Update to Content Accepted by SRP

Request to Update Content Reviewed and Accepted by the State Review Panel (SRP)

Proposed changes shall be made available for public review on Texas Education Agency's website for a minimum of seven calendar days prior to approval.

Indicate if the changes in the content were reviewed and accepted by the SRP to determine coverage of the Texas Essential Knowledge and Skills (TEKS), English Language Proficiency Standards (ELPS), or Texas Prekindergarten Guidelines (TPG) by selecting a box below. (Note: All request to update editions that do not change content reviewed and accepted by the SRP must be entered on the Update to Content Not Reviewed by SRP document.)
\boxtimes TEKS $\quad \square$ ELPS $\quad \square$ TPG $\quad \square$ TEKS and ELPS

Proclamation Year: 2024
Publisher: CEV Multimedia
Subject Area/Course: CTE - Science, Technology, Engineering \& Mathematics / Computer Science I

Adopted Program Information:

Title: iCEV Computer Science I (Individual Course) - 1-year online access for 25 students and 1 teacher ISBN: 9798888640036

Enter the identical Program Title of your identical product that will contain the identical updates. Identical Program Title: iCEV Computer Science I (Individual Course) - 1-year online access for 25 students and 1 teacher
Identical Program ISBN: 9798888640036

Adopted Component Information

Title: iCEV Computer Science I - Teacher (1-year online access for 1 teacher)
ISBN: 8888640036002

Enter the identical component title of your identical product that will contain the identical updates. Identical Component Title: iCEV Computer Science I - Teacher (1-year online access for 1 teacher) Identical Component ISBN: 8888640036002

Publisher's overall rationale for this update
To increase TEKS coverage percentage to 100%.

Publisher's overall description of the change

New content was added to better address TEKS based on State Review Panel identified deficiencies in the content. Additionally, in the new content items were added which include an interactive coding environment to allow students to practice the coding techniques they are learning in the course.

Update to Content Accepted by SRP

Access Information

Enter access information below to the adopted version of the instructional materials and the proposed new content.

Currently Adopted Content URL:
https://login.icevonline.com/mycourses/ADOCOMPU001?aria label=Computer\%20Science\%20I\%20\%28

Post\%20Adoption\%20Sample\%29\%20

Currently Adopted Content Username: TXPROC24REBID
Currently Adopted Content Password: iCEVREBID

Proposed Updated Content URL:
https://login.icevonline.com/mycourses/ADOCOMPU002?aria label=Computer\%20Science\%201\%20\%20UPDATED\%20
Proposed Updated Content Username: TXPROC24REBID
Proposed Updated Content Password: iCEVREBID

Update comparison:

Each change in the component on this form should be documented in the update comparison below. You must submit a separate request for each component, not each change. (Note: Repeat this section as often as needed by copying and pasting the entire area from the (SE)(Breakout(s)) and (Citation Type(s)) to the dividing line for each change.)
(SE)(Breakout(s)) and (Citation Type(s))
(1)(A)(ii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content STEM Careers: Computer Science I (Slides 9-15), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21639

Description of the specific location and hyperlink to the exact location of the proposed new content

 STEM Careers: Computer Science I (Slides 6-17), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22287In the STEM Careers: Computer Science I PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Software \& App Developers

- Build computer system software and application software
- Work with software from the beginning to
the end, including
- designing
- developing
lesing
-maintaining
-evaluating

CEV
CE

Update to Content Accepted by SRP

6/20/2024

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Computer Science
- Is the study of computers, including:
- algorithmic processes
-hardware
-software designs
-computer usage
-societal impact of computers and technology
CEEV

Computer Science Careers
- Can include:
-software and app developers
-video game developers
-systems architects
-Al engineers
-web developers
CEEV

Update to Content Accepted by SRP

Software \& App Developers
- Can start in the workplace with an industry-
recognized certification
- Can advance their career with educational
degrees

11

6/20/2024
6/20/2024

13

14

Other Computer Science Careers

- Include positions which work with computer science professionals, software systems and other technical products, including:
-technical support specialists
- data analysts

May not require
entry-level positions
-internships are another avenue to b
introduced to the computer science field
CEV
15

(SE)(Breakout(s)) and (Citation Type(s)) (1)(H)(ii), Narrative

Update to Content Accepted by SRP

Description of the specific location and hyperlink to the exact location of currently adopted content Professionalism in the Sciences: Computer Science I (Slides 29-30), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21640

Description of the specific location and hyperlink to the exact location of the proposed new content Professionalism in the Sciences: Computer Science I (Slides 29-31), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22289
In the Professionalism in the Sciences: Computer Science I PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Update to Content Accepted by SRP

30

Time Management \& Planning Skills

- Include:
- Include:
-setting goals
-setting goals
-being accountable
-being accountable
-delegating when necessary
-delegating when necessary
-maintaining a calendar and task list
-maintaining a calendar and task list
-avoiding procrastination
-avoiding procrastination
That are not fully developed can lead to
That are not fully developed can lead to
severe consequences
severe consequences
-missing a deadline can lead to a lost client
-missing a deadline can lead to a lost client
CEV
CEV

31
(SE)(Breakout(s)) and (Citation Type(s)) (1)(I)(i), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content STEM Careers: Computer Science I (Slides 16-18), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21639
Activity-STEM Careers Exploration,
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21639/CEV71506 Activity02
Description of the specific location and hyperlink to the exact location of the proposed new content STEM Careers: Computer Science I (Slides 18-21), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22287
In the STEM Careers: Computer Science I PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Project-Future STEM Self, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22287/CEV71506 V2 Project01 This Project is found in the STEM Careers: Computer Science I lesson beneath the Interactive Assignments heading. After clicking the link to the Project, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Project.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Update to Content Accepted by SRP

Other Computer Science Careers

- Include positions which work with computer science professionals, software systems and other technical products, including: -technical support specialists data analysts
business analysts
- May not require coding, making them ideal entry-level positions

CEV
17

iCEV
Proclamation 2024 Computer Sciencel/ My Prorile| Tutorials | Log Ou

* LINE CHATHELP I I Shhedule online trainng

Computer Science I (Post Adoption Sample)

My Courses / Computer Science I (Post Adoption Sample) / STEM Careers: Computer Science I / Activity - STEM Careers Exploration

Highlight any text to hear text-to-voice speech.
Select Language |

Activity - STEM Careers Exploration STEM Careers: Computer Science I

1 of 1
ミ・

2no244, 2 .5s PM
Activity Overview:
You will 1 se the inter
You will use the internet to research five careers or internships in company or organzzation to ask questions about your chosen career or internship.

