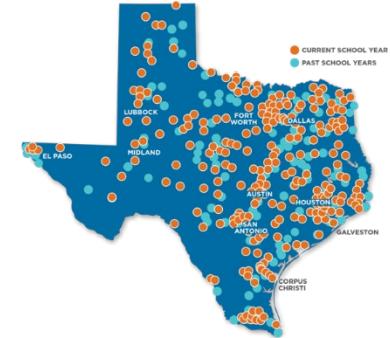


Texas Mobile STEM Laboratory Legislative Report

January 2026


Table of Contents

Texas Mobile STEM Laboratory Expansion Executive Summary	3
Program Impact	3
Texas Mobile STEM Laboratory Legislative Summary Report	4
Introduction.....	4
Section I. Texas Mobile STEM Laboratory Infrastructure Expansion	4
Infrastructure Expansion Overview	4
Infrastructure Expansion Budget.....	5
Infrastructure Expansion Model.....	5
Mobile Laboratory Unit Specifications	7
Infrastructure Expansion Outcomes	8
Section II. Texas Mobile STEM Laboratory Program Expansion	8
Program Expansion Budget.....	9
Program Expansion Model.....	9
Section III. Data Collection and Educational Outcomes	12
Data Collection Overview.....	12
Data Collection Objectives.....	12
High-Level Survey Outcomes	12
Implementation Timeline	13
Summary	14
Appendices	15
Appendix I: Student Survey Design and Outcomes	15
Appendix II: Teacher Survey Design and Outcomes	17

Texas Mobile STEM Laboratory Expansion Executive Summary

The Texas Education Agency (TEA) launched the Texas Mobile STEM Laboratory program in 2020. The program goals are to raise awareness of STEM careers for K-8 students, model engineering design challenges for educators, and increase the number of K-8 students who engage in engineering design challenges aligned with the content they are learning in class.

The General Appropriations Act (GAA), Article III, Rider 65, 88th Texas Legislature (2023), appropriated funds to expand the Texas Mobile STEM Laboratory program. Through a combined investment of \$7.5 million—\$3.5 million for infrastructure and \$4 million for programming—the TEA established a state-owned fleet of eight mobile laboratories, expanded staffing and training systems, and enhanced access to high-quality STEM learning for students, educators, and families across Texas. As illustrated in the Program Impact section below, this expansion is significantly increasing program participation statewide. Positive educational outcomes include that 52% of students indicated that they believe they could pursue a STEM career after completing a design challenge, and 69% of teachers reported greater confidence in creating engineering design challenges following their visit.

Program Impact

2023–2024 Participation Data	2024–2025 Participation Data	2025–2026 Projected Participation Data
1 Mobile Laboratory Unit	3 Mobile Laboratory Units	9 Mobile Laboratory Units
20 Regions	20 Regions	20 Regions
30 Campuses	46 Campuses	270 Campuses
7,107 Students	9,903 Students	65,000 Students
382 Teachers	409 Teachers	3,400 Teachers
533 Campus Visit Requests	564 Campus Visit Requests	1,029 Campus Visit Requests
STEM Night Participation 2,121 Families 165 K-12 Educators	STEM Night Participation 1,397 Families 173 K-12 Educators	STEM Night Projected Participation 11,000 Families 1,350 K-12 Educators
STEM Professional Development 4 Virtual Workshops 1 In-Person Workshops 49 Participants Total	STEM Professional Development 4 Virtual Workshops 2 In-Person Workshops 108 Participants Total	STEM Projected Professional Development 4 Virtual Workshops 4 In-Person Workshops 1,000 Participants Total

Texas Mobile STEM Laboratory Legislative Summary Report

Introduction

This report provides an overview of the Texas Mobile STEM Laboratory program expansion that was funded by a legislative appropriation through the General Appropriations Act (GAA), Article III, Rider 65, 88th Texas Legislature, 2023. This funding supported an expansion of the program's infrastructure, programming, and educational opportunities, resulting in positive educational outcomes. The following sections provide a description of each program element and its impact.

