

# Introduction to the Revised Mathematics TEKS 

## SIDE-BY-SIDE TEKS COMPARISON

GEOMETRY

The materials are copyrighted (c) and trademarked (tm) as the property of the Texas Education Agency (TEA) and may not be reproduced without the express written permission of TEA, except under the following conditions:

- Texas public school districts, charter schools, and Education Service Centers may reproduce and use copies of the Materials and Related Materials for the districts' and schools' educational use without obtaining permission from TEA.
- Residents of the state of Texas may reproduce and use copies of the Materials and Related Materials for individual personal use only without obtaining written permission of TEA.
- Any portion reproduced must be reproduced in its entirety and remain unedited, unaltered and unchanged in any way.
- No monetary charge can be made for the reproduced materials or any document containing them; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.

Private entities or persons located in Texas that are not Texas public school districts, Texas Education Service Centers, or Texas charter schools or any entity, whether public or private, educational or non-educational, located outside the state of Texas MUST obtain written approval from TEA and will be required to enter into a license agreement that may involve the payment of a licensing fee or a royalty.

For information contact:
Office of Copyrights, Trademarks, License Agreements, and Royalties,
Texas Education Agency,
1701 N. Congress Ave., Austin, TX 78701-1494;
phone: 512-463-9270 or 512-463-9437;
email: copyrights@tea.state.tx.us.
©2014 Texas Education Agency All Rights Reserved 2014.
(a) Basic understandings.
(1) Foundation concepts for high school mathematics. As presented in Grades K-8, the basic understandings of number, operation, and quantitative reasoning; patterns, relationships, and algebraic thinking; geometry; measurement; and probability and statistics are essential foundations for all work in high school mathematics. Students continue to build on this foundation as they expand their understanding through other mathematical experiences
(a) Basic understandings.
(2) Geometric thinking and spatial reasoning. Spatial reasoning plays a critica role in geometry; geometric figures provide powerful ways to represent mathematica situations and to express generalizations about space and spatial relationships. Students use geometric thinking to understand mathematical concepts and the relationships among them.
(a) Basic understandings.
(3) Geometric figures and their properties. Geometry consists of the study of geometric figures of zero, one, two, and three dimensions and the relationships among them. Students study properties and relationships having to do with size, shape, location, direction, and orientation of these figures.
(a) Basic understandings.
(4) The relationship between geometry, other mathematics, and other disciplines. Geometry can be used to model and represent many mathematical and realworld situations. Students perceive the connection between geometry and the real and mathematical worlds and use geometric ideas, relationships, and properties to solve problems.
(b) Introduction.
(1) The desire to achieve educational excellence is the driving force behind the Texas essential knowledge and skills for mathematics, guided by the college and career readiness standards. By embedding statistics, probability, and finance, while focusing on fluency and solid understanding, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the $21^{\text {st }}$ century.
(b) Introduction.
(3) In Geometry, students will build on the knowledge and skills for mathematics in Kindergarten-Grade 8 and Algebra I to strengthen their mathematical reasoning skills in geometric contexts. Within the course, students will begin to focus on more precise terminology, symbolic representations, and the development of proofs. Students will explore concepts covering coordinate and transformational geometry; logical argument and
constructions; proof and congruence; similarity, proof, and trigonometry; two and three- dimensional figures; circles; and probability. Students will connect previous knowledge from Algebra I to Geometry through the coordinate and transformational geometry strand. In the logical arguments and constructions strand, students are expected to create formal constructions using a straight edge and compass. Though this course is primarily Euclidean geometry, students should complete the course with an understanding that non-Euclidean geometries exist. In that non-Euclidean geometries exist. In proof and congruence, students will use deductive reasoning to justify, prove and apply theorems about geometric figures Throughout the standards, to "prove" means a formal proof to be shown in a paragraph, a flow chart, or two-column formats. Proportionality is the unifying component of the similarity, proof and

The definition of a well-balanced mathematics curriculum has expanded to include the CCRS A focus on mathematical fluency and solid understanding allows for rich exploration of the primary focal points.

## The 2012 paragraph that highlights more

specifics about Geometry mathematics content follows the paragraph about the mathematica process standards. This supports the notion that the TEKS should be learned in a way that integrates the mathematical process standards in an effort to develop fluency.

The 2012 paragraph has been updated to align to the 2012 Geometry mathematics TEKS.

The 2012 paragraph summarizes the key concepts found in Geometry while making connections to prior content and the College and Career Readiness Standards.
(a) Basic understandings
(5) Tools for geometric thinking.

