Physics Side-by-Side

2021 Knowledge and Skill Statement/Student Expectation	2021 Text	2017 Knowledge and Skill Statement/Student Expectation	2017 Text
SCIENCE.PHY.1	Scientific <u>and engineering practices</u> . The student, for at least 40% of instructional time, <u>asks questions, identifies problems, and plans</u> and safely conducts classroom, laboratory, and field investigations <u>to answer questions, explain phenomena, or design solutions</u> <u>using appropriate tools and models</u> . The student is expected to:	P.1	Scientific processes . The student conducts investigations, for safe, environmentally appropriate, and ethical practices. The obtaining and analyzing data with physical equipment but r simulated environment as well as field observations that ex expected to:
		P.2	Scientific processes. The student uses a systematic approact investigative questions. The student is expected to:
SCIENCE.PHY.1.A	ask questions and <u>define problems based on</u> observations <u>or information from text,</u> <u>phenomena, models, or</u> investigations;		design and implement investigative procedures, including r questions, formulating testable hypotheses, identifying vari
SCIENCE.PHY.1.B	apply scientific practices to plan and conduct descriptive, comparative, and experimental investigations and use engineering practices to design solutions to problems;		and technology, evaluating numerical answers for reasonal of uncertainties in measured data;
SCIENCE.PHY.1.C	<u>use appropriate</u> safety <u>equipment and</u> practices during laboratory, <u>classroom</u> , and field investigations <u>as outlined in Texas Education Agency-approved safety standards</u> ;	P.1.A	demonstrate safe practices during laboratory and field inve
	use <u>appropriate tools such as</u> balances, ballistic carts or equivalent, batteries, computers, <u>constant velocity cars</u> , convex lenses, copper wire, discharge tubes with power supply (H, He, Ne, Ar), data acquisition probes and software, dynamics and force demonstration equipment, electrostatic generators, electrostatic kits, friction blocks, graph paper, graphing technology, hand-held visual spectroscopes, inclined planes, iron filings, lab masses, laser pointers, magnets, magnetic compasses, metric rulers, motion detectors, multimeters (current, voltage, resistance), optics bench, optics kit, photogates, plane mirrors, prisms, protractors, pulleys, resistors, rope or string, scientific calculators, stopwatches, springs, spring scales, switches, tuning forks, wave generators, or other equipment and materials that will produce the same results;	P.2.E	demonstrate the use of course apparatus, equipment, tech multimeters (current, voltage, resistance), balances, batteri collision apparatus, lab masses, magnets, plane mirrors, con apparatus, graph paper, magnetic compasses, protractors, slinky springs, and/or other equipment and materials that v
SCIENCE.PHY.1.D		P.2.F	use a wide variety of additional course apparatus, equipme as appropriate such as ripple tank with wave generator, wa visual spectroscopes, discharge tubes with power supply (H charts, laser pointers, micrometer, caliper, computer, data graphing technology, electrostatic kits, electroscope, incline film, prisms, pulley with table clamp, motion detectors, pho equivalent, resonance tube, stroboscope, resistors, copper equipment and materials that will produce the same results
SCIENCE.PHY.1.E	<u>collect quantitative</u> data using the International System of Units (SI) and <u>qualitative data</u> <u>as evidence</u> :	P.2.G	make measurements with accuracy and precision and record International System (SI) units;
SCIENCE.PHY.1.F	organize <u>quantitative and qualitative</u> data <u>using bar charts, line graphs, scatter plots, data</u> tables, labeled diagrams, and conceptual mathematical relationships;	Р.2.Н	organize, evaluate, and make inferences from data, includir
SCIENCE.PHY.1.G	develop and use models to represent phenomena, systems, processes, or solutions to engineering problems; and		
		P.2.B	know that scientific hypotheses are tentative and testable s supported or not supported by observational evidence;

	Texas Education Agency
	Notes from TEA Staff
r at least 40% of instructional time, using ese investigations must involve actively- hay also involve experimentation in a- end beyond the classroom. The student is	
1 to answer scientific laboratory and field	
aking observations, asking well defined ables, selecting appropriate equipment leness, and identifying causes and effects-	
stigations; and	
Hiques, and procedures, including es, dynamics demonstration equipment, wex lenses, stopwatches, trajectory netric rulers, spring scales, thermometers, vill produce the same results;	
It, techniques, materials, and procedures re motion rope, tuning forks, hand-held He, Ne, Ar), electromagnetic spectrum icquisition probes, scientific calculators, d plane, optics bench, optics kit, polarized togates, friction blocks, ballistic carts or wire, switches, iron filings, and/ or other ;	
a data using scientific notation and	
g the use of tables, charts, and graphs;	
tatements that must be capable of being-	

