pi(3)^{2}(10.5)$ which is closest to 296.88, not 395.84 .	D is incorrect because the formula for volume of a cylinder is $V=\pi r^{2} h$, so $V=$ $\pi(3)^{2}(10.5)$ which is closest to 296.88, not 197.92 .
42	F is incorrect because the two lines appear to intersect at day 18 , not day 15 .	G is incorrect because the two lines appear to intersect at day 18, not day 48.	H is incorrect because the two lines appear to intersect at day 18 , not day 33.	J is correct because the two lines appear to intersect at day 18.