Techniques for working with spatial figures and their properties are essential in understanding underlying relationships. Students use a variety of representations (concrete, pictorial, numerical, symbolic, graphical, and verbal), tools, and technology (including, but not limited to, calculators with graphing capabilities, data collection devices, and computers) to solve meaningful problems by representing and transforming figures and analyzing relationships.
(a) Basic understandings.
(6) Underlying mathematical processes. Many processes underlie all content areas in mathematics. As they do mathematics, students continually use problem-solving, language and communication, connections within and outside mathematics, and reasoning (justification and proof).
Students also use multiple representations, technology, applications and modeling, and numerical fluency in problem solving contexts.
trigonometry strand. Students will use thei proportional reasoning skills to prove and apply theorems and solve problems in this strand. The two- and three-dimensional figure strand focuses on the application of formulas in multi-step situations since students have developed background knowledge in two-and three-dimensiona figures. Using patterns to identify geometric properties, students will apply theorems about circles to determine relationships between special segments and angles in circles. Due to the emphasis of probability and statistics in the college and career readiness standards, standards dealing with probability have been added to the geometry curriculum to ensure students have proper exposure to these topics before pursuing their post-secondary education.
(b) Introduction
(2) The process standards describe ways in which students are expected to engage in the content. The placement of the process standards at the beginning of the knowledge and skills listed for each grade and course is intentional. The process standards weave the other knowledge and skills together so that students may be successful problem solvers and use mathematics efficiently and effectively in daily life. The process standards are integrated at every grade level and course. When possible, students will apply mathematics to problems arising in everyday life, society, and the workplace. Students will use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy determining a solution, justifying the solution, and evaluating the problemsolving process and the reasonableness of the solution. Students will select appropriate tools such as real objects, manipulatives, paper and pencil, and technology and techniques such as menta math, estimation, and number sense to solve problems. Students will effectively communicate mathematical ideas
reasoning, and their implications using multiple representations such as symbols, diagrams, graphs, and language. Students will use mathematical relationships to generate solutions and make connections and predictions. Students will analyze mathematical relationships to connect and

This 2012 paragraph occurs second in the Revised TEKS (2012) instead of sixth as in the urrent TEKS. This highlights the continued emphasis on process skills that now continue from kindergarten through high school mathematics.

Geometry

## Old TEKS

communicate mathematical ideas. Students
ideas and arguments using precise
mathematical language in written or oral
communication
(b) Introduction.
(4) These standards are meant to provide
clarity and specificity in regards to the
content covered in the high school
geometry course. These standards are not
meant to limit the methodologies used to
convey this knowledge to students.
Though the standards are written in a
particular order, they are not necessarily meant to be taught in the given order. In the standards, the phrase "to solve problems" includes both contextual and non-contextual problems unless specifically stated.
(5) Statements that contain the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

Geometry

## Old TEKS: Geometric structure

Current TEKS (2012)
Supporting Information
Notes

G(1)(A) Geometric structure. The student understands the structure of, and relationships within, an axiomatic system.

The student is expected to develop an awareness of the structure of a mathematical system, connecting
definitions, postulates, logical reasoning, and theorems
$\mathrm{G}(1)(\mathrm{B})$ Geometric structure. The student understands the structure of, and relationships within, an axiomatic system.

- The student is expected to recognize the historical development of geometric systems and know mathematics is developed for a variety of purposes.

G(1)(C) Geometric structure. The student understands the structure of, and relationships within, an axiomatic system.

The student is expected to compare and
contrast the structures and implications of contrast Euclidean and non-Euclidean geometries.

## G(4)(A) Logical argument and

 constructions. The student uses the process skills with deductive reasoning to understand geometric relationships.The student is expected to distinguish between undefined terms, definitions, postulates, conjectures, and theorems.

Specificity has been added with the
clarification of changing "connecting" to
"distinguish between."
Specificity has been added to include the undefined terms. These terms are point, line and plane.

Logical reasoning is implicit within
mathematical process standards $\mathrm{G}(1)(\mathrm{B})$
$G(1)(D), G(1)(E), G(1)(F)$, and $G(1)(G)$

This skill is not included within the Revised TEKS (2012)

G(4)(D) Logical argument and
constructions. The student uses the process skills with deductive reasoning to understand geometric relationships.

## The student is expected to compare

 geometric relationships between Euclidean and spherical geometries, including parallel lines and the sum of the angles in a triangle.Specificity has been added with the clarification of changing "non-Euclidean geometries" to "spherical geometries."

Specificity has also been added through the inclusion of "parallel lines and the sum of the angles in a triangle" when comparing relationships between Euclidean and spherical geometries.
$G(2)(A)$ Geometric structure. The student analyzes geometric relationships in order to make and verify conjectures.

The student is expected to use constructions to explore attributes of geometric figures and to make conjectures about geometric relationships.
$\mathrm{G}(5)$ (C) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures.

The student is expected to use the constructions of congruent segments, congruent angles, angle bisectors, and perpendicular bisectors to make conjectures about geometric relationships.

Specificity has been added through the identification of constructions a student may be expected to use when making conjectures about geometric relationships.

When paired with mathematical process standard $G(1)(F)$, the expectation is that students use constructions to explore and validate conjectures about the attributes of geometric figures

Geometry

## Old TEKS: Geometric structure

G(2)(B) Geometric structure. The studen analyzes geometric relationships in order to make and verify conjectures.

