<table>
<thead>
<tr>
<th>Item#</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Option B is correct
To determine the model that best represents the number of cartons of eggs Victor bought, the student should have identified the model that shows the total number of eggs (36) divided into equal groups with 12 eggs in each group.</td>
</tr>
<tr>
<td></td>
<td>Option A is incorrect
The student likely thought the values should be subtracted instead of divided. The student needs to focus on understanding the mathematical operations (+, −, ×, ÷) needed to solve real-world problems.</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect
The student likely thought the values should be added instead of divided. The student needs to focus on understanding the mathematical operations (+, −, ×, ÷) needed to solve real-world problems.</td>
</tr>
<tr>
<td></td>
<td>Option D is incorrect
The student chose a model that shows three groups but likely did not count the total number of eggs or the number of eggs in each group. The student needs to focus on the details of models used to represent real-world problems.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>2</td>
<td>Option H is correct
To determine which statement describes the fraction of a pizza that one of the friends ate, the student should have understood that a fraction is composed of a numerator (top number), which represents the shaded part of the circle, and a denominator (bottom number), which represents the number of equal-size parts in the whole circle. The student should have then identified that the circle for Wesley was divided into 2 equal parts with 1 part shaded and therefore represents $\frac{1}{2}$. The student should then have realized that Wesley ate $\frac{1}{2}$ of the pizza because he ate 1 piece of his 2 equal-size pieces.</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect
The student likely did not understand that the pieces in the model have to be equal in size for $\frac{1}{2}$ to be the fraction eaten. So although Diego’s model is divided into two parts, the parts are not equal in size and they do not represent halves. The student needs to focus on understanding that the parts of a fraction model must be equal in size to represent a fraction of the total number of pieces.</td>
</tr>
<tr>
<td></td>
<td>Option G is incorrect
The student likely did not understand how to write a fraction for the shaded part of a circle fraction model and thought the number of pieces eaten (shaded parts) should be the numerator (1) and the number of pieces not eaten (unshaded parts) should be the denominator (3), choosing $\frac{1}{3}$ as the fraction of the pizza that Victoria ate. The student needs to focus on understanding that in a fraction model, the numerator is the number of designated parts (shaded parts) and the denominator is the total number of parts.</td>
</tr>
<tr>
<td></td>
<td>Option J is incorrect
The student likely did not understand how to write a fraction for the shaded part of a circle fraction model and thought the number of pieces not eaten (unshaded parts) should be the numerator (3) and the number of pieces eaten (shaded parts) should be the denominator (1), choosing $\frac{3}{1}$ as the fraction of the pizza that Victoria ate. The student needs to focus on understanding that in a fraction model, the numerator is the number of designated parts (shaded parts) and the denominator is the total number of parts.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>3</td>
<td>Option A is correct
To determine the number of tickets the theater sold for the three movies, the student should have added the number of tickets sold for Movie 1 (143), Movie 2 (158), and Movie 3 (175), resulting in 476 (143 + 158 + 175 = 476).</td>
</tr>
<tr>
<td></td>
<td>Option B is incorrect
The student likely added the values but did not regroup to the tens place (second digit from the right) and the hundreds place (leftmost digit). The student needs to focus on understanding how to regroup when adding.</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect
The student likely added the values but did not regroup to the hundreds place (leftmost digit). The student needs to focus on understanding how to regroup when adding.</td>
</tr>
<tr>
<td></td>
<td>Option D is incorrect
The student likely attempted to add the values but made an error when adding the digits 3, 8, and 5 in the ones place (rightmost digit), resulting in 3 + 8 + 5 → 13. The student needs to focus on adding numbers accurately.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>4</td>
<td>Option H is correct</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option G is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option J is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>5</td>
<td>972 and any equivalent values are correct</td>
</tr>
</tbody>
</table>