The Texas Mobile STEM Laboratory program is delivered statewide through a partnership between the TEA and the education nonprofit Learning Undefeated. The program takes custom-outfitted STEM learning environments directly to school campuses for up to one week, offering students and teachers engaging, hands-on experiences that build knowledge and skills in science, technology, engineering, and mathematics. Each mobile laboratory features sixteen engineering design challenges aligned with the Texas Essential Knowledge and Skills (TEKS). The challenges were jointly developed by Learning Undefeated and TEA to promote critical thinking, collaboration, and real-world problem-solving while connecting learning to STEM careers. The program also models effective STEM instructional practices and supports classroom teachers in integrating engineering design challenges into their own instruction. All program materials—including presentations, lesson plans, and rubrics—are provided online at no cost, ensuring equitable access to high-quality STEM resources for educators across Texas.

Section I. Texas Mobile STEM Laboratory Infrastructure Expansion

Infrastructure Expansion Overview

The Texas Mobile STEM Laboratory Infrastructure Grant increased the program's capacity by adding eight new mobile laboratories and expanding the operational framework to support the fleet. Each laboratory includes integrated technology, non-consumable equipment, an independent power system, and safety features for student use. Once deployed, the state will operate under a nine-service area model, with one laboratory assigned to each area. Each unit will serve at least 30 campuses annually within its service area, enabling the program to reach all 20 education service regions and increase the number of campuses served.

Infrastructure Expansion Budget

The General Appropriations Act (GAA), Article III, Rider 65, 88th Texas Legislature, 2023, allocated \$3.5 million to expand the program's infrastructure. The budget details appear below.

2024–2025 Infrastructure Budget		\$2,900,000
Payroll		\$65,000
Supplies and Materials		\$37,200
Other Operating Costs		\$62,004
Capital Outlay		\$2,735,796
2025–2026 Infrastructure Budget		\$600,000
Payroll		\$24,417
Supplies and Materials		\$7,697
Other Operating Costs		\$24,834
Capital Outlay		\$543,052
Total		\$3,500,000

Infrastructure Expansion Model

To support the statewide expansion of the Texas Mobile STEM Laboratory program, the TEA established the infrastructure necessary to increase instructional capacity, strengthen program leadership, and establish the operational foundation required for a fully state-owned mobile laboratory fleet. This expansion included investments in staffing, training, regional service structures, and mobile unit development to meet growing statewide demand while maintaining high standards for instructional quality and operational readiness. The following sections outline the expansion objectives, the personnel and training systems, the statewide service area framework, the specifications and production timeline for the new mobile units, and the resulting increases in program reach and impact.

Objectives

The primary objectives of the infrastructure expansion are as follows:

- Increase instructional staffing to support expanded program operations and service delivery.
- Expand the leadership structure to ensure operational continuity.
- Procure and equip eight mobile laboratory units to establish a state-owned fleet.
- Develop a statewide infrastructure for maintenance, storage, and operational readiness of the fleet.

Hiring and Training Personnel

To support the statewide expansion of the Texas Mobile STEM Laboratory program, TEA adopted a revised operating model to ensure strong leadership, operational oversight, and sufficient instructional capacity. The leadership structure now includes a program director responsible for overall strategic leadership, two regional managers, and a part-time office manager for administrative support. Instructional capacity grew with the addition of 16 new instructors, bringing the total to 18 full-time instructional staff members, two assigned to each mobile laboratory unit. Additional support functions such as fleet management, administrative processing, grant compliance, and instructional design are handled by part-time personnel and subcontracted services. This structure enables the program to meet statewide demand efficiently while maintaining compliance with grant requirements.

A comprehensive training and onboarding program was developed to prepare new instructors for statewide service. The program began with one week of in-person instruction focused on the program's mission, instructional methods, mobile laboratory operations, and required safety protocols. The second week of training centered on supervised lesson delivery with students, providing an authentic

teaching experience for new instructors. Instructors then completed two weeks of intensive, hands-on training aboard mobile units alongside program leadership. To support ongoing professional growth, all team members received reference materials for continued learning and self-guided review.

Texas Service Area Infrastructure

To support statewide deployment, the program established nine service areas across Texas and assigned one mobile laboratory to each area. Each service area comprises two or three education service regions as illustrated in Figure 1 to ensure balanced statewide coverage and access to services, and support efficient deployment of the mobile laboratory fleet. This structure ensures comprehensive statewide coverage.