The student is expected to make conjectures about angles, lines, polygons, circles, and three-dimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic.

G(3)(A) Geometric structure. The student applies logical reasoning to justify and prove mathematical statements
The student is expected to determine the validity of a conditional statement, its converse, inverse, and contrapositive.
$G(3)(B)$ Geometric structure. The student applies logical reasoning to justify and prove mathematical statements. The student is expected to:
The student is expected to construct and justify statements about geometric figures and their properties.

## $G(5)(A)$ Logical argument and

constructions. The student uses constructions o validate conjectures about geometric figures.

The student is expected to investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools.

Specificity regarding the use of constructions to investigate patterns and make conjectures has been added.

When paired with mathematical process standards $\mathrm{G}(1)(\mathrm{D}), \mathrm{G}(1)(\mathrm{E}), \mathrm{G}(1)(\mathrm{F})$, and $\mathrm{G}(1)(\mathrm{G})$ the expectation is that students determine the validity of their conjectures.

Specificity has been added regarding geometric relationships.

## $G(4)(B)$ Logical argument and

constructions. The student uses the process skills with deductive reasoning to understand geometric relationships.

The student is expected to identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement
and recognize the connection between a biconditional statement and a true conditional statement with a true converse.

G(5)(B) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures.

The student is expected to construct congruent segments, congruent angles, a segment bisector, an angle bisector, perpendicular lines, the perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a
n the current TEKS, it is implied that students would be given the converse, inverse, and contrapositive. The skill of identifying the converse, inverse, and contrapositive of a conditional statement was implicit in the current TEKS. The revised SE makes these skills explicit.

## The skill of connecting a biconditional statement and a true conditional statement

 with a true converse has been added.The use of constructions has been made explicit in the revised SE G(5)(B)

Specificity has been added regarding the use of a compass and straightedge for constructions.

Specificity has added regarding the figures a student is expected to construct.

Geometry


## Old TEKS: Geometric patterns

G(5)(A) Geometric patterns. The student uses a variety of representations to describe geometric relationships and solve problems.

## The student is expected to use numeric

 and geometric patterns to develop algebraic expressions representing geometric properties.G(5)(B) Geometric patterns. The student uses a variety of representations to describe geometric relationships and solve problems.

The student is expected to use numeric and geometric patterns to make
generalizations about geometric
properties, including properties of
polygons, ratios in similar figures and solids, and angle relationships in polygons and circles.
$\mathrm{G}(5)$ (C) Geometric patterns. The student uses a variety of representations to describe geometric relationships and solve problems.

- The student is expected to use properties of transformations and their compositions to make connections between
mathematics and the real world, such as tessellations.

Current TEKS (2012)
Supporting Information

# G(5)(A) Logical argument and 

 constructions. The student uses constructions to validate conjectures about geometric figuresThe student is expected to investigate The student is expected to investiga
patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of
triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools.
$\mathrm{G}(3)(\mathrm{A})$ Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations translation, reflection, and rotation) and nonrigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity).

The student is expected to describe and perform transformations of figures in a plane using coordinate notation,

The current SEs $G(5)(A)$ and $G(5)(B)$ were combined to form revised $S E G(5)(A)$.
"Patterns" include numeric and geometric properties.
"Conjectures" is a better word choice than "generalizations" as it is consistent with the academic language of geometry.
"Relationships" may or may not include algebraic expressions representing properties.

Specificity is added to the revised SE regarding the geometric relationships that students may expected to investigate.

Similar figures and solids are addressed in the
"Similarity, proof and trigonometry" strand.
The revised SE G(3)(A) extends past rotations from in grade 8 and explicitly states coordinate notation:
Proportionality
8(3)(A)
Two-dimensional shapes
8(10)(A)
8(10)(B
8(10)(C)
Specificity has been added for students to be able to "describe" and "perform" transformations.