Directions:

1. Use the internet to research five carvers or internships in computer
2. Fill in the charts for each career or internship you researched including job doscription, outios or task, education requirements. comparison of relevant post-secondary programs and salary
potential.
3. Idently your favorte career or internship from the opportunities you
4. Contact a co
5. Contact a company or organization which offers the career or internship you chose. You could contact these individuals through
the phone or emall. Answer the following questions while you are in contact with the company or organization:

- What are the job duties of your chosen career or internship

What is the description of your chosen career or intermshi
What type of education
career or internship

- What is the salay or pay for your chosen career or internship 5. Once complete, submit your Activity.

Update to Content Accepted by SRP

bi:20244, 2.58 Pm

Abstract

Update to Content Accepted by SRP

bexaver， 2.38 Pm

What is the description of your chosen career or internship？
B $\quad \underline{\square} \quad \vdots$ 引
$0 / 10000$ Wora Limit
The type of ecucation to they require for your chosen cereer or intersship？
B $I \quad \underline{\cup} \quad \vdots \quad$ 決
$0 / 10000$ Word Limit
What is the salary or pay for your chosen career or internship？

\qquad
－固Review

Screenshot of Proposed New Content Insert a screenshot of your proposed new content．

Update to Content Accepted by SRP

672024, 1:06 5M

Proclamation 2024 Computer Science || My Profile | Tutorials | Log Out
\qquad ב Scheduleonlinetraining

Computer Science IUPDATED

My Courses / Computer Science I - UPDATED / STEM Careers: Computer Science I-UPDATED / Project - Future STEM Self

Highlight any text to hear text-to-voice speech. Select Language $\mid \mathbf{V}$

SAVE PROGRESS
Project - Future STEM Self
STEM Careers: Computer Science I
1 of 1

622024, 1:06 PM

Project Overview:

You will wiork independently to develop a five-year plan and an infographic detailing information about your chosen career or internship from the STEM Careers Exploration Activity

Directions:

1. Using your research from the STEM Careers Exploration Activity.
conduct more in-depth research on the career or internship you chose, including:

- Salary or pay range
- Job availability
- Job availability
- Educational requi
college computer scients and comparison of university or
- Basic job duties or tasks

2. Write one to two paragraphs desseribing the following information:

- Career or internship area you chose and all the attributes you
delermined during research
delermined during research
- Role of certifications, resumes and portfolios in gaining a job
- Comparison of university or coll
programs
- if you were to choose a and potential degree

3. Use the information gained from the career or internship research
4. Use the information gainer from the career orimentilews your
potion of this project to creale an outline which follows your pathway to your future STEM self. This should be a five-year plan with the following:

- Goals
- Milestones and specific endeavors to increase your skills - Education and experience to achieve your career or Be specifio when outlining
- For example, "have more education and experience" as a goal is broad, whereas "obtain a bachelor's degree in computer science at XYZ university" is specific

5. Use the outtine you developed to create an infographic called "Future STEM Solf." "Bo suro to uso graphics and phrasos to
describe your pathway over the next five years and what it will tate to become your future STEM sell.
to become your future STEM sell.
6. Once complete, upload your outline and infographici in the space
provided beltow, then submit your Project. You can find a Rubric al the end of this Project.

682024, 1:06 5M

E2024-Al Rights Reserved (MMowowkooocerf)

(SE)(Breakout(s)) and (Citation Type(s)) (2)(A)(ii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content

Update to Content Accepted by SRP

Learning Communities (Slide 13),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21641

Description of the specific location and hyperlink to the exact location of the proposed new content Learning Communities (Slides 3-13, 18-23),
https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22291
In the Learning Communities PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEE

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
$\|$Fun fact Students who are involved in learring communities tend to have nigher grades. 4
CEV

$\left.\begin{array}{|l|}\hline \text { Learning Community Examples } \\ \hline \text { - Include: } \\ \text { - location-based } \\ \text { - such bs a group that meets to focus on the local } \\ \text { history } \\ \text { - profession-based } \\ \text { - such ns schools who have created teacher } \\ \text { professional learning communities that meet } \\ \text { weekky } \\ \text { - action-based } \\ \text { - groups meet to work together for a common cause } \\ \text {-interest-based } \\ \text { a group meets to discuss or participate in a } \\ \text { common interest }\end{array}\right]$

Learning Community Advice
- Is one advantage of being part of a group
of people with similar interests
- May come from professionals who are
contributors or facilitators
- May come from educators who are
teachers and mentors
- May come from peers or other learners
- Can improve a product's quality and
accuracy and provide perspective based
on the individual's role
CEV
18

Seeking Learning Community Advice
- Begins with submitting a product for review
online or in-person to peers, educators or
professionals to evaluate quality and
accuracy
-a request to review should be sent or
discussed prior
-reviewers should be qualified
-can be a product submitted by an individual to
the learning community or submitted by the
learning community as a group to an outside
source
CEV

19

Responding to a Request for Advice

- Within learning communities can vary depending on the product submitted
- Should be accepted or denied in a timely manner
- Usually begins with an acknowledgment of what was done well and transitions to what could be improved
advice should always be respectful and display constructive criticism
review should evaluate accuracy and quality of a student project
21