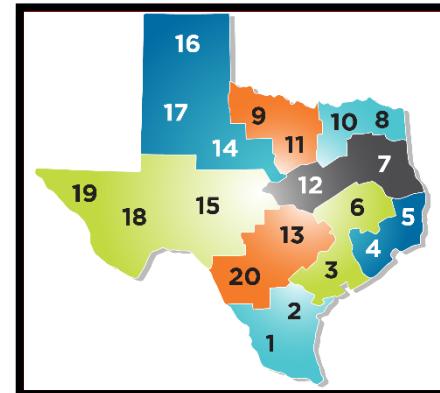


Figure 1 Texas Mobile STEM Lab Service Areas

Mobile Laboratory Unit Specifications

A comprehensive needs assessment was completed to determine the chassis and build specifications for the eight new mobile laboratory units. The assessment reviewed the capabilities of the current mobile STEM laboratory owned by Learning Undefeated and evaluated additional requirements related to accessibility, flexible instructional space, and ease of operation. Based on these criteria, the Expandable 38-foot Touchdown Trailer was selected as the chassis model for all eight units.

The new laboratories include HVAC systems, storage solutions, independent power systems, instructional equipment, integrated technology, and interior furniture. Each chassis arrived as an empty shell, with the functional components—generator and fuel tank, electrical wiring, audiovisual systems, technology suite, and vinyl graphics—installed by Learning Undefeated and subcontractors. After delivery to the Learning Undefeated customs shop, staff completed the upfitting process, including technology installation, vinyl wraps, furniture, and hardware. Each mobile unit carries a Texas-inspired name.

The table below outlines the production timeline, from purchase orders in June 2024 to readiness for field deployment. It documents sequential milestones—delivery to the custom fabrication shop, lifting activities, and final stocking—providing visibility into the phased development schedule. Laboratories completed in the 2024–2025 school year deployed upon completion.

Timeline and Milestones of Mobile Laboratory Unit Builds

Unit Name	Purchase Order Issue Date	Delivered to the Custom Shop	Uplifting Complete	Stocked and Ready for Deployment
TX1: Bluebonnet	June 2024	Jan. 2025	Feb. 2025	Feb. 2025
TX 2: Lone Star	June 2024	Feb. 2025	Feb. 2025	Mar. 2025
TX 3: Roadrunner	June 2024	Mar. 2025	Apr. 2025	Apr. 2025
TX 4: Prickly Pear	June 2024	Mar. 2025	Apr. 2025	June 2025
TX 5: Rio Grande	June 2024	Apr. 2025	May 2025	June 2025

TX 6: Tumbleweed	June 2024	May 2025	June 2025	June 2025
TX 7: Mockingbird	June 2024	May 2025	June 2025	June 2025
TX 8: Mustang	June 2024	May 2025	June 2025	June 2025

Infrastructure Expansion Outcomes

Historically, the Texas Mobile STEM Laboratory program served approximately 30 campuses per year with a single mobile unit, reaching an average of 7,000 students and modeling lessons for approximately 350 teachers. With the fleet expansion, TEA increased capacity from 30 to 270 campuses per year—a ninefold increase in service delivery. For the 2025–2026 school year, the program is projected to serve 65,000 students and 3,400 teachers, surpassing the cumulative reach of all prior years. Since its launch in 2020, the program has maintained a stable instructional workforce. The expansion has allowed original instructors to become regional managers, delivering real-time coaching to new staff and ensuring instructional consistency and quality.

Section II. Texas Mobile STEM Laboratory Program Expansion

The expansion of the Texas Mobile STEM Laboratory program has increased the number of mobile units statewide and strengthened instructional outreach and professional development capacity. To ensure this growth delivers meaningful impact strategic objectives and initiatives guide implementation across all service regions. These efforts focus on enhancing STEM instruction for educators, expanding access to high-quality learning experiences for students and families, and increasing statewide awareness of the program's free resources.

The following sections outline the program's core objectives, marketing and recruitment strategies, ongoing development of a robust activity library, expansion of Family STEM Nights, and increased availability of professional development for teachers. Collectively, these components demonstrate how the Texas Mobile STEM Laboratory program is building

a comprehensive statewide STEM ecosystem that supports students, educators, and communities.