SCIENCE.PHY.1.H	<u>distinguish between</u> scientific hypotheses, theories, and <u>laws</u> .	P.2.C	know that scientific theories are based on natural and physic tested by multiple independent researchers. Unlike hypothes and highly reliable explanations, but may be subject to chang
		Р.1.В	demonstrate an understanding of the use and conservation of recycling of materials.
		Р.2.А	know the definition of science and understand that it has lim of this section;
SCIENCE.PHY.2	Scientific and engineering practices. The student analyzes and interprets data to derive meaning, identify features and patterns, and discover relationships or correlations to develop evidence-based arguments or evaluate designs. The student is expected to:		
SCIENCE.PHY.2.A	identify advantages and limitations of models such as their size, scale, properties, and materials;		
SCIENCE.PHY.2.B	<u>analyze data by identifying significant statistical features, patterns, sources of error, and limitations:</u>	Р.2.]	express relationships among physical variables quantitatively equations.
SCIENCE.PHY.2.C	<u>use</u> mathematical <u>calculations to assess quantitative</u> relationships <u>in data</u> ; and	P.3.E	express, manipulate, and interpret relationships symbolically make predictions and solve problems mathematically.
SCIENCE.PHY.2.D	evaluate experimental and engineering designs.		
SCIENCE.PHY.3	Scientific and engineering practices. The student develops evidence-based explanations and communicates findings, conclusions, and proposed solutions. The student is expected to:	P.3	Scientific processes. The student uses critical thinking, scienti make informed decisions within and outside the classroom. T
SCIENCE.PHY.3.A	develop explanations and propose solutions supported by data and models and consistent with scientific ideas, principles, and theories;	Р.З.В	communicate and apply scientific information extracted from news reports, published journal articles, and marketing mate
SCIENCE.PHY.3.B	communicate <u>explanations and solutions individually and collaboratively in a variety of</u> settings and formats; and	P.2.I	communicate valid conclusions supported by the data throug labeled drawings, graphic organizers, journals, summaries, or and
SCIENCE.PHY.3.C	engage respectfully in scientific argumentation using applied scientific explanations and empirical evidence.		
SCIENCE.PHY.4	Scientific and engineering practices. The student knows the contributions of scientists and recognizes the importance of scientific research and innovation on society. The student is expected to:		
SCIENCE.PHY.4.A	analyze, evaluate, and critique scientific explanations <u>and solutions</u> by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student;	P.3.A	analyze, evaluate, and critique scientific explanations by usin and experimental and observational testing, so as to encoura

cal phenomena and are capable of being ses, scientific theories are well established ge ;	
of resources and the proper disposal or-	The use and conservation of resources are covered in elementary and middle school science.
nitations, as specified in subsection (b)(2)-	
y, including the use of graphs, charts, and	
y in accordance with accepted theories to	
tific reasoning, and problem solving to- The student is expected to:	
n various sources such as current events,- erials;	
gh various methods such as lab reports, ral reports, and technology-based reports;	Students are now being asked to communicate not only as scientists but also as engineers.
ng empirical evidence, logical reasoning, age critical thinking by the student;	