Update to Content Accepted by SRP

6/20/2024

Responding to Learning Community Advice
- May be uncomfortable if there is a
disagreement
- reflect on the advice received before acting or
sharing an opinion
- agree to disagree
- Advice should be taken politely with gratitude
-thank the person
- do not argue about other people's opinions
-consider the source
- people have different perspectives and
understanding those perspectives is important
CEV

(SE)(Breakout(s)) and (Citation Type(s)) (2)(A)(iii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Learning Communities (Slide 16), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21641

Description of the specific location and hyperlink to the exact location of the proposed new content Learning Communities (Slides 3-12, 18-23), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22291
In the Learning Communities PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEE

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
$\|$Fun fact Students who are involved in learring communities tend to have nigher grades. 4
CEV

$\left.\begin{array}{|l|}\hline \text { Learning Community Examples } \\ \hline \text { - Include: } \\ \text { - location-based } \\ \text { - such bs a group that meets to focus on the local } \\ \text { history } \\ \text { - profession-based } \\ \text { - such ns schools who have created teacher } \\ \text { professional learning communities that meet } \\ \text { weekky } \\ \text { - action-based } \\ \text { - groups meet to work together for a common cause } \\ \text {-interest-based } \\ \text { a group meets to discuss or participate in a } \\ \text { common interest }\end{array}\right]$

Update to Content Accepted by SRP

Effective Learning Communities
- Have the following components:
-a shared sense of purpose
-active participation
-support and feedback
-collaboration and teamwork
-inclusivity and diversity

Contributor
• Is often an individual not directly involved in the learning process but may contribute in other ways - May provide resources, offer support or participate in discussions and activities when needed in a learning community for example, a peer assisting to install a new sofware and share their expertise, asking questions to initiate discussion, providing feedback, and collaborating on open-source projects
CEV

Learning Community Advice
- Is one advantage of being part of a group
of people with similar interests
- May come from professionals who are
contributors or facilitators
- May come from educators who are
teachers and mentors
- May come from peers or other learners
- Can improve a product's quality and
accuracy and provide perspective based
on the individual's role
CEV
18

6/20/2024

Seeking Learning Community Advice
- Begins with submitting a product for review
online or in-person to peers, educators or
professionals to evaluate quality and
accuracy
-a request to review should be sent or
discussed prior
-reviewers should be qualified
-can be a product submitted by an individual to
the learning community or submitted by the
learning community as a group to an outside
source

19

Responding to a Request for Advice

- Within learning communities can vary depending on the product submitted
- Should be accepted or denied in a timely manner
- Usually begins with an acknowledgment of what was done well and transitions to what could be improved
advice should always be respectful and display constructive criticism
review should evaluate accuracy and quality of a student project
21

Update to Content Accepted by SRP

6/20/2024

Responding to Learning Community Advice
- May be uncomfortable if there is a
disagreement
- reflect on the advice received before acting or
sharing an opinion
- agree to disagree
- Advice should be taken politely with gratitude
-thank the person
- do not argue about other people's opinions
-consider the source
- people have different perspectives and
understanding those perspectives is important

(SE)(Breakout(s)) and (Citation Type(s)) (2)(A)(iv), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Learning Communities (Slide 17), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21641

Description of the specific location and hyperlink to the exact location of the proposed new content Learning Communities (Slides 3-12, 17-23), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22291
In the Learning Communities PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Screenshot of Currently Adopted Content

 Insert a screenshot of your currently adopted content.

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEE

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
$\|$Fun fact Students who are involved in learring communities tend to have nigher grades. 4
CEV

$\left.\begin{array}{|l|}\hline \text { Learning Community Examples } \\ \hline \text { - Include: } \\ \text { - location-based } \\ \text { - such bs a group that meets to focus on the local } \\ \text { history } \\ \text { - profession-based } \\ \text { - such ns schools who have created teacher } \\ \text { professional learning communities that meet } \\ \text { weekky } \\ \text { - action-based } \\ \text { - groups meet to work together for a common cause } \\ \text {-interest-based } \\ \text { a group meets to discuss or participate in a } \\ \text { common interest }\end{array}\right]$

Learning Community Advice
- Is one advantage of being part of a group
of people with similar interests
- May come from professionals who are
contributors or facilitators
- May come from educators who are
teachers and mentors
- May come from peers or other learners
- Can improve a product's quality and
accuracy and provide perspective based
on the individual's role
CEV
18

6/20/2024

Seeking Learning Community Advice
- Begins with submitting a product for review
online or in-person to peers, educators or
professionals to evaluate quality and
accuracy
-a request to review should be sent or
discussed prior
-reviewers should be qualified
-can be a product submitted by an individual to
the learning community or submitted by the
learning community as a group to an outside
source

19

21

Update to Content Accepted by SRP

6/20/2024

Responding to Learning Community Advice
- May be uncomfortable if there is a
disagreement
- reflect on the advice received before acting or
sharing an opinion
- agree to disagree
- Advice should be taken politely with gratitude
-thank the person
-do not argue about other people's opinions
-consider the source
- people have different perspectives and
understanding those perspectives is important
CcEv

(SE)(Breakout(s)) and (Citation Type(s)) (2)(A)(v), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Learning Communities (Slide 17), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21641

Description of the specific location and hyperlink to the exact location of the proposed new content Learning Communities (Slides 3-12, 17-23), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22291
In the Learning Communities PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEE

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
$\|$Fun fact Students who are involved in learring communities tend to have nigher grades. 4
CEV

$\left.\begin{array}{|l|}\hline \text { Learning Community Examples } \\ \hline \text { - Include: } \\ \text { - location-based } \\ \text { - such bs a group that meets to focus on the local } \\ \text { history } \\ \text { - profession-based } \\ \text { - such as schools who have created teacher } \\ \text { professional learning communities that meet } \\ \text { weekky } \\ \text { - action-based } \\ \text { - groups meet to work together for a common cause } \\ \text {-interest-based } \\ \text { a group meets to discuss or participate in a } \\ \text { common interest }\end{array}\right]$