Program Expansion Budget

A \$4 million allocation from the General Appropriations Act (GAA), Article III, Rider 65, 88th Texas Legislature, 2023, funded the expansion of the Texas Mobile STEM Laboratory programming. The following sections detail the use of funds.

2024–2025 Program Budget	\$750,000
Payroll	\$356,864
Professional and Contracted Services	\$120,000
Supplies and Materials	\$28,500
Other Operating Costs	\$244,636
2025–2026 Program Budget	\$3,250,000
Payroll	\$1,616,658
Professional and Contracted Services	\$592,250
Supplies and Materials	\$72,450
Other Operating Costs	\$968,642
Total	\$4,000,000

Program Expansion Model

The expansion of the Texas Mobile STEM Laboratory program supports strengthened instructional outreach and professional development capacity. To ensure this growth delivers meaningful educational impact, the program has established a set of strategic objectives and supporting initiatives that guide implementation across all service regions. These efforts focus on enhancing STEM instruction for educators, expanding access to high-quality learning experiences for students and families, and increasing statewide awareness of the program's free resources.

Objectives

The primary objectives of the program expansion are as follows:

- Implement targeted marketing strategies to inform all stakeholders about the new service area structure, broadened access, and updated scoring criteria for securing a mobile lab visit.
- Model engineering design challenges that highlight STEM careers and demonstrate effective instructional strategies that integrate real-world applications.
- Provide high-quality, cross-curricular STEM learning experiences aligned with the revised science TEKS, modeling engineering practices, and the STEM fluency skills.

- Increase the number of STEM Family Nights across all Texas service regions, expanding access to hands-on STEM learning for students, families, and local stakeholders.
- Deliver in-person and virtual STEM professional development that explains the components of an engineering design challenge and equips educators to facilitate them in their classrooms effectively.

Marketing

Expanding from one to nine mobile laboratories significantly increased the Texas Mobile STEM Laboratory program's reach. With eight new units, annual service capacity will grow from 30 to 270 campuses in the 2025–2026 school year. The marketing and recruitment strategy was revised to ensure broad outreach. All Texas public school systems serving Kindergarten–grade 8 are eligible to apply during the annual application window (April 1–May 31). Applications are evaluated by TEA, and 30 campuses from each of the nine service regions are selected for visits. Selected schools are notified by mid-June, and visits begin at the start of the school year. The enhanced recruitment plan generated a record 1,029 applications for the 2025–2026 school year, demonstrating strong statewide interest.

Activity Library

The program continuously develops new activities to expand the lesson collection. Each activity is cross-curricular, is grounded in the engineering design process, and highlights STEM careers. The engineering design challenges model STEM fluency skills such as communication, collaboration, critical thinking, creativity, resilience, and time management. The growing activity library ensures educators statewide have access to high-quality, TEKS-aligned STEM experiences at no cost, even if their campus does not receive a laboratory visit. As the program expands, staff in each service area will develop and submit new lessons, further enriching the library and reflecting regional needs.

Family STEM Nights

Every school visited by the Texas Mobile STEM Laboratories is also invited to cohost a Family STEM Night with Texas Mobile STEM Laboratories program staff. These events give students additional opportunities to explore STEM concepts and provide families with insight into STEM education.

Before the expansion, the program offered 10 family STEM nights per school year. With the increased fleet, capacity has grown to 90 events per year—about 10 events per service area. These events also strengthen school–community partnerships by inviting local businesses to participate and highlight regional STEM career pathways available to students in the future.

Professional Development for Teachers

With more staff and mobile units, the program can lead additional professional development sessions for educators statewide. Schools that do not receive a lab visit can still access high-quality STEM training and free

instructional resources. Professional development is offered both virtually and in person through conferences and education service center events, and TEA hosts four after-school virtual trainings during the school year. These efforts extend the program’s impact beyond laboratory visits.

Program Expansion Outcomes

In the 2025–2026 school year, the program is projected to serve 270 campuses across 20 service regions with nine mobile units. An estimated 65,000 students and 3,400 teachers will participate in hands-on STEM learning experiences, selected from a record 1,029 campus visit requests. Family STEM Nights are expected to engage approximately 11,000 families and 1,350 K–12 educators, strengthening community connections and STEM awareness. Additionally, the program will deliver four virtual and four in-person workshops, reaching a total of 1,000 participants and further building statewide STEM instructional capacity.