Geometry

| Old TEKS: Geometric patterns | Current TEKS (2012) | Supporting I nformation | Notes |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{G}(3)(\mathrm{B})$ Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and nonrigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity). <br> The student is expected to determine the image or pre-image of a given twodimensional figure under a composition of rigid transformations, a composition of non-rigid transformations, and a composition of both, including dilations where the center can be any point in the plane. <br> $\mathrm{G}(3)(\mathrm{C})$ Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and nonrigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity). <br> The student is expected to identify the sequence of transformations that will carry a given pre-image onto an image on and off the coordinate plane. | In grade 8, students graph and algebraically represent single transformations. For example, students are expected to describe a translation and a reflection algebraically such as $(x, y) \rightarrow(x+3,-y-2)$ to describe translations. The revised Geometry SEs extends to include graphing and describing a composition of transformations. <br> Dilations are included with center of dilation other than origin. In grade 8, students gain experience with dilations with the origin as the center. <br> Rotations may or may not be about the origin. <br> In grade 8, students differentiate between transformations that preserve congruence and those that do not. Rigid and non-rigid transformations are explicitly included in the revised Geometry SEs. <br> When paired with process standard $G(1)(A)$, tessellations could be included. <br> Students are expected to identify the sequence of transformation performed for a given preimage and image. The transformations may or may not be represented on a coordinate plane. |  |
| G(5)(D) Geometric patterns. The student uses a variety of representations to describe geometric relationships and solve problems. <br> The student is expected to identify and apply patterns from right triangles to solve meaningful problems, including special right triangles (45-45-90 and 30-60-90) and triangles whose sides are Pythagorean triples. | $G(9)(B)$ Similarity, proof, and trigonometry. The student uses the process skills to understand and apply relationships in right triangles. <br> The student is expected to apply the relationships in special right triangles ( $30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$ ) and the Pythagorean theorem, including Pythagorean triples, to solve problems. | The revised SE focuses on applying relationships to solve problems involving right triangles. <br> When paired with mathematical process standard $G(1)(F)$, the expectation is that students analyze the relationships in special right triangles and Pythagorean triples. |  |

Geometry

|  | Old TEKS: Dimensionality and the geometry of location | Current TEKS (2012) | Supporting I nformation | Notes |
| :---: | :---: | :---: | :---: | :---: |
| - + | $\mathrm{G}(6)(\mathrm{A})$ Dimensionality and the geometry of location. The student analyzes the relationship between three-dimensional geometric figures and related two-dimensional representations and uses these representations to solve problems. <br> The student is expected to describe and draw the intersection of a given plane with various three-dimensional geometric figures. | $\mathrm{G}(10)(\mathrm{A})$ Two-dimensional and threedimensional figures. The student uses the process skills to recognize characteristics and dimensional changes of two- and threedimensional figures. <br> The student is expected to identify the shapes of two-dimensional cross-sections of prisms, pyramids, cylinders, cones, and spheres | The revised SE adds specificity through the identification of two-dimensional cross sections for specific geometric figures.. |  |
|  |  | and identify three-dimensional objects generated by rotations of twodimensional shapes. | The revised SE includes identifying 3-D objects generated by rotations of 2-D shapes. |  |
|  | $\mathrm{G}(6)(\mathrm{B})$ Dimensionality and the geometry of location. The student analyzes the relationship between three-dimensional geometric figures and related two-dimensional representations and uses these representations to solve problems. <br> The student is expected to use nets to represent and construct threedimensional geometric figures. |  | This skill is not included explicitly within the Revised TEKS (2012). In grade 7, with 7(9)(D), students are expected to solve problems involving the lateral and total surface area of a rectangular prism, rectangular pyramid, triangular prism, and triangular pyramid by determining the area of the shape's net. Students may or may not be expected to make the net of a threedimensional figure. |  |
| - | $\mathrm{G}(6)(\mathrm{C})$ Dimensionality and the geometry of location. The student analyzes the relationship between three-dimensional geometric figures and related two-dimensional representations and uses these representations to solve problems. <br> The student is expected to use orthographic and isometric views of three-dimensional geometric figures to represent and construct threedimensional geometric figures and solve problems. |  | This skill is not included within the Revised TEKS (2012). |  |
|  | $\mathrm{G}(7)(\mathrm{A})$ Dimensionality and the geometry of location. The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. <br> The student is expected to use one- and two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. | $\mathrm{G}(4)(\mathrm{A})$ Logical argument and constructions. The student uses the process skills with deductive reasoning to understand geometric relationships. <br> The student is expected to distinguish between undefined terms, definitions, postulates, conjectures, and theorems. | When paired with $G(1)(D)$, students are expected to use multiple representations of undefined terms to distinguish their attributes. |  |

Geometry

Old TEKS: Dimensionality and the geometry of location

## Current TEKS (2012)

G(2)(B) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two-dimensional coordinate systems to verify geometric conjectures.

## G(7)(B) Dimensionality and the geometry

 of location. The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly.The student is expected to use slopes and equations of lines to investigate
geometric relationships, including parallel ines, perpendicular lines, and special
segments of triangles and other polygons.

The student is expected to derive and use the distance, slope, and midpoint formulas to verify geometric relationships, including congruence of segments and parallelism or perpendicularity of pairs of lines.
$\mathrm{G}(2)(\mathrm{C}) \quad$ Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two-dimensional coordinate systems to verify geometric conjectures.

The student is expected to determine an equation of a line parallel or perpendicular to a given line that passes through a given point.

## Supporting I nformation

n grade 8, students are expected to use the Pythagorean Theorem to determine the distance between two points on a coordinate plane:
Expressions, equations, and relationships 8(7)(D)

The revised SE G(2)(B) extends the grade 8 SE from the Pythagorean Theorem to the applications of deriving the distance formula

Specificity has been added with the inclusion of congruence of segments.