Learning Community Advice
- Is one advantage of being part of a group
of people with similar interests
- May come from professionals who are
contributors or facilitators
- May come from educators who are
teachers and mentors
- May come from peers or other learners
- Can improve a product's quality and
accuracy and provide perspective based
on the individual's role
CEV
18

6/20/2024

Seeking Learning Community Advice
- Begins with submitting a product for review
online or in-person to peers, educators or
professionals to evaluate quality and
accuracy
-a request to review should be sent or
discussed prior
-reviewers should be qualified
-can be a product submitted by an individual to
the learning community or submitted by the
learning community as a group to an outside
source

19

21

Update to Content Accepted by SRP

```
            Responding to Learning
                Community Advice
    -May be uncomfortable if there is a
    disagreement
        -reflect on the advice received before acting or
        sharing an opinion
    Advice should be taken politely with gratitude
    -thank the person
    -do not argue about other people's opinions
    -consider the source
        - people have different perspectives and
            understanding those perspectives is important
CEV
```

(SE)(Breakout(s)) and (Citation Type(s)) (2)(B)(i), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Learning Communities (Slides 3-11, 18-20), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21641

Description of the specific location and hyperlink to the exact location of the proposed new content Learning Communities (Slides 3-23), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22291
In the Learning Communities PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

Update to Content Accepted by SRP

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEV

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
Fun Fact Students who are involved in learning communities tend to have higher grades.
4

Learning Communities
- Can be:
-a place to share ideas, problems and
questions
-a safe space for discussion
- a collaborative environment
-a source of information
- a network for fellow students and experts
-online, in-person or hybrid

Learning Communities
- Are not:
- a school or professional committee
- committee members are usually appointed to
complete a specific task
-a social group
- there is a deeper connection over a shared
goal and topic in a learning community
-a job board or marketing platform
-a workshop or class
-a social media platform
Fun Fact Learning communitites are a great way to practice soft skills
like collaboration. communication and problem-solving.
6

Update to Content Accepted by SRP

7

Update to Content Accepted by SRP

11

Learning Community Advice
- Is one advantage of being part of a group
of people with similar interests
- May come from professionals who are
contributors or facilitators
- May come from educators who are
teachers and mentors
- May come from peers or other learners
CEv

18

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEV

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
$\|$Fun fact Students who are involved in learring communities tend to have nigher grades. 4
CEV

$\left.\begin{array}{|l|}\hline \text { Learning Community Examples } \\ \hline \text { - Include: } \\ \text { - location-based } \\ \text { - such bs a group that meets to focus on the local } \\ \text { history } \\ \text { - profession-based } \\ \text { - such ns schools who have created teacher } \\ \text { professional learning communities that meet } \\ \text { weekky } \\ \text { - action-based } \\ \text { - groups meet to work together for a common cause } \\ \text {-interest-based } \\ \text { a group meets to discuss or participate in a } \\ \text { common interest }\end{array}\right]$

Update to Content Accepted by SRP

Update to Content Accepted by SRP

Seeking Learning Community Advice
- Begins with submitting a product for review
online or in-person to peers, educators or
professionals to evaluate quality and
accuracy
- a request to review should be sent or
discussed prior
-reviewers should be qualified
-can be a product submitted by an individual to
the learning community or submitted by the
learning community as a group to an outside
source

10


```
Responding to Learning Community Advice
- May be uncomfortable if there is a disagreement
-reflect on the advice received before acting or sharing an opinion
- Advice should be taken politely with gratitude -thank the person -thank the person
-do not argue about other people's opinions - consider the source
understanding those perspectives and
understanding those perspectives is important
CEV
```

(SE)(Breakout(s)) and (Citation Type(s)) (2)(B)(ii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Learning Communities (Slides 3-11, 18-20), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21641

Description of the specific location and hyperlink to the exact location of the proposed new content Learning Communities (Slides 3-23), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22291
In the Learning Communities PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Update to Content Accepted by SRP

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEEV

Learning Communities
- Can be: -a place to share ideas, problems and questions -a safe space for discussion - a collaborative environment -a source of information - a network for fellow students and experts -online, in-person or hybrid
ICEV
5

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
Fun Fact Students who are involved in learring communities send to have higher grades.
4

Learning Communities
- Are not:
-a school or professional committee
- committee members are usually appointed to
complete a specific task
-a social group
- there is a deeper connection over a shared
goal and topic in a learning community
- a job board or marketing platform
- a workshop or class
-a social media platform
Funn Fact Learning cornmunities are a great way yopractire soft skills lick collaboraion. communication and problem-solving. CEV

6/20/2024

Learning Community Examples	
	Include: -location-based - such as a group that meets to focus on the local history - profession-based - such as schools who have created teacher professional learning communities that meet weekly -action-based - groups meet to work together for a common cause -interest-based - a group meets to discuss or participate in a common interest
CEV	v

Purpose of a Learning Community
- Is generally to enhance learning -by providing opportunities for more interaction among students and teachers in different courses or departments - Is often to introduce cross-curricular learning - science and social studies working together - May be to create a support network for students -a freshman learning community to help students transition into a new school CEV

Update to Content Accepted by SRP

Seeking Learning Community Advice
- Should be done with an open mind -be prepared and ask specific questions -wait until an appropriate time - when a fun activity is about to start is generally not an appropriate time - do not assume to already know the answer - Requires listening carefully to the response and taking notes if necessary -if there is specific information to remember, consider taking notes
CEV
19

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEV

Learning Communities
-Can be:
-a place to share ideas, problems and
questions
-a safe space for discussion
- a collaborative environment
- a source of information
-a network for fellow students and experts
-online, in-person or hybrid

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
$\left.$$\|$Fun Fact Students who are involved in learring communites tend to have nigher grades.${ }^{\text {CEV }} \right\rvert\,$

Learning Community Examples
- Include:
- location-based
• such as a group that meets to focus on the local
history
- profession-based
• such as schools who have created teacher
professional learning communities that meet
weekly
- action-based
- groups meet to work together for a comman cause
- interest-based
- a group meets to discuss or participate in a
common interest