Section III. Data Collection and Educational Outcomes

Data Collection Overview

Evaluation of the Texas Mobile STEM Laboratory program includes student and teacher surveys. Surveys are administered on tablets to every student and teacher during their lab visits. In the 2024–2025 school year, a total of 9,686 student surveys and 391 teacher surveys were completed. With the expansion to nine mobile labs, approximately 65,000 students and 3,400 teachers are projected to complete surveys for the 2025–2026 final report, providing a significantly larger dataset to assess program impact. Student and teacher survey questions and results are provided in Appendices I and II.

Data Collection Objectives

The primary objectives of the student surveys are as follows:

- Measure student engagement in STEM learning, including enjoyment, interest, perceived challenge, and enthusiasm for future participation.
- Gauge student confidence in their ability to pursue STEM pathways.
- Gauge interest in participating in additional STEM challenges to inform activity development and encourage campuses to expand STEM opportunities.
- Ensure activities are sufficiently challenging by using student feedback on difficulty to refine scaffolding, instructions, and complexity so activities remain accessible yet rigorous.

The primary objectives of the teacher surveys are as follows:

- Assess the effectiveness of modeling engineering design challenges for educators to determine whether the experience increases the likelihood that teachers will implement STEM challenges in their own classrooms.
- Measure teacher preparedness, confidence, and satisfaction to understand how well the program supports educators and whether the visit translates into future STEM instruction.
- Inform continuous program improvement in communication, curriculum, and instructional support.

High-Level Survey Outcomes

Survey results indicate strong educational impact for both students and teachers. Results from the 2024–2025 survey reports include the following:

- Eighty-four percent of student respondents would like to do another engineering design challenge.
- Fifty-two percent of student respondents believe they could pursue a STEM career after completing a design challenge.
 - 73.1% of kindergarten–grade 2 students chose “Yes”
 - 48.9% of grades 3–5 students chose “Yes”
 - 35.2% of grades 6–8 students chose “Yes”
- Sixty-seven percent of teacher respondents reported an increase in their confidence to complete a pre-made engineering design challenge after their visit.
- Sixty-nine percent of teacher respondents reported an increase in their confidence to design their own engineering design challenge after their visit.

Implementation Timeline

The following timeline highlights major events and milestones for the 2024–2025 and 2025–2026 school years.

Sept. 2024	<ul style="list-style-type: none"> • Begin school visits for the 2024–2025 school year. • Conduct two no-cost virtual educator professional development sessions.
Nov. 2024	<ul style="list-style-type: none"> • Lead a professional development professional development session at the Conference for the Advancement of Science Teaching (CAST), hosted by the Science Teachers Association of Texas.
Dec. 2024	<ul style="list-style-type: none"> • Begin development of training materials for new Texas Mobile STEM Laboratory instructors.
Jan. 2025	<ul style="list-style-type: none"> • Hire and train five new lab instructors during a one-week intensive training session.
Feb. 2025	<ul style="list-style-type: none"> • Conduct two no-cost virtual educator professional development sessions. • Lead professional development sessions at the Education Service Center Region 1 STEM Summit.
Mar. 2025	<ul style="list-style-type: none"> • Complete and deploy two new mobile lab units, bringing the total number of operational labs to three.
Apr. 2025	<ul style="list-style-type: none"> • Open the application window for schools requesting a visit for the 2025–2026 school year. • Lead professional development sessions at the Education Service Center Region 5 Superintendents Conference.
May 2025	<ul style="list-style-type: none"> • Complete and secure TEA approval for training materials for new grantee staff.
June 2025	<ul style="list-style-type: none"> • Conduct school selection for 2025–2026 mobile lab visits. • Notify selected schools of their 2025–2026 visit status.