To determine a number that is equivalent to the expression, the student should have put the digits from the expression in place-value order. From left to right, the place-value order is hundreds place, tens place, and ones place. The student should have used a 9 in the hundreds place for the 900 in the expression, a 7 in the tens place for the 70 in the expression, and a 2 in the ones place for the 2 in the expression (972). This is an efficient way to solve the problem; however, other methods could be used to solve the problem correctly.
<table>
<thead>
<tr>
<th>Item#</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Option H is correct</td>
</tr>
<tr>
<td></td>
<td>To determine the list that matches the data in the bar graph, the student</td>
</tr>
<tr>
<td></td>
<td>should have determined the value of each bar to determine the number of</td>
</tr>
<tr>
<td></td>
<td>math problems each of the five students completed.</td>
</tr>
<tr>
<td></td>
<td>The student should have determined that Jeff completed 6 math problems,</td>
</tr>
<tr>
<td></td>
<td>Amber completed 24 math problems, Gary completed 9 math problems (since</td>
</tr>
<tr>
<td></td>
<td>the bar falls halfway between the labeled increments of 6 and 12), Farrah</td>
</tr>
<tr>
<td></td>
<td>completed 15 math problems (since the bar falls halfway between the</td>
</tr>
<tr>
<td></td>
<td>labeled increments of 12 and 18), and Steve completed 21 math problems</td>
</tr>
<tr>
<td></td>
<td>(since the bar falls halfway between the labeled increments of 18 and</td>
</tr>
<tr>
<td></td>
<td>24). Then the student should have chosen the list of data matching the</td>
</tr>
<tr>
<td></td>
<td>bar lengths for each student.</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect</td>
</tr>
<tr>
<td></td>
<td>The student likely miscounted the unlabeled grid lines as 2 instead of 3</td>
</tr>
<tr>
<td></td>
<td>on the bar graph and chose the list in which Gary completed 8 math</td>
</tr>
<tr>
<td></td>
<td>problems instead of 9, Farrah completed 14 math problems instead of 15,</td>
</tr>
<tr>
<td></td>
<td>and Steve completed 20 math problems instead of 21. The student needs to</td>
</tr>
<tr>
<td></td>
<td>focus on understanding how to accurately interpret data on a bar graph</td>
</tr>
<tr>
<td></td>
<td>when the values fall on unlabeled grid lines.</td>
</tr>
<tr>
<td></td>
<td>Option G is incorrect</td>
</tr>
<tr>
<td></td>
<td>The student likely switched the values for Jeff and Gary and chose the</td>
</tr>
<tr>
<td></td>
<td>list in which Gary completed 6 instead of 9 math problems and Jeff</td>
</tr>
<tr>
<td></td>
<td>completed 9 instead of 6 math problems. The student needs to focus on</td>
</tr>
<tr>
<td></td>
<td>understanding how to accurately read and interpret a bar graph.</td>
</tr>
<tr>
<td></td>
<td>Option J is incorrect</td>
</tr>
<tr>
<td></td>
<td>The student likely switched the values of the data for Steve and Amber</td>
</tr>
<tr>
<td></td>
<td>and chose the list in which Amber completed 21 instead of 24 math</td>
</tr>
<tr>
<td></td>
<td>problems and Steve completed 24 instead of 21 math problems. The student</td>
</tr>
<tr>
<td></td>
<td>needs to focus on understanding how to accurately read and interpret a bar</td>
</tr>
<tr>
<td></td>
<td>graph.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>7</td>
<td>Option A is correct</td>
</tr>
<tr>
<td></td>
<td>Option B is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option D is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>8</td>
<td>Option G is correct</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option H is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option J is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>9</td>
<td>Option D is correct</td>
</tr>
<tr>
<td></td>
<td>Option A is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option B is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>10</td>
<td>Option J is correct</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option G is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option H is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>11</td>
<td>Option C is correct</td>
</tr>
</tbody>
</table>

| | Option A is incorrect | The student likely made an addition error when adding in the tens place, thinking the sum in the tens place was 20 tens instead of 21 tens. The student needs to focus on how to add three or more two-digit numbers. |

| | Option B is incorrect | The student likely misunderstood the question, identifying the value of the tallest bar (tea) instead of finding the total number of drinks ordered. The student needs to focus on attending to the details of a question and accurately interpreting the graph when solving two-step problems involving bar graphs. |

<p>| | Option D is incorrect | The student likely misread the value of the bar for tea as 70 since it landed on an unlabeled grid line (50 + 30 + 70 + 60 = 210). The student needs to focus on understanding how to accurately interpret data on a bar graph when the values fall on unlabeled grid lines. |</p>
<table>
<thead>
<tr>
<th>Item#</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Option H is correct To determine which statement is true, the student should have recognized that since the strip diagrams are the same size and the shaded area of Strip A is the same as the shaded area of Strip B, the fractions represented are equivalent.</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect The student likely recognized that the strips represent equivalent fractions but did not understand that the equivalence is not related to the number of shaded parts. The student needs to focus on understanding how to interpret area models accurately.</td>
</tr>
<tr>
<td></td>
<td>Option G is incorrect The student likely recognized that Strip A represents fourths and Strip B represents eighths and determined that since the strips represent fractions with different denominators (bottom numbers), the shaded part of the strips cannot represent fractions that are equivalent. The student needs to focus on understanding how to interpret area models accurately.</td>
</tr>
<tr>
<td></td>
<td>Option J is incorrect The student likely noticed that Strip A has 3 shaded parts and Strip B has 6 shaded parts and determined that since the number of shaded parts in the two strips is different, the strips cannot represent equivalent fractions. The student needs to focus on understanding how to interpret area models accurately.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>13</td>
<td>Option D is correct</td>
</tr>
</tbody>
</table>

