

Algebra I

2015 Released Test Questions

TEST ADMINISTRATOR INSTRUCTIONS

Question 1

Grade	EOC	Subject	Algebra I
Reporting Category $\mathbf{3}$	Writing and Solving Linear Functions, Equations, and Inequalities: The student will demonstrate an understanding of how to write and solve linear functions, equations, and inequalities.		
Knowledge and Skill Statement A.5	The student applies the mathematical process standards to solve, with and without technology, linear equations and evaluate the reasonableness of their solutions.		
Essence Statement	Solves linear equations, inequalities, and systems.		
Prerequisite Skill (OId Curriculum)	identify patterns in related addition and subtraction sentences (fact families for sums to 18) such as $2+3=5,3+2=5,5-2=3$, and $5-3=2(1)$		

Question 2

Grade	EOC	Subject	Algebra I	Question

Question 3

Grade	EOC	Subject	Algebra I	Question

Question 4

Grade	EOC	Subject	Algebra I
Reporting Category 3	Writing and Solving Linear Functions, Equations, and Inequalities: The student will demonstrate an understanding of how to write and solve linear functions, equations, and inequalities.		
Knowledge and Skill Statement A.5	The student applies the mathematical process standards to solve, with and without technology, linear equations and evaluate the reasonableness of their solutions.		
Essence Statement	Solves linear equations, inequalities, and systems.		
Prerequisite Skill (OId Curriculum)	formulate equations from problem situations described by linear relationships (6)		

Presentation Instructions for Question 1

- PresentStimulus 1.
- Direct the student to the first equation. Communicate: On Saturday, a bike shop built four bikes in the morning and five bikes in the afternoon for a total of nine bikes.
- Direct the student to the second equation. Communicate: On Sunday, the bike shop had nine bikes to sell. Four bikes were sold. Five bikes were left.
- Communicate: Find the equations that show what happened on Saturday and Sunday at the bike shop.

Stimulus 1

Scoring Instructions

Student Action		Test Administrator Action
If the student finds the equations,	\boldsymbol{m}	mark \mathbf{A} for question 1 and move to question 2.
If the student does not find the equations,	\boldsymbol{m}	remove the stimulus; ewait at least five seconds; and ereplicate the initial presentation instructions.
After the five-second wait time, if the student finds the equations,	\boldsymbol{m}	mark B for question 1 and move to question 2.
After the five-second wait time, if the student does not find the equations,	\boldsymbol{m}	mark Cor question 1 and move to question 2.

Presentation Instructions for Question 2

- Present Stimulus 2a and 2b.
- Direct the student to Stimulus 2a. Communicate: Seventy-seven newspapers were delivered to a school. A student delivered the newspapers to eleven classrooms. Each classroom received seven newspapers.
- Direct the student to each answer choice in Stimulus 2b. Communicate: At the end of the week, the eleven classrooms each recycled their seven newspapers. Seventy-seven newspapers were recycled.
- Communicate: Find the equation that shows the total number of newspapers that were recycled.

Stimulus 2a

$$
77 \text { newspapers } \div 11 \text { classrooms }=7 \text { newspapers per classroom }
$$

Stimulus 2b

$$
11 \text { classrooms } \times 7 \text { newspapers per classroom }=77 \text { newspapers }
$$

$$
11 \text { classrooms } \times 6 \text { newspapers per classroom }=66 \text { newspapers }
$$

| Scoring Instructions |
| :--- | :--- | :--- |

Presentation Instructions for Question 3

- Present Stimulus 3a and 3b.
- Direct the student to the first equation. Communicate: One day, a student stacked 75 boxes. He stacked 25 boxes per hour.
- Direct the student to the second equation. Communicate: The next day, the student stacked 60 boxes. He stacked 20 boxes per hour.
- Direct the student to the empty boxes. Communicate: The student worked the same number of hours each day. The number of hours he worked each day is missing.
- Direct the student to each answer choice in Stimulus 3b. Communicate each answer choice.
- Communicate: Find the number of hours the student worked each day.

Stimulus 3a

$$
\begin{aligned}
& 75 \text { boxes } \div \square= \begin{array}{l}
25 \text { boxes } \\
\text { per hour }
\end{array} \\
& 60 \text { boxes } \div \square=\begin{array}{l}
20 \text { boxes } \\
\text { per hour }
\end{array}
\end{aligned}
$$

Stimulus 3b
30 hours 5 hours * 3 hours

Scoring Instructions		
Student Action		Test Administrator Action

Presentation Instructions for Question 4

- Present Stimulus 4a and 4b.
- Direct the student to Stimulus 4a. Communicate: A student buys 5 boxes of cereal. Each box costs $\$ 3.00$. She has a coupon for $\$ 2.00$ off the total amount.
- Direct the student to each answer choice in Stimulus 4b. Communicate each answer choice.
- Communicate: Find the pair of equations that can be used to find how much money the student spends.

Stimulus 4 a

Stimulus 4b

Scoring Instructions

Student Action		Test Administrator Action
If the student finds " $5 \times \$ 3.00=\square$ and $\square-\$ 2.00=\$ 13.00, "$	\Rightarrow	mark \mathbf{A} for question 4.
If the student does not find " $5 \times \$ 3.00=\square$ and $\square-\$ 2.00=\$ 13.00, "$	\Rightarrow	replicate the initial presentation instructions.
After the teacher repeats the instructions, if the student finds " $5 \times \$ 3.00=\square$ and $\square-\$ 2.00=\$ 13.00, "$	\Rightarrow	mark \mathbf{B} for question 4.
After the teacher repeats the instructions, if the student does not find " $5 \times \$ 3.00=\square$ and $\square-\$ 2.00=\$ 13.00, "$	\Rightarrow	mark \mathbf{C} for question 4.