July 2025	<ul style="list-style-type: none"> Conduct a two-week intensive instructor training for eleven new mobile lab instructors.
Sept. 2025	<ul style="list-style-type: none"> Begin school visits for the 2025–2026 school year. Conduct two no-cost virtual educator professional development sessions.
Oct. 2025	<ul style="list-style-type: none"> Lead two professional development sessions at the Education Service Center Region 20 STEM Conference.
Feb. 2026	<ul style="list-style-type: none"> Conduct two no-cost virtual educator professional development sessions. Lead in-person sessions at the Education Service Center Region 1 STEM Conference and the Education Service Center Region 10 STEM Conference.
Apr. 2026	<ul style="list-style-type: none"> Open the application window for mobile lab visits for the 2026–2027 school year.
May 2026	<ul style="list-style-type: none"> Conclude school visits for the 2025–2026 school year.
June 2026	<ul style="list-style-type: none"> Conduct school selection and scheduling for the 2026–2027 school year. Notify selected schools of their 2026–2027 visit status.
June/July 2026	<ul style="list-style-type: none"> Conduct two-week intensive training and professional development for Texas Mobile STEM Laboratory instructors and managers.

Summary

The Texas Mobile STEM Laboratory program achieved a statewide expansion that significantly increased instructional capacity and reach. The program now operates nine mobile laboratories serving campuses across all 20 education service regions. This growth enabled a dramatic increase in access to hands-on STEM learning, educator support, and community engagement. For the 2025–2026 school year, 270 campuses were selected from a record 1,029 applications—an eightfold increase in annual service capacity compared to prior years. Overall, the Texas Mobile STEM Laboratory expansion has established a sustainable statewide infrastructure, significantly increased access to high-quality STEM learning, and strengthened educator capacity, positioning the program to deliver long-term educational benefits for students, teachers, and communities across Texas.

Appendices

Appendix I: Student Survey Design and Outcomes

The student survey is designed to help the Texas Mobile STEM Lab team understand how students experience the program, what engages them, and how the activities influence their interest in STEM and STEM careers. Students are surveyed immediately after completing the engineering design challenge. The survey uses emoji-based response options, making the survey easier for younger students to complete.

The emojis used are:

This response choice was yes or favorable.

This response choice was maybe or neutral.

This response choice was no or non-favorable.

The student survey is designed to help the Texas Mobile STEM Lab team understand how students experience the program, what engages them, and how the activities influence their interest in STEM and STEM careers.

Student Survey Questions and Responses

1) Did you have fun?

Results:

- a. 87.9% chose “Yes”
- b. 8.9% chose “Maybe”
- c. 3.1% chose “No”

2) Did you want to do the activity?

Results:

- a. 86.7% chose “Yes”

- b. 11.2% chose “Maybe”
- c. 2.2% chose “No”

3) Was the activity easy?

Results:

- a. 48.4% chose “Yes”
- b. 39.4% chose “Maybe”
- c. 12.2% chose “No”

4) Do you want to do the activity again with a different topic?

Results:

- a. 84.6% chose “Yes”
- b. 10.1% chose “Maybe”
- c. 5.3% chose “No”

5) Do you like solving problems?

Results:

- a. 67.2% chose “Yes”
- b. 24.2% chose “Maybe”
- c. 8.6% chose “No”

6) Do you think you could have a job in STEM in the future?

Results:

- a. 52.8% chose “Yes”
 - i. 73.1% of kindergarten–grade 2 students chose “Yes”
 - ii. 48.9% of grades 3–5 students chose “Yes”
 - iii. 35.2% of students in grades 6–8 chose “Yes”
- b. 29.2% chose “Maybe”
 - i. 16.7% of kindergarten–grade 2 students chose “Maybe”
 - ii. 33.6% of grades 3–5 students chose “Maybe”
 - iii. 36.6% of students in grades 6–8 chose “Maybe”
- c. 18.0% chose “No”
 - i. 10.2% of kindergarten–grade 2 students chose “No”
 - ii. 17.5% of grades 3–5 students chose “No”
 - iii. 28.1% of students in grades 6–8 chose “No”

7) Do you want us to visit again?

Results:

- a. 92.3% chose “Yes”
- b. 5.5% chose “Maybe”
- c. 2.2% chose “No”

Student Survey Outcomes

Survey results provide a student-centered assessment of the Texas Mobile STEM Lab program’s impact. High levels of enjoyment, strong interest, balanced levels of challenge, and enthusiasm for future participation indicate effective engagement in meaningful STEM learning. The program aims to leverage exposure to promote sustained involvement in STEM activities among K-8 students.