Option A is incorrect | The student likely noticed a “plus 1” relationship between consecutive values in the first column (1 + 1 = 2; 2 + 1 = 3; 3 + 1 = 4; 4 + 1 = 5) and did not find a relationship to each corresponding number of baseball cards. The student also likely confused the operation of addition with multiplication, thinking that the “plus 1” relationship was the same as a “times 1” relationship. The student needs to focus on the details of verbal descriptions of relationships between numbers paired in a table. |

Option B is incorrect | The student likely noticed a “plus 1” relationship between consecutive values in the first column (1 + 1 = 2; 2 + 1 = 3; 3 + 1 = 4; 4 + 1 = 5) and did not find a relationship to each corresponding number of baseball cards. The student needs to focus on the details of verbal descriptions of relationships between numbers paired in a table. |

Option C is incorrect | The student likely noticed a “plus 11” relationship between consecutive values in the second column (22 + 11 = 33; 33 + 11 = 44; 44 + 11 = 55) and did not find a relationship to each corresponding number of packages. The student needs to focus on the details of verbal descriptions of relationships between numbers paired in a table. |
<table>
<thead>
<tr>
<th>Item#</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>To determine the total number of erasers on all of the tables in the classroom, the student should have recognized that 5 tables with 4 erasers on each table (5 groups of 4) indicates multiplication ($4 \times 5 = 20$). This is an efficient way to solve the problem; however, other methods could be used to solve the problem correctly.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>15</td>
<td>Option A is correct</td>
</tr>
<tr>
<td></td>
<td>Option B is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option D is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>16</td>
<td>Option H is correct</td>
</tr>
<tr>
<td></td>
<td>To determine the total number of outlets 6 electrical panels have, the student could have multiplied the 4 outlets on each panel by 6 panels (4 × 6 = 24). This is an efficient way to solve the problem; however, other methods could be used to solve the problem correctly.</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect</td>
</tr>
<tr>
<td></td>
<td>The student likely made an error when skip counting by 4; the last number after 6 skips was 28 instead of 24 (8, 12, 16, 20, 24, 28). The student needs to focus on how to determine the total number of objects when equal-size groups of objects are combined or arranged in arrays up to 10 by 10.</td>
</tr>
<tr>
<td></td>
<td>Option G is incorrect</td>
</tr>
<tr>
<td></td>
<td>The student likely understood that multiplication should be used to solve the problem but confused the product (answer) of 4 × 6 (24) with the product of 4 × 5 (20). The student needs to focus on multiplying numbers accurately.</td>
</tr>
<tr>
<td></td>
<td>Option J is incorrect</td>
</tr>
<tr>
<td></td>
<td>The student likely added 4 to 6 instead of multiplying 4 by 6. The student needs to focus on understanding the mathematical operations (+, −, ×, ÷) needed to solve real-world problems.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>17</td>
<td>Option A is correct</td>
</tr>
<tr>
<td></td>
<td>Option B is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option D is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>Option J is correct</td>
</tr>
<tr>
<td></td>
<td>To determine the area of (amount of space covered by) the card, the student should have determined the number of rows and the number of squares in each row of the shaded figure representing the card. The shaded figure covers 9 rows, and each row is 9 squares long. The student then could have multiplied 9 by 9 or could have counted the number of squares covered by the shaded figure (81). Because the shaded figure covers 81 squares, it represents an area of 81 square centimeters.</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect</td>
</tr>
<tr>
<td></td>
<td>The student likely determined that there are 9 rows with 9 squares in each row in the shaded area but added 9 and 9 instead of multiplying 9 by 9 (9 + 9 = 18). The student needs to focus on understanding area and how to calculate it.</td>
</tr>
<tr>
<td></td>
<td>Option G is incorrect</td>
</tr>
<tr>
<td></td>
<td>The student likely determined that there are 9 squares along each side of the shaded figure but calculated the perimeter (distance around the outside) of the shaded figure instead of the area of the shaded figure (9 + 9 + 9 + 9 = 36). The student needs to focus on understanding area and how to calculate it.</td>
</tr>
<tr>
<td></td>
<td>Option H is incorrect</td>
</tr>
<tr>
<td></td>
<td>The student likely determined the number of squares in each row incorrectly, counting 10 instead of 9, and then multiplied (9 × 10 = 90) for the area of the blanket. The student needs to focus on understanding how to interpret area models accurately.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>19</td>
<td>Option D is correct</td>
</tr>
<tr>
<td></td>
<td>Option A is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option B is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>20</td>
<td>Option G is correct