Purpose of a Learning Community
- Is generally to enhance learning
-by providing opportunities for more interaction
among students and teachers in different
courses or departments
- Is often to introduce cross-curricular
learning
- science and social studies working together
- May be to create a support network for
students
- a freshman learning community to help
students transition into a new school
CEE

6/20/2024

Seeking Learning Community Advice
- Begins with submitting a product for review
online or in-person to peers, educators or
professionals to evaluate quality and
accuracy
- a request to review should be sent or
discussed prior
-reviewers should be qualified
-can be a product submitted by an individual to
the learning community or submitted by the
learning community as a group to an outside
source

Seeking Learning Community Advice
- Should be done with an open mind
-be prepared and ask specific questions
-wait until an appropriate time
- when a fun activity is about to start is generally
not an appropriate time
- do not assume to already know the answer
- Requires listening carefully to the response
and taking notes if necessary
-if there is specific information to remember,
consider taking notes

$6 / 20 / 2024$ 6/20/2024

Learning Community Advice
- Is one advantage of being part of a group
of people with similar interests
- May come from professionals who are
contributors or facilitators
- May come from educators who are
teachers and mentors
- May come from peers or other learners
- Can improve a product's quality and
accuracy and provide perspective based
on the individual's role
CEV
18

Update to Content Accepted by SRP

6/20/2024

Responding to Learning Community Advice
- May be uncomfortable if there is a
disagreement
- reflect on the advice received before acting or
sharing an opinion
- agree to disagree
- Advice should be taken politely with gratitude
-thank the person
- do not argue about other people's opinions
-consider the source
- people have different perspectives and
understanding those perspectives is important
CEEV

(SE)(Breakout(s)) and (Citation Type(s)) (2)(B)(iii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Learning Communities (Slides 3-11, 18-20),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21641

Description of the specific location and hyperlink to the exact location of the proposed new content Learning Communities (Slides 3-23), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22291
In the Learning Communities PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEE

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
\|Fun fact: Students who are involved in learning communities send to have higher grades.
4

Learning Community Examples	
	Include: -location-based - such as a group that meets to focus on the local history -profession-based - such as schools who have created teacher professional learning communities that meet weekly -action-based - groups meet to work together for a common cause -interest-based - a group meets to discuss or participate in a common interest
Cev	

Update to Content Accepted by SRP

Screenshot of Proposed New Content

 Insert a screenshot of your proposed new content.

Learning Community Examples
- Include:
- location-based
• such as a group that meets to focus on the local
history
- profession-based
• such as schools who have created teacher
professional learning communities that meet
weekly
- action-based
- groups meet to work together for a comman cause
- interest-based
- a group meets to discuss or participate in a
common interest

Purpose of a Learning Community
- Is generally to enhance learning
-by providing opportunities for more interaction
among students and teachers in different
courses or departments
- Is often to introduce cross-curricular
learning
- science and social studies working together
- May be to create a support network for
students
- a freshman learning community to help
students transition into a new school
CEE

6/20/2024

Seeking Learning Community Advice
- Begins with submitting a product for review
online or in-person to peers, educators or
professionals to evaluate quality and
accuracy
- a request to review should be sent or
discussed prior
-reviewers should be qualified
-can be a product submitted by an individual to
the learning community or submitted by the
learning community as a group to an outside
source

Seeking Learning Community Advice
- Should be done with an open mind
-be prepared and ask specific questions
-wait until an appropriate time
- when a fun activity is about to start is generally
not an appropriate time
- do not assume to already know the answer
- Requires listening carefully to the response
and taking notes if necessary
-if there is specific information to remember,
consider taking notes

$6 / 20 / 2024$ 6/20/2024

Learning Community Advice
- Is one advantage of being part of a group
of people with similar interests
- May come from professionals who are
contributors or facilitators
- May come from educators who are
teachers and mentors
- May come from peers or other learners
- Can improve a product's quality and
accuracy and provide perspective based
on the individual's role
CEV
18

Update to Content Accepted by SRP

6/20/2024

Responding to Learning Community Advice
- May be uncomfortable if there is a
disagreement
- reflect on the advice received before acting or
sharing an opinion
- agree to disagree
- Advice should be taken politely with gratitude
-thank the person
- do not argue about other people's opinions
-consider the source
- people have different perspectives and
understanding those perspectives is important
CEEV

(SE)(Breakout(s)) and (Citation Type(s))

 (2)(B)(iv), NarrativeDescription of the specific location and hyperlink to the exact location of currently adopted content Learning Communities (Slides 3-11, 18-20),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21641

Description of the specific location and hyperlink to the exact location of the proposed new content Learning Communities (Slides 3-23), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22291
In the Learning Communities PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEE

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
\|Fun fact: Students who are involved in learning communities send to have higher grades.
4

Learning Community Examples	
	Include: -location-based - such as a group that meets to focus on the local history -profession-based - such as schools who have created teacher professional learning communities that meet weekly -action-based - groups meet to work together for a common cause -interest-based - a group meets to discuss or participate in a common interest
Cev	

Update to Content Accepted by SRP

Seeking Learning Community Advice
- Should be done with an open mind -be prepared and ask specific questions -wait until an appropriate time - when a fun activity is about to start is generally not an appropriate time - do not assume to already know the answer - Requires listening carefully to the response and taking notes if necessary -if there is specific information to remember, consider taking notes
CEV
19

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Learning Communities
- Are a group of people who share a
common interest and work together toward
a common goal
- Can be small and within a geographic
boundary or building, like a school
- May also be large and virtual, as in a
worldwide group of scientists working on
similar research
CEV

Learning Communities
-Can be:
-a place to share ideas, problems and
questions
-a safe space for discussion
- a collaborative environment
- a source of information
-a network for fellow students and experts
-online, in-person or hybrid