Appendix II: Teacher Survey Design and Outcomes

Teachers participating in Texas Mobile STEM Laboratory sessions answer survey questions at the beginning and the end of their visits. Teacher surveys use pre- and post-activity questions to measure teachers' confidence in teaching and creating STEM challenges. Additional questions assessed Texas Mobile STEM Laboratory staff communication and professionalism and the teachers' overall satisfaction with the visit. Teachers who observe multiple classes complete their survey during the final session.

A core goal of the Texas Mobile STEM Laboratory program is to provide professional development and support for delivering hands-on STEM instruction. The teacher survey captures multiple aspects of the experience, enabling TEA and program staff to evaluate not only overall satisfaction but also changes in confidence, preparedness, and plans to integrate STEM practices into classroom instruction.

Teacher Satisfaction Questions:

The survey begins with questions about visit satisfaction, focusing on the logistics, communication, and overall experience of the mobile STEM lab visit.

1. Did you feel adequately prepared for your Texas Mobile STEM Lab Visit?

Results:

- 92.1% chose “Yes”
- 7.9% chose “No”

2. Were you able to meet with the Texas Mobile STEM Lab during the pre-visit?

Results:

31% chose “Yes”

69% chose “No”

3. Are you satisfied with the Texas Mobile STEM Lab visit?

Results:

99% chose “Yes”

1% chose “No”

4. Would you like the Texas Mobile STEM Lab to visit again?

Results:

99% chose “Yes”

1% chose “No”

Pre-Activity Questions:

The next set of questions, the pre-activity questions, measures teachers’ baseline comfort and experience with STEM instruction before the mobile lab arrives.

1) How often do you do engineering design activities in your classroom?

Results:

- a. 34.2% chose “Never”
- b. 32.3% chose “Once a semester”
- c. 23.1% chose “Once a month”
- d. 7.20% chose “Once a week”
- e. 3.1% chose “Daily”

2) Prior to the Texas Mobile STEM Labs visit, rate your confidence level in doing a new, premade STEM activity on your own.

Results:

- a. 15.9% chose “Very Confident”
- b. 25.8% chose “Fairly Confident”
- c. 31.8% chose “Somewhat Confident”
- d. 16.1% chose “Slightly Confident”
- e. 10.4% chose “Not Confident”

- 3) Prior to the Texas Mobile STEM Labs visit, rate your confidence level in creating your own STEM activity to do in your classroom.

Results:

- a. 10.1% chose “Very Confident”
- b. 22.7% chose “Fairly Confident”
- c. 28.7% chose “Somewhat Confident”
- d. 22.2% chose “Slightly Confident”
- e. 16.4% chose “Not Confident”

Post Activity Questions:

The post-activity questions measure what changed as a result of the visit.

- 1) After the Texas Mobile STEM Labs visit, rate your confidence level in doing a new, premade STEM activity on your own.

Results:

- a. 48.2% chose “Very Confident”
- b. 33.7% chose “Fairly Confident”
- c. 13.0% chose “Somewhat Confident”
- d. 4.3% chose “Slightly Confident”
- e. 0.8% chose “Not Confident”

- 2) After the Texas Mobile STEM Labs visit, rate your confidence level in creating your own STEM activity to do in your classroom.

Results:

- a. 33.2% chose “Very Confident”
- b. 36.0% chose “Fairly Confident”
- c. 22.4% chose “Somewhat Confident”
- d. 5.6% chose “Slightly Confident”
- e. 2.8% chose “Not Confident”

- 3) Do you plan to implement the Texas Mobile STEM Lab Curriculum in your classroom in the future?

Results:

- a. 68% chose “Yes”
- b. 30% chose “Maybe”
- c. 2% chose “No”

Teacher Survey Outcomes

The survey focuses on teacher preparedness, engagement, confidence, and anticipated integration of STEM challenges into future instruction. These measures indicate whether the program successfully models engineering design practices for educators and supports long-term classroom adoption. Insights from the survey guide the Texas Mobile STEM Lab team in refining communication, enhancing curriculum, strengthening instructional support, and ensuring sustained impact statewide.