To determine the difference between the two weights, the student should have interpreted that the word “difference” in the question meant that subtraction was necessary. The student should have subtracted 379 from 514 (514 – 379 = 135).</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect
The student likely subtracted the values but did not regroup in the hundreds place (leftmost digit). The student needs to focus on understanding how to regroup when subtracting.</td>
</tr>
<tr>
<td></td>
<td>Option H is incorrect
The student likely found the difference by subtracting the smaller digit from the larger digit in each place value instead of regrouping (514 – 379 → 265). The student needs to focus on understanding how to regroup when subtracting.</td>
</tr>
<tr>
<td></td>
<td>Option J is incorrect
The student likely found the difference by subtracting the smaller digit from the larger digit in the ones place (rightmost digit) instead of regrouping (514 – 379 → 145). The student needs to focus on understanding how to regroup when subtracting.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| 21 | **Option C is correct**
To determine which two fractions can represent the black counters in the group, the student could have counted the total number of counters (8) and the total number of black counters (2), concluding that $\frac{2}{8}$ of the counters were black. Then the student could have counted the number of columns (4) and the number of columns with black counters (1), concluding that $\frac{1}{4}$ of the counters were black. This is an efficient way to solve the problem; however, other methods could be used to solve the problem correctly. |
| | **Option A is incorrect**
The student likely determined that $\frac{2}{8}$ represents the black counters in the group but incorrectly thought that equivalent fractions needed to have the same numerator (top number). The student needs to focus on understanding how to compare fractions represented by area models. |
| | **Option B is incorrect**
The student likely counted the total number of black counters (2) and the total number of white counters (6) and concluded that $\frac{2}{6}$ of the counters were black and recognized that $\frac{1}{3}$ and $\frac{2}{6}$ are equivalent. The student needs to focus on understanding how to compare fractions represented by area models. |
| | **Option D is incorrect**
The student likely counted the number of columns (4) and the number of columns with black counters (1) and concluded that $\frac{1}{4}$ of the counters were black. The student then likely determined that equivalent fractions need to have the same denominator (bottom number). The student needs to focus on understanding how to compare fractions represented by area models. |
<table>
<thead>
<tr>
<th>Item#</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Option J is correct</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option G is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option H is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>23</td>
<td>Option B is correct</td>
</tr>
<tr>
<td></td>
<td>Option A is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option D is incorrect</td>
</tr>
</tbody>
</table>
To determine the length of the rectangular floor, the student should have first recognized that the perimeter (distance around the outside) is 46 feet and the width of the floor is 10 feet and that the perimeter can be found by adding all the side lengths. Then the student could have subtracted the width of two sides of the floor from the perimeter ($46 - 10 - 10 = 26$). Then the student could have divided 26 feet by 2 since 26 is the length of 2 sides of the floor ($26 ÷ 2 = 13$) to find the length of one side. This is an efficient way to solve the problem; however, other methods could be used to solve the problem correctly.
<table>
<thead>
<tr>
<th>Item#</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Option A is correct</td>
</tr>
<tr>
<td></td>
<td>Option B is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option D is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| 26 | Option G is correct | To determine the true statement, the student should have first written the fraction represented by each model. The top model has 6 shaded parts (numerator, or top number) out of a total of 8 equal-size parts (denominator, or bottom number), representing the fraction $\frac{6}{8}$. The bottom model has 8 shaded parts (numerator) out of a total of 8 equal-size parts (denominator), representing the fraction $\frac{8}{8}$. The student should have seen that the shaded part of the top model is smaller than the shaded part of the bottom model and determined that $\frac{6}{8} < \frac{8}{8}$, or $\frac{6}{8}$ is less than $\frac{8}{8}$.

| | Option F is incorrect | The student likely recognized that $\frac{6}{8}$ is less than $\frac{8}{8}$ but compared the shaded parts (numerators) in the explanation instead of comparing the total number of parts (denominators). The student needs to focus on understanding how to compare fractions with the same denominator but different numerators.

| | Option H is incorrect | The student likely recognized the explanation to be true but did not pay attention to the comparison and likely did not use the models to compare $\frac{6}{8}$ to $\frac{8}{8}$. The student needs to focus on understanding how to compare fractions with the same denominator but different numerators.