SCIENCE.PHY.4.B	<u>relate</u> the impact of <u>past and current research</u> on scientific thought and society, <u>including</u> <u>research methodology</u> , <u>cost-benefit analysis</u> , <u>and contributions of diverse</u> scientists <u>as</u> <u>related to the content</u> ; and	P.3.C	explain the impacts of the scientific contributions of a variety on scientific thought and society;
SCIENCE.PHY.4.C	research and <u>explore resources such as museums, libraries, professional organizations,</u> <u>private companies, online platforms, and mentors employed in a science, technology,</u> <u>engineering, and mathematics (STEM) field in order to investigate STEM</u> careers.	P.3.D	research and describe the connections between physics and
SCIENCE.PHY.5	Science concepts. The student knows and applies the laws governing motion in a variety of situations. The student is expected to:	P.4	Science concepts. The student knows and applies the laws go The student is expected to:
SCIENCE.PHY.5.A	analyze different types of motion by generating and interpreting position versus time, velocity versus time, and acceleration versus time using hand graphing and real-time technology such as motion detectors, photogates, or <u>digital applications</u> ;	P.4.A	generate and interpret graphs and charts describing differen using real-time technology such as motion detectors or phot
SCIENCE.PHY.5.B	<u>define scalar and vector quantities related to one- and two-dimensional motion and</u> <u>combine vectors using both</u> graphical vector addition <u>and the Pythagorean theorem</u> ;	Р.4.В	describe and analyze motion in one dimension using equation concepts of distance, displacement, speed, average velocity, reference, and acceleration;
SCIENCE.PHY.5.C	describe and analyze motion in one dimension using equations with the concepts of distance, displacement, speed, velocity, frames of reference, and acceleration;		
SCIENCE.PHY.5.D	describe and analyze acceleration <u>in uniform circular and horizontal projectile</u> motion in two dimensions using equations;	P.4.C	analyze and describe accelerated motion in two dimensions, vector addition, and projectile and circular examples; and
SCIENCE.PHY.5.E	explain and apply the concepts of equilibrium and inertia as represented by Newton's first law of motion using relevant real-world examples such as rockets, satellites, and automobile safety devices:		
SCIENCE.PHY.5.F	calculate the effect of forces on objects, including <u>tension, friction, normal, gravity,</u> <u>centripetal, and applied forces</u> , <u>using</u> free body diagrams and the relationship between force and acceleration <u>as represented by Newton's second law of motion</u> ;	P.4.D	calculate the effect of forces on objects, including the law of and acceleration, and the nature of force pairs between obje
SCIENCE.PHY.5.G	<u>illustrate and analyze the simultaneous</u> forces between two objects <u>as represented in</u> <u>Newton's third law of motion</u> using free body diagrams <u>and in an experimental design</u> <u>scenario</u> ; and		force diagrams.
SCIENCE.PHY.5.H	describe and calculate, <u>using scientific notation</u> , how the magnitude of force between two objects depends on their masses and the distance between their centers, <u>and predict</u> . <u>the effects on objects in linear and orbiting systems using Newton's law of universal</u> <u>gravitation</u> .	P.5.B	describe and calculate how the magnitude of the gravitation their masses and the distance between their centers;
SCIENCE.PHY.6	Science concepts. The student knows the nature of forces in the physical world. The student is expected to:	P.5	Science concepts. The student knows the nature of forces in expected to:
SCIENCE.PHY.6.A	<u>use scientific notation and predict</u> how the magnitude of the electric force between two objects depends on their charges and the distance between their centers <u>using Coulomb's</u> <u>law</u> ;	P.5.C	describe and calculate how the magnitude of the electric for charges and the distance between their centers;
SCIENCE.PHY.6.B	identify and describe examples of electric and magnetic forces and fields in everyday life such as generators, motors, and transformers;	P.5.D	identify and describe examples of electric and magnetic force generators, motors, and transformers;

riety of historical and contemporary scientists	
and future careers; and	
vs governing motion in a variety of situations.	
erent types of motion, including investigations photogates;	
ations and graphical vector addition with the city, instantaneous velocity , frames of	
ons, including using equations, graphical d	
w of inertia , the relationship between force objects using methods , including free-body	
tional force between two objects depends on	
es in the physical world. The student is	
c force between two objects depends on their	
forces and fields in everyday life such as	

SCIENCE.PHY.6.C	investigate and describe conservation of charge during the processes of induction, conduction, and polarization using different materials such as electroscopes, balloons, rods, fur, silk, and Van de Graaf generators;		
SCIENCE.PHY.6.D	analyze, design, and construct series and parallel circuits using schematics and materials such as switches, wires, resistors, lightbulbs, batteries, voltmeters, and ammeters; and		
SCIENCE.PHY.6.E	calculate current through, potential difference across, resistance of, and power used by electric circuit elements connected in both series and parallel circuits <u>using Ohm's law</u> .	P.5.F	investigate and calculate current through, potential differer by electric circuit elements connected in both series and pa
		Р.5. А	describe the concepts of gravitational, electromagnetic, we
		P.5.E	characterize materials as conductors or insulators based on
SCIENCE.PHY.7	Science concepts. The student knows that changes occur within a physical system and applies the laws of conservation of energy and momentum. The student is expected to:	P.6	Science concepts. The student knows that changes occur wi of conservation of energy and momentum. The student is e
SCIENCE.PHY.7.A	calculate and <u>explain work and power in one dimension and identify when</u> work <u>is and is</u> not being done by or on a system;	P.6.A	investigate and calculate quantities using the work-energy t
SCIENCE.PHY.7.B	investigate and calculate mechanical, kinetic, and potential energy of a system;	P.6.B	investigate examples of kinetic and potential energy and the
SCIENCE.PHY.7.C	<u>apply the concept of conservation of energy</u> using the work-energy theorem, <u>energy</u> <u>diagrams, and energy transformation equations, including transformations between</u>	Р.6.Е	explain everyday examples that illustrate the four laws of the the four laws of the thermal energy transfer.
	<u>kinetic, potential, and thermal energy</u> ;	P.6.A	investigate and calculate quantities using the work-energy t
SCIENCE.PHY.7.D	calculate <u>and describe the</u> impulse and momentum of <u>objects in</u> physical systems <u>such as</u> <u>automobile safety features, athletics, and rockets</u> ; and	P.6.C	calculate the mechanical energy of, power generated withir physical system;
SCIENCE.PHY.7.E	<u>analyze the</u> conservation of momentum <u>qualitatively in inelastic and elastic collisions</u> in one dimension <u>using models, diagrams, and simulations</u> .	P.6.D	demonstrate and apply the laws of conservation of energy a dimension; and
SCIENCE.PHY.8	Science concepts. The student knows the characteristics and behavior of waves. The student is expected to:	P.7	Science concepts. The student knows the characteristics and expected to:
SCIENCE.PHY.8.A	examine and describe <u>simple harmonic</u> motion <u>such as masses on springs and pendulums</u> and wave <u>energy</u> propagation in various types of media <u>such as surface waves on a body</u> of water and pulses in ropes;	P.7.A	examine and describe oscillatory motion and wave propaga
SCIENCE.PHY.8.B	compare the characteristics of transverse and longitudinal waves, including electromagnetic and sound waves;	P.7.C	compare characteristics and behaviors of transverse waves, electromagnetic spectrum, and characteristics and behavior waves;
SCIENCE.PHY.8.C	investigate and analyze characteristics of waves, including velocity, frequency, amplitude, and wavelength, and calculate using the relationships between wave speed, frequency, and wavelength;	Р.7.В	investigate and analyze characteristics of waves, including wavelength, and calculate using the relationship between w
SCIENCE.PHY.8.D	investigate behaviors of waves, including reflection, refraction, diffraction, interference, <u>standing wave</u> , the Doppler effect and <u>polarization</u> and <u>superposition</u> ; and	P.7.D	investigate behaviors of waves, including reflection, refracti and the Doppler effect; and