Learning Communities
- Have shared goals -they work together to build solutions -they share resources -they offer feedback and critique -they provide a safe space for questions and answers -they are part of the community voluntarily and for the purpose of pursuing a common goal
$\left.$$\|$Fun Fact Students who are involved in learring communites tend to have nigher grades.${ }^{\text {CEV }} \right\rvert\,$

Learning Community Examples
- Include:
- location-based
• such as a group that meets to focus on the local
history
- profession-based
• such as schools who have created teacher
professional learning communities that meet
weekly
- action-based
- groups meet to work together for a comman cause
- interest-based
- a group meets to discuss or participate in a
common interest

Purpose of a Learning Community
- Is generally to enhance learning
-by providing opportunities for more interaction
among students and teachers in different
courses or departments
- Is often to introduce cross-curricular
learning
- science and social studies working together
- May be to create a support network for
students
- a freshman learning community to help
students transition into a new school
CEE

6/20/2024

Seeking Learning Community Advice
- Begins with submitting a product for review
online or in-person to peers, educators or
professionals to evaluate quality and
accuracy
- a request to review should be sent or
discussed prior
-reviewers should be qualified
-can be a product submitted by an individual to
the learning community or submitted by the
learning community as a group to an outside
source

Seeking Learning Community Advice
- Should be done with an open mind
-be prepared and ask specific questions
-wait until an appropriate time
- when a fun activity is about to start is generally
not an appropriate time
- do not assume to already know the answer
- Requires listening carefully to the response
and taking notes if necessary
-if there is specific information to remember,
consider taking notes

$6 / 20 / 2024$ 6/20/2024

Learning Community Advice
- Is one advantage of being part of a group
of people with similar interests
- May come from professionals who are
contributors or facilitators
- May come from educators who are
teachers and mentors
- May come from peers or other learners
- Can improve a product's quality and
accuracy and provide perspective based
on the individual's role
CEV
18

Update to Content Accepted by SRP

6/20/2024

Responding to Learning Community Advice
- May be uncomfortable if there is a
disagreement
- reflect on the advice received before acting or
sharing an opinion
- agree to disagree
- Advice should be taken politely with gratitude
-thank the person
- do not argue about other people's opinions
-consider the source
- people have different perspectives and
understanding those perspectives is important

(SE)(Breakout(s)) and (Citation Type(s))

 (3)(A)(i), NarrativeDescription of the specific location and hyperlink to the exact location of currently adopted content Visual Presentation (Slides 7-18, 21-28), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21653

Description of the specific location and hyperlink to the exact location of the proposed new content Visual Presentation Student Handout-Inputs, Outputs and Data Displays Examples, https://files.icevonline.com/html/CEV71620 V2 HTML/CEV71620 V2 HTML Student Handout Inputs Outputs and Data Displays Examples.htm
This Student Handout is found in the Visual Presentation lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

Update to Content Accepted by SRP

14

6/20/2024 6/20/2024
,

Unicode Character Encoding
- Is an extension of ASCII (American
Standard Code for Information
Interchange)
- allows programmers to include a multitude of
symbols and characters in all languages
-the tag is generally lu followed by the Unicode
value

Update to Content Accepted by SRP

Printing Text to a File
- Can be done by importing the sys package,
opening a 'write' file and printing directly to
the file
-the process involves the commands 'with',
'open' and file

6/20/2024 6/20/2024

Update to Content Accepted by SRP

Screenshot of Proposed New Content

Insert a screenshot of your proposed new content.

Inputs, Outputs \& Data Displays Examples

Creating Outputs

To create a simple text output, the 'print' function is most often used, but it can have several variations to change how the data is displayed. Below are examples of how to create a text output with the print function for several different scenarios. Keep in mind when creating text output, the code in green is what will be displayed for the user.
\# Basic text output using the print function
print("Hello World")
\# Specific information with text explain what the information shows name $=$ "Tim"
food = "Pizza"
print("Name:", name, "Favorite Food:", food)
\# Formatting specific results of a function
num1 $=7$
num2 $=4$
sum_result $=$ num1 + num2
print (f"The sum of \{num1\} and \{num2\} is \{sum_result\}.")
\# Multiple items in a text display
$\mathrm{x}=$ "Yes"
$y=$ No"
$z=$ "Maybe"
print("For this example x, y, and z represent:", x, y, z)

Properly Labeling and Displaying Outputs

When creating text output, it is important to make sure the user will understand what is being displayed. Properly labeling output is an important part of visual representation and can make code more user-friendly. Below are a few examples of labels to make the code easier to read and understand.
\# The labels 'Name' and 'Favorite Food' make the display more clear and help define what the terms relate to
name $=$ "Tim"
food = "Pizza"
print("Name:", name, "Favorite Food:", food)


```
    # In this example, putting the information that is calculated in a
    sentence helps convey what function was performed
    nnm1 = 7
    sum result = num1 + num2
    print(f"The sum of {num1} and {num2} is {sum_result}.")
    # Adding labels that show what }x,y\mathrm{ , and z correlate makes the display
    easier to read
    x = "Yes"
    z = "Maybe"
    print("For this example x, y, and z represent:", x, y, z)
    # Adding units when displaying specific information can also make text
    displays more clear
num1 = 7
num2 = 4
    print(f"Loaded Weight: {num1}lbs Unloaded Weight: {num2}lbs")
    # When there are several types of complex information being displayed,
    descriptive labels can help clear any confusion
    name = "Benjamin"
    number = 4
    transactions = 13
    print(f"Customer: {name}")
    print(f"Customer Number for December: {number}")
    Interactive Input Interfaces
    When creating interactive input interfaces with relevant user prompts to acquire data
    When creating interactive input interfaces with relevant user prompts to acquire data
    from a user, it is important the code is readable and easy to understand. This code
    requires information from the user to display a certain message or action. An example
    message
    name = input("Enter your name:")
    # Now the text will be displayed with the information that the user
    added
    print(f"Welcome {name}!")
```