<p>| | Option J is incorrect | The student likely confused “greater than” (>) with “less than” (<). The student needs to focus on correctly identifying the less than symbol when comparing fractions using models. |</p>
<table>
<thead>
<tr>
<th>Item#</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Option D is correct
To determine the table that shows the relationship between the number of muffins and the number of cookies the bakery makes, the student should have added 12 to each number of muffins and then used the result to confirm each number of cookies listed in the table ((12 + 12 = 24; 24 + 12 = 36; 48 + 12 = 60)).</td>
</tr>
<tr>
<td></td>
<td>Option A is incorrect
The student likely chose the table that shows the number of muffins increasing by 12 and the number of cookies increasing by 12 added to the previous value and did not consider the relationship between each number of muffins and each number of cookies in the table. The student needs to focus on understanding the relationship between numbers paired in a table.</td>
</tr>
<tr>
<td></td>
<td>Option B is incorrect
The student likely reversed the relationship, choosing the table that shows that there were 12 more muffins than cookies rather than 12 more cookies than muffins. The student needs to focus on understanding the relationship between numbers paired in a table.</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect
The student likely confused addition with multiplication, thinking that the number of cookies was 12 times the number of muffins instead of 12 more than the number of muffins, and chose the table showing this relationship between the numbers in some of the pairs in the table but did not look at all of the pairs of the numbers in the table. The student needs to focus on understanding the relationship between numbers paired in a table.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>28</td>
<td>Option F is correct
To determine the time Marcus left the pool, the student should have determined that the time Marcus arrived at the pool shown on the clock was 1:35. Then the student could have added 45 minutes to that time by counting in 5-minute intervals. The student should have noticed that 45 minutes after 1:35 would be 20 minutes after 2 and selected 2:20. This is an efficient way to solve the problem; however, other methods could be used to solve the problem correctly.</td>
</tr>
<tr>
<td></td>
<td>Option G is incorrect
The student likely reversed the hour and minute hands, reading the time as 7:10 instead of 1:35. The student then added 45 minutes to 7:10 to get 7:55. The student needs to focus on understanding how to tell time on an analog clock.</td>
</tr>
<tr>
<td></td>
<td>Option H is incorrect
The student likely misread the time on the clock as 1:30 instead of 1:35. The student then added 45 minutes to 1:30 to get 2:15. The student needs to focus on understanding how to tell time on an analog clock.</td>
</tr>
<tr>
<td></td>
<td>Option J is incorrect
The student likely misread the time on the clock as 2:35 rather than 1:35. The student then added 45 minutes to 2:35 to get 3:20. The student needs to focus on understanding how to tell time accurately on an analog clock.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>29</td>
<td>Option B is correct</td>
</tr>
<tr>
<td></td>
<td>Option A is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option C is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option D is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>30</td>
<td>Option F is correct</td>
</tr>
<tr>
<td></td>
<td>Option G is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option H is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option J is incorrect</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>31</td>
<td>Option C is correct
Rationale
To determine the total number of balls Hector threw at the target, the student could have added together the number of red balls (4) and the number of green balls (3) and then multiplied the number of games by the sum ($4 + 3 = 7$; $14 \times 7 = 98$). This is an efficient way to solve the problem; however, other methods could be used to solve the problem correctly.</td>
</tr>
<tr>
<td></td>
<td>Option A is incorrect
The student likely added the numbers in the problem ($14 + 4 + 3 = 21$). The student needs to focus on understanding the mathematical operations (+, −, ×, ÷) needed to solve multi-step, real-world problems.</td>
</tr>
<tr>
<td></td>
<td>Option B is incorrect
The student likely added the number of green balls thrown (3) to the number of games (14) to get 17 and then multiplied that sum by 4 ($14 + 3 = 17$; $17 \times 4 = 68$). The student needs to focus on understanding the mathematical operations (+, −, ×, ÷) needed to solve multi-step, real-world problems.</td>
</tr>
<tr>
<td></td>
<td>Option D is incorrect
The student likely multiplied 14 by 3 and then added the 4 red balls ($14 \times 3 = 42$; $42 + 4 = 46$). The student needs to focus on understanding the mathematical operations (+, −, ×, ÷) needed to solve multi-step, real-world problems.</td>
</tr>
<tr>
<td>Item#</td>
<td>Rationale</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>32</td>
<td>Option G is correct</td>
</tr>
<tr>
<td></td>
<td>Option F is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option H is incorrect</td>
</tr>
<tr>
<td></td>
<td>Option J is incorrect</td>
</tr>
</tbody>
</table>