In Algebra I, students are expected to write the equation of a line that contains a given point and is parallel or perpendicular a given ine. When paired with mathematical process standard $\mathrm{G}(1)(\mathrm{F})$, the expectation is that students determine equations of a line perpendicular to a given line in order to explore concepts such as heights of triangles on a coordinate plane.

Geometry

Old TEKS: Dimensionality and the geometry of location

Current TEKS (2012)
G(2)(A) Coordinate and transformational geometry. The student uses the process skills to understand the connections between
algebra and geometry and uses the one- and two-dimensional coordinate systems to verify geometric conjectures.

The student is expected to determine the coordinates of a point

> that is a given fractional distance less than one from one end of a line segment to the other in one- and two-dimensional coordinate systems,

Supporting I nformation
Notes

The revised SE adds specificity through measure of fractional distances and the use of 1-D and 2-D coordinate systems.

The revised SE G(2)(A) extends the current SE to include determining the coordinates of the point a given fractional distances, in addition to the midpoint, from one endpoint of a line segment.

The revised SE extends determining fractional distances beyond midpoint through similar figures and proportional reasoning. Though fractional distances beyond midpoint can be calculated algebraically, students may not yet calculated algebraically, students may not y containing two quadratic equations.

G(2)(B) Coordinate and transformational geometry. The student uses the process skills to understand the connections between
algebra and geometry and uses the one- and two-dimensional coordinate systems to verify geometric conjectures.

The student is expected to derive and use the distance, slope, and midpoint
formulas to verify geometric
relationships, including congruence of segments and parallelism or
perpendicularity of pairs of lines.

Old TEKS: Congruence and the

## $\mathrm{G}(11)(\mathrm{A})$ Two-dimensional and three-

 dimensional figures. The student uses the process skills in the application of formulas to determine measures of two- and three dimensional figures.The student is expected to apply the formula for the area of regular polygons to solve problems using appropriate units of measure.

## G(11)(B) Two-dimensional and three-

 dimensional figures. The student uses the process skills in the application of formulas to determine measures of two- and three dimensional figures.The student is expected to determine the area of composite two-dimensiona figures comprised of a combination of riangles, parallelograms, trapezoids, kites, regular polygons, or sectors of circles to solve problems using appropriate units of measure.
G(12)(B) Circles. The student uses the process skills to understand geometric relationships and apply theorems and equations about circles.

The student is expected to apply the proportional relationship between the measure of an arc length of a circle and the circumference of the circle to solve problems.
$\mathrm{G}(12)(\mathrm{C})$ Circles. The student uses the process skills to understand geometric relationships and apply theorems and equations about circles.

The student is expected to apply the proportional relationship between the measure of the area of a sector of a circle and the area of the circle to solve problems.

The current SE has been separated into two SEs. Revised G(11)(A) focuses on solving problems that include determining the area of regular polygons.

Students determine composite area of figures omposed of rectangles, squares, parallelograms, trapezoids, triangles, semicircles, and quarter circles in grade 7 : Expressions, equations, and relationships 7(9)(C)

The revised SE G(11)(B) extends 7(9)(C) to include kites, regular polygons, and sectors as parts of composite figures.

The current SE has been separated into two Es. Grades 6-8 have a strand founded on proportionality. Proportional reasoning represents a "capstone" skill for grades 6-8 mathematics. The revised SEs apply proportional reasoning to determine arc length and the area of a sector.

The focus is on solving problems using the proportional relationships, length, and area of sector.

Geometry

Old TEKS: Congruence and the geometry of size

Current TEKS (2012)
$G(2)(B)$ Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and twodimensional coordinate systems to verify geometric conjectures.

The student is expected to derive and use the distance, slope, and midpoint formulas to verify geometric relationships,
to verify geometric relationships,
including congruence of segments and
parallelism or perpendicularity of pairs of ines.
$G(6)(D)$ Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart.

The student is expected to verify heorems about the relationships in triangles, including proof of the
Pythagorean Theorem, the sum of interior Pythagorean Theorem, the sum of
angles, base angles of isocsceles
triangles, midsegments, and medians, and apply these relationships to solve problems.

## G(9)(B) Similarity, proof, and

trigonometry. The student uses the process
skills to understand and apply relationships in right triangles.

The student is expected to apply the relationships in special right triangles $30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$ and the
Pythagorean Theorem, including
Pythagorean triples to solve problems.
$\mathrm{G}(8)(\mathrm{C})$ Congruence and the geometry of size. The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations.

The student is expected to derive, extend, and use the Pythagorean Theorem.

Suporting Information
$G(2)(B)$ adds specificity to extend the Pythagorean Theorem to derive the distance formula.

G(6)(D) includes proof of the Pythagorean Theorem. Throughout the standards, to "prove" means to provide a formal proof to be shown in paragraph, flow chart, or two-column format.