Update to Content Accepted by SRP

```
Standard Formatting Styles
    Formatting styles can vary depending on what the code is being used for, personal
    preference or the coding standards of a business or organization. A few common
    formatting styles are PEP 8 Style Guide, the Google Python Style Guide, YAPF,
    PyCharm and Docstring Conventions. The coding examples given in this handout
    follow the PEP 8 Style Guide, which is standard for Python coding.
    Simple Vector Graphics Using Lines
    Simple Vector Graphics Using Lines
    The code to create a vector grap
    import matplotlib.pyplot as plt
    # Decide what figure you will create and the axis
    # Decide what figure you
    # Define the coordinates for each lines
    x1, y1 =1,1
    lol}\mp@subsup{x}{2, y2 =4,4}{4
    # Draw each lines
    ax.plot([x1, x2], [y1, y2], label= 'Line 1', color='blue', linewidth=2)
    (ax.plot([x2, x3], [y2, y3], label='Line 2',color='red', linestyle='.-
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.set_title('Simple vector Graphics with Lines')
# Add the legend
ax.legend()
# Show the plot
plt.show()
Simple Vector Graphics Using Circles
An example code to create a vector graphic using circles is shown below. This code
Anexample code to create a vector
import matplotlib.pyplot as plt
```



```
    # Add the rectangles to the axis
    ax.add_patch(rect1)
    ax.add_patch(rect2)
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis'
    ax.set_ylabel('Y-axis')
    ax.set_title('Simple Vector Graphics with Rectangles')
    # Add the legend
    ax.legend()
    # Set the aspect ratio to ensure better representation
    ax.legend('equal', adjustable='box')
    # Show the plot
    plt.show()
Matplotlib is a widely-used library for creating static, animated and interactive
visualizations. This example will showcase the inputs, outputs and data display for a
line, circle or rectangle.
# dialog.py
"""Dialog-style application."""
import sys
from PyQt6.QtWidgets import (
    OApplication
    QDialog,
    QDialogButtonBox,
    QFormLayout,
    QLineEdit,
)
class Window(QDialog):
    def __init__(self)
    C-CV %
```

(SE)(Breakout(s)) and (Citation Type(s))
(3)(A)(ii), Narrative and Activity

Description of the specific location and hyperlink to the exact location of currently adopted content

Update to Content Accepted by SRP

Visual Presentation (Slides 7-18, 21-28),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21653
Description of the specific location and hyperlink to the exact location of the proposed new content Visual Presentation Student Handout-Inputs, Outputs and Data Displays Examples, https://files.icevonline.com/htmI/CEV71620 V2 HTML/CEV71620 V2 HTML Student Handout Inputs Outputs and Data Displays Examples.htm
This Student Handout is found in the Visual Presentation lesson beneath the Instructional Materials heading.

Activity-Character Art, https://files.icevonline.com/htmI/CEV71620 TXP24/CEV71620 TXP24 Activity Character Art.htm
This Activity is found in the Visual Presentation lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

Update to Content Accepted by SRP

Unicode Character Encoding
- Is an extension of ASCII (American Standard Code for Information Interchange) -allows programmers to include a multitude of symbols and characters in all languages -the tag is generally lu followed by the Unicode value
CEV
17

Update to Content Accepted by SRP

6/20/2024
6/20/2024

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Update to Content Accepted by SRP

Inputs, Outputs \& Data Displays Examples

Creating Outputs

To create a simple text output, the 'print' function is most often used, but it can have several variations to change how the data is displayed. Below are examples of how to create a text output with the print function for several different scenarios. Keep in mind when creating text output, the code in green is what will be displayed for the user.
\# Basic text output using the print function
print("Hello World")
\# Specific information with text explain what the information shows
name = "Tim"
food = "Pizza"
print("Name:", name, "Favorite Food:", food)
\# Formatting specific results of a function
num1 $=7$
num $2=4$
sum_result $=$ num1 + num 2
print (f"The sum of \{num1\} and \{num2\} is \{sum_result\}.")
\# Multiple items in a text display
$x=$ "Yes"
y $=$ "No"
$z=$ "Maybe"
$z=$ Maybe

Properly Labeling and Displaying Outputs

When creating text output, it is important to make sure the user will understand what is When creating text output, it is important to make sure the user will understand what is being displayed. Properly labeling output is an important part of visual representation
and can make code more user-friendly. Below are a few examples of labels to make the code easier to read and understand.
\# The labels 'Name' and 'Favorite Food' make the display more clear and help define what the terms relate to
name $=$ "Tim"
food $=$ "Pizza"
print("Name:", name, "Favorite Food:", food)
\qquad