ce across, resistance of, and power used rallel combinations.	
k nuclear, and strong nuclear forces;	The fundamental forces are described in Integrated Physics and Chemistry.
their electric properties; and	Conductors and insulators are covered in Grade 5. Properties of substances are covered in Chemistry.
thin a physical system and applies the laws spected to:	
neorem in various situations;	
ir transformations;	
ermodynamics and the processes of	Thermodynamics was moved to Chemistry.
neorem in various situations ;	
, impulse applied to , and momentum of a	
nd conservation of momentum in one	
l behavior of waves. The student is	
ion in various types of media;	
including electromagnetic waves and the s of longitudinal waves, including sound	
elocity, frequency, amplitude, and avespeed, frequency, and wavelength;	
on, diffraction, interference, resonance ,	

SCIENCE.PHY.8.E	<u>compare the different applications of the electromagnetic spectrum, including radio</u> telescopes, microwaves, and x-rays;		
SCIENCE.PHY.8.F	investigate the emission spectra produced by various atoms <u>and explain the relationship</u> to the electromagnetic spectrum; and	P.8.B	compare and explain the emission spectra produced by vario
SCIENCE.PHY.8.G	describe and predict image formation as a consequence of reflection from a plane mirror and refraction through a thin convex lens.	P.7.E	describe and predict image formation as a consequence of re refraction through a thin convex lens.
SCIENCE.PHY.9	Science concepts. The student knows examples of quantum phenomena <u>and their</u> <u>applications</u> . The student is expected to:	P.8	Science concepts. The student knows simple examples of ato The student is expected to:
SCIENCE.PHY.9.A	describe the photoelectric effect and <u>emission spectra produced by various atoms</u> and <u>how both are explained by the photon model for</u> light;	P.8.A	describe the photoelectric effect and the dual nature of light;
SCIENCE.PHY.9.B	investigate Malus's Law and describe examples of applications of wave polarization, including 3-D movie glasses and LCD computer screens;		
SCIENCE.PHY.9.C	<u>compare and explain how superposition of quantum states is related to the wave-particle</u> <u>duality nature of light; and</u>		
SCIENCE.PHY.9.D	give examples of applications of quantum phenomena, <u>including the Heisenberg</u> <u>uncertainty principle, quantum computing, and cybersecurity</u> .	P.8.D	give examples of applications of atomic and nuclear phenomenation in the set of applications of atomic and nuclear phenomenation is a superconductors, solar cells, and nuclear power and example
		P.8C	calculate and describe the applications of mass-energy equiv
КЕҮ	Blue double underline: indicates content new to the grade level		Orange strike through: indicates content was deleted

arious atoms;	
of reflection from a plane mirror and	
atomic, nuclear, and quantum phenomena.	
ight;	
nomena using the standard model such as agnostic imaging, semiconductors,- nples of applications of quantum phenomena.	Nuclear phenomena were moved entirely to Chemistry.
quivalence; and	Mass-energy equivalence was deleted from Physics.
ed-	
	Copyright © Texas Education Agency, 2022. All rights reserved.