G(9)(B) adds specificity to include special right triangles and Pythagorean triples.
$G(12)(E)$ extends the Pythagorean Theorem to the equation of a circle.
n grade 8, students derive and apply the Pythagorean Theorem:
Expressions, equations, and relationships
8(6)(A)
8(7)(C)
8(7)(D)

Geometry


Geometry

Old TEKS: Congruence and the geometry of size
$\mathrm{G}(8)(\mathrm{E})$ Congruence and the geometry o size. The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations.

The student is expected to use area models to connect geometry to probability and statistics.
$\mathrm{G}(8)(\mathrm{F})$ Congruence and the geometry o size. The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem

- situations

The student is expected to use conversions between measurement systems to solve problems in real-world situations.
$\mathrm{G}(9)(\mathrm{A})$ Congruence and the geometry of size. The student analyzes properties and describes relationships in geometric figures.
The student is expected to formulate and test conjectures about the properties of parallel and perpendicular lines based on explorations and concrete models.
$\mathrm{G}(9)(\mathrm{B})$ Congruence and the geometry of size. The student analyzes properties and describes relationships in geometric figures.

The student is expected to formulate and test conjectures about the properties and attributes of polygons and their attributes of polygons and their
component parts based on explorations and concrete models.

## Current TEKS (2012)

$\mathrm{G}(13)(\mathrm{B})$ Probability. The student uses the process skills to understand probability in realworld situations and how to apply independence and dependence of events.

The student is expected to determine probabilities based on area to solve contextual problems.
n grade 7, students determine probabilities. The revised SE extends to include probabilities based on area:

## Proportionality

7(6)(C)
7(6)(D)
7(6)(E)
7(6)(H)
7(6)(1)
Conversion within a measurement system
begins in grade 6:
Proportionality
6(4)(H)
Conversions between measurement systems
begins in grade 7:
Proportionality
7(4)(E)

When instruction integrates $G(1)(A)$ with other
content standards, students may need to use
conversions in order to solve problems.

## G(6)(A) Proof and congruence. The student

uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart.

The student is expected to verify theorems about angles formed by the intersection of lines and line segments, including vertical angles, and angles formed by parallel lines cut by a formed by parallel lines cut by a ransversal and prove equidistance between the endpoints of a segment and points on its perpendicular bisector and apply these relationships to solve problems.
G(6)(D) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart.

The student is expected to verify theorems about the relationships in triangles, including proof of the triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base angles of isosceles triangles midsegments, and medians, and apply these relationships to solve problems.

The focus of this SE has shifted from "formulate and test conjectures" to "verify theorems."

The revised SE has been expanded to include angles formed by the "intersection of lines and line segments."

The revised SE provides specificity to the theorems to be verified.

Throughout the standards, to "prove" means to provide a formal proof to be shown in a paragraph, flow chart, or two-column format.
The revised SE $\mathrm{G}(6)(\mathrm{D})$ asks students to
"verify theorems about the relationships".

The revised SE G(6)(D) focuses on the relationships in triangles and the application of those relationships to solve problems.

In grade 8, students are expected to use models and diagrams to explain the Pythagorean Theorem, though they are not Pythagorean Theorem, though they are not expected to prove it. The students are also expected to use the Pythagorean Theorem and its converse to solve problems.

The revised SE G(6)(E) asks students to

Geometry

| Old TEKS: Congruence and the geometry of size | Current TEKS (2012) | Supporting Information | Notes |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{G}(6)(\mathrm{E})$ Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. <br> The student is expected to prove a quadrilateral is a parallelogram, rectangle, square or rhombus using opposite sides, opposite angles, or diagonals and apply these relationships to solve problems. | "prove." Methods for proving include coordinate, transformational, axiomatic, and formats such as two-column, paragraph, and flow chart. Throughout the standards, to "prove" means a formal proof to be shown in a paragraph, flow chart, or two-column format. <br> Specificity has been added by narrowing "polygons" to "quadrilateral." |  |
| $\mathrm{G}(9)(\mathrm{C})$ Congruence and the geometry of size. The student analyzes properties and describes relationships in geometric figures. <br> The student is expected to formulate and test conjectures about the properties and attributes of circles and the lines that intersect them based on explorations and concrete models. | G(12)(A) Circles. The student uses the process skills to understand geometric relationships and apply theorems and equations about circles. <br> The student is expected to apply theorems about circles, including relationships among angles, radii, chords, tangents, and secants, to solve non-contextual problems. | Revised SE G(12)(A) adds specificity to the current TEKS. Students are expected to apply theorems to include angles, radii, chords, tangents, and secants. |  |
| G(9)(D) Congruence and the geometry of size. The student analyzes properties and describes relationships in geometric figures. <br> - The student is expected to analyze the characteristics of polyhedra and other three-dimensional figures and their component parts based on explorations and concrete models. |  | In grade 2, students are expected to classify and sort 3-D solids based on attributes: Geometry and measurement $2(8)(B)$ |  |
| $G(10)(A)$ Congruence and the geometry of size. The student applies the concept of congruence to justify properties of figures and solve problems. <br> The student is expected to use congruence transformations to make conjectures and justify properties of geometric figures including figures represented on a coordinate plane. | $\mathrm{G}(3)(\mathrm{D})$ Coordinate and transformational Geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and nonrigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity). <br> The student is expected to identify and distinguish between reflectional and rotational symmetry in a plane figure. | The current SE has been separated into two SEs. <br> Revised SE G(3)(D) adds specificity through symmetry in a plane figure. <br> Revised SE G(6)(C) adds specificity with transformations. |  |


|  | 45 |  | 80 | उ |
| :---: | :---: | :---: | :---: | :---: |
| Geometry |  |  |  |  |
| Old TEKS: Congruence and the geometry of size | Current TEKS (2012) | Supporting Information | Notes |  |
|  | $\mathrm{G}(6)(\mathrm{C})$ Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. <br> The student is expected to apply the definition of congruence, in terms of rigid transformations, to identify congruent figures and their corresponding sides and angles. |  |  |  |
| $G(10)(B)$ Congruence and the geometry of size. The student applies the concept of congruence to justify properties of figures and solve problems. <br> The student is expected to justify and apply triangle congruence relationships. | $G(6)(B)$ Proof and Congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. <br> The student is expected to prove two triangles are congruent by applying the Side-Angle-Side, Angle-Side-Angle, Side-Side-Side, Angle-Angle-Side, and Hypotenuse-Leg congruence conditions. | The revised SE specifies that students are expected to prove that two triangles are congruent. <br> Specificity has been added with the "congruence conditions" that are to be used to prove two triangles are congruent. |  |  |

Geometry

Old TEKS: Similarity and the geometry of shape

## Current TEKS (2012)

## G(7)(A) Similarity, proof, and

rigonometry. The student uses the process trigonometry. The student uses the process
skills in applying similarity to solve problems.

## The student is expected to apply the

 definition of similarity in terms of a dilation to identify similar figures and heir proportional sides and the congruent corresponding angles.
## G(7)(B) Similarity, proof, and

trigonometry. The student uses the process skills in applying similarity to solve problems. The student is expected to apply the Angle-Angle criterion to verify similar Aniangles and apply the proportionality of the corresponding sides to solve problems.
G(8)(A) Similarity, proof, and
trigonometry. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and xiomatic and formats such as two-column paragraph, and flow chart

The student is expected to prove theorems about similar triangles, neorems about similar triangles, ncluding the Triangle Proportionality theorem, and apply these theorems to solve problems.
G(8)(B) Similarity, proof, and
trigonometry. The student uses the process kills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart

The student is expected to identify and apply the relationships that exist when an altitude is drawn to the hypotenuse of a right triangle, including the geometric mean, to solve problems.

## $\mathrm{G}(11)(\mathrm{B})$ Similarity and the geometry of

 shape. The student applies the concepts of similarity to justify properties of figures and - solve problemsThe student is expected to use ratios to solve problems involving similar figures

Students begin solving problems involving similar figures in grade 7 and grade 8: Proportionality

## 7(5) (A)

8(3)(A)
$8(3)(A)$
$8(3)$
8(4)(A)

The current SE has been separated into four SEs.

Specificity has been added with regard to the application of the definition of similarity in terms of dilations.

Clarification has been added with the change rom "explore and justify conjectures" to "prove theorems" and "apply theorems."

Specificity has been added to include geometric mean.
The content of this SE is addressed in grade 7
and grade 8:
Proportionality
7 (5)(A)
$8(3)$ (A)
$8(3)$ (B)
$8(4)$ (A)

Content that is deleted by 2012 TEKS - Content that remains or is clarified in 2012 TEKS ( Stay) ( + Addition) ( - Deletion) Content that is new in 2012 TEKS + ©2014 Texas Education Agency. All Rights Reserved 2014. Introduction to the Revised Mathematics TEKS: Side-by-Side TEKS Comparison

Geometry

Old TEKS: Similarity and the geometry of shape

Current TEKS (2012)
Supporting I nformation

## G(9)(A) Similarity, proof, and

trigonometry. The student uses the process
skills to understand and apply relationships in right triangles

The student is expected to determine the lengths of sides and measures of angles in right triangle by applying the
trigonometric ratios sine, cosine, and tangent to solve problems.

## (9)(B) Similarity, proof, and

trigonometry. The student uses the process skills to understand and apply relationships in right triangles.

The student is expected to apply the relationships in special right triangles $30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$ and the Pythagorean theorem, including Pythagorean triples, to solve problems G(10)(B) Two-dimensional and threedimensional figures. The student uses the process skills to recognize characteristics and dimensional changes of two- and threedimensional figures.

The student is expected to determine and describe how changes in the linear dimensions of a shape affect its perimeter, area, surface area, or volume, including proportional and non-proportional dimensional change.
G(12)(D) Circles. The student uses the process skills to understand geometric relationships and apply theorems and equations about circles.
$+$
G(11)(D) Similarity and the geometry of shape. The student applies the concepts of similarity to justify properties of figures and solve problems.

The student is expected to describe the effect on perimeter, area, and volume when one or more dimensions of a figure are changed and apply this idea in solving problems.

The student is expected to describe radian measure of an angle as the ratio of the length of an arc intercepted by a central angle and the radius of the circle. G(12)(E) Circles. The student uses the process skills to understand geometric relationships and apply theorems and equations about circles.

The student is expected to show that the equation of a circle with center at the origin and radius $r$ is $x^{2}+y^{2}=r^{2}$ and determine the equation for the graph of a circie with radius $r$ and center ( $h, k$ ), $(x-h)^{2}+(y-k)^{2}=r^{2}$
Supporting I nformation Notes

The revised SE makes explicit the application of special right triangle relationships,
Pythagorean Theorem, and Pythagorean triples to solve problems involving right triangles.

In grade 8, students are expected to use the Pythagorean Theorem and its converse to solve problems

Students are expected to solve problems requiring the use of two or more right triangle relationships.

The revised SE is an extension of $G(11)(D)$ to include proportional and non-proportional dimensional change.

The effects of dimensional changes on the perimeter, area, and volume of a figure is no onger in grade 8.

When paired with $G(1)(D)$ and $G(1)(F)$, the expectation is that students make connections between familiar angles such as $90^{\circ}, 180^{\circ}$ $270^{\circ}$, and $360^{\circ}$ and their corresponding radian measures.

The revised SE extends previous work with the Pythagorean theorem

Geometry

| Old TEKS | Current TEKS (2012): Mathematical process standards | Supporting I nformation | Notes |
| :---: | :---: | :---: | :---: |
| $\psi$ | $\mathrm{G}(1)(\mathrm{A})$ Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. <br> The student is expected to apply mathematics to problems arising in everyday life, society, and the workplace. | The focus is on application in three areas: everyday life, society, and the workplace. <br> This SE, when paired with a revised content SE, allows for increased rigor through connections within and outside mathematics. <br> Example: When paired with revised content SE G(9)(B), students are expected to apply special right triangle relationships in realworld problems. |  |
| $\psi$ | $G(1)(B)$ Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. <br> The student is expected to use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. | This process standard provides continuity with the same problem-solving model used by students in grades K-8. |  |
| $\psi$ | $\mathrm{G}(1)(\mathrm{C})$ Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. <br> The student is expected to select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems. | The phrase "as appropriate" indicates that students are assessing which tool to apply rather than trying only one or all of those listed. <br> Example: When paired with revised content SE G(5)(B), students are expected to choose an appropriate tool and technique when making conjectures about geometric relationships. |  |
| $\psi$ | $\mathrm{G}(1)(\mathrm{D})$ Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. <br> The student is expected to communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate. | Communication addresses three areas: mathematical ideas, reasoning, and implications. <br> Specificity is added to the means of communication. Communication can be through the use of symbols, diagrams, graphs, or language. The phrase "as appropriate" implies that students are assessing which communication tool to apply rather than trying only one or all of those listed. <br> Example: When paired with revised content SE G(4)(C), students are expected to communicate the counterexample for a conjecture using symbols, graphs, diagrams, and language. |  |

Geometry


| Old TEKS | Current TEKS (2012): Probability | Supporting I nformation | Notes |
| :---: | :---: | :---: | :---: |
| $\ddagger$ | G(13)(A) Probability. The student uses the process skills to understand probability in realworld situations and how to apply independence and dependence of events. <br> The student is expected to develop strategies to use permutations and combinations to solve contextual problems. | Students are not expected to use formulas to calculate permutations and combinations. <br> Students may be given data as an organized list or diagram. |  |
| $\ddagger$ | $\mathrm{G}(13)(\mathrm{C})$ Probability. The student uses the process skills to understand probability in realworld situations and how to apply independence and dependence of events. <br> The student is expected to identify whether two events are independent and compute the probability of the two events occurring together with or without replacement. | The revised SE builds on grade 7 efforts with probability: <br> Proportionality $7(6)(C)$ <br> 7(6)(D) <br> 7(6)(E) <br> 7(6)(1) <br> Academic vocabulary includes compound events, independent events, and dependent events. |  |
| $\ddagger$ | G(13)(D) Probability. The student uses the process skills to understand probability in realworld situations and how to apply independence and dependence of events. <br> The student is expected to apply conditional probability in contextual problems. | Students are expected to connect the concept of conditional probability to dependent events and to determine the conditional probability of a compound event in a problem situation. |  |
| $\ddagger$ | G(13)(E) Probability. The student uses the process skills to understand probability in realworld situations and how to apply independence and dependence of events. <br> The student is expected to apply independence in contextual problems. | Students are expected to determine the probability of independent events in problem situations. |  |