Standard Formatting Style

Formatting styles can vary depending on what the code is being used for, personal preference or the coding standards of a business or organization. A few common
formatting styles are PEP 8 Style Guide, the Google Python Style Guide, YAPF,
PyCharm and Docstring Conventions. The coding examples given in this handout
follow the PEP 8 Style Guide, which is standard for Python coding.
Simple Vector Graphics Using Lines
The code to create a vector graphic using lines is shown below. This code uses matplotlib to create this shape.
import matplotlib.pyplot as plt
\# Decide what figure you will create and the axis
fig, ax = plt.subplots()
\# Define the coordinates for each lines
$x_{1}, y_{1}=1,1$
$x 1, y 2=4,4$
$x 3, y 3=2,5$
\# Draw each lines
ax. plot($[x 1, x 2],[y 1, y 2]$, label= 'Line 1 ', color='blue', linewidth $=\mathbf{2}$) ax. plot $([x 2, x 3],[y 2, y 3]$, label='Line 2', color='red', linestyle='.-
\# Set the labels for each line and titles
ax. set_xlabel('X-axis')
ax.set ylabel(' Y -axis')
ax. set_title('Simple Vector Graphics with Lines')
\# Add the legend
ax. legend()
\# Show the plot
Simple Vector Graphics Using Circles
An example code to create a vector graphic using circles is shown below. This code uses matplotlib to create the shape.
import matplotlib.pyplot as plt

```
672024,152 5, m
    # In this example, putting the information that is calculated in a
    sentence helps convey what function was performed
    num1 = 7
sum_nesult = num1 + num2
print(f"The sum of {num1} and {num2} is {sum_result}.")
# Adding labels that show what }x,y\mathrm{ , and }z\mathrm{ correlate makes the display
easier to read
x = "Yes"
y = No 
print("For
# Adding units when displaying specific information can also make text
# Adding units when
num1 = 7
print(f"Loaded Weight: {num1}lbs Unloaded Weight: {num2}lbs")
# When there are several types of complex information being displayed,
descriptive labels can help clear any confusion
name = "Benjamin"
number = 4
transactions = 13
print(f"Customer: {name}")
print(f"Customer Number for December: {number}")
print(f"Number of Transaction for November: {transactions}")
Interactive Input Interfaces
When creating interactive input interfaces with relevant user prompts to acquire data
from a user, it is important the code is readable and easy to understand. This code
requires information from the user to display a certain message or action. An example
of a code that requires user input is shown below.
\# The prompt below asks for inputs from the user to display a welcome message
name = input("Enter your name:")
# Now the text will be displayed with the information that the user
added
print(f"Welcome {name}!")
# Define the circle parameters
circle1 = plt.Circle((1, 1), 0.5, edgecolor='blue', facecolor='none',
linewidth=2, label='Circle 1')
circle2 = plt.Circle((3,2), 0.8, edgecolor='red', facecolor='none',
linewidth=2, label='Circle 2')
    # Add the circles to the axis
    ax.add_patch(circle1)
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set title('Simple Vector Graphics with Circles'
    # Add the legend
    ax.legend()
    # Set the aspect ratio to ensure better representation
    ax.legend('equal', adjustable='box')
    # Show the plot
    plt.show()
Simple Vector Graphics Using Rectangles
An example code to create a vector graphic using rectangles is shown below. This
code uses matplotlib to create the shape
```

\# Decide what figure you will create and the axis
plt.subplots()
import matplotlib.pyplot as plt
import matplotlib.patches as patches
\# Decide what figure you will create and the axis fig, ax = plt.subplots()
\# Define the rectangle parameters
rect1 $=$ patches. $\operatorname{Rectangle}((1,1), 2,3$, edgecolor='blue'
faceclor=' none, 1newidth=2, label='Rectangle 1')
facecolor-'none' linewidth -2 , label-' 2.5 , edgecolor='red'

Update to Content Accepted by SRP


```
    # Add the rectangles to the axis
    ax.add_patch(rect1)
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set_ylabel('Y-axis')
    ax.set_title('Simple Vector Graphics with Rectangles')
    # Add the legend
    ax.legend()
    # Set the aspect ratio to ensure better representation
    ax.legend('equal', adjustable='box')
    # Show the plot
    plt.show()
    Matplotlib is a widely-used library for creating static, animated and interactive
    visualizations. This example will showcase the inputs, outputs and data display for a
    line, circle or rectangle.
# dialog.py
"""Dialog-style application."""
    import sys
    from PyQt6.QtWidgets import (
        QApplication,
        QDialog,
        QDialogButtonBox,
        QFormLayout,
        QLineEdit,
    )
    class Window(QDialog):
        def __init__(self): (parent=None)
        C-/CEV M
```



```
6:20224, 4.36 pm
```


Character Art

```
Activity Overview:
You will create a program using Unicode characters, keyboard characters and output
commands to create and properly label a display output.
Directions:
1. Collect a sheet of gridded paper from your instructor. This will help organize the character placement for the character art.
2. Design a character on the gridded paper you would like to print out on the computer screen. - Example
```



```
3. Use the gridded paper as a map to determine where each character goes.
4. Using your knowledge of outputting characters and strings in Python, write the code to output your personal character creation.
5. Run the program, check for errors and write a paragraph explaining how you created and properly labeled an output.
6. Turn in the completed activity based on your instructor's directions
```


(SE)(Breakout(s)) and (Citation Type(s))
(3)(A)(iii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Visual Presentation (Slides 7-18, 21-28),

Update to Content Accepted by SRP

https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21653
Description of the specific location and hyperlink to the exact location of the proposed new content Visual Presentation Student Handout-Inputs, Outputs and Data Displays Examples, https://files.icevonline.com/html/CEV71620 V2 HTML/CEV71620 V2 HTML Student Handout Inputs Outputs and Data Displays Examples.htm
This Student Handout is found in the Visual Presentation lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

Update to Content Accepted by SRP

Unicode Character Encoding
- Is an extension of ASCII (American Standard Code for Information Interchange) -allows programmers to include a multitude of symbols and characters in all languages -the tag is generally lu followed by the Unicode value
CEV
17

6/20/2024 6/20/2024

6/20/2024

Update to Content Accepted by SRP

6/20/2024
6/20/2024

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Update to Content Accepted by SRP

Inputs, Outputs \& Data Displays Examples

Creating Outputs

To create a simple text output, the 'print' function is most often used, but it can have several variations to change how the data is displayed. Below are examples of how to create a text output with the print function for several different scenarios. Keep in mind when creating text output, the code in green is what will be displayed for the user.
\# Basic text output using the print function
print("Hello World")
\# Specific information with text explain what the information shows
name = "Tim"
food = "Pizza"
print("Name:", name, "Favorite Food:", food)
\# Formatting specific results of a function
num1 $=7$
num $2=4$
sum_result $=$ num1 + num 2
print (f"The sum of \{num1\} and \{num2\} is \{sum_result\}.")
\# Multiple items in a text display
$x=$ "Yes"
y $=$ "No"
$z=$ "Maybe"
$z=$ Maybe

Properly Labeling and Displaying Outputs

When creating text output, it is important to make sure the user will understand what is When creating text output, it is important to make sure the user will understand what is being displayed. Properly labeling output is an important part of visual representation
and can make code more user-friendly. Below are a few examples of labels to make the code easier to read and understand.
\# The labels 'Name' and 'Favorite Food' make the display more clear and help define what the terms relate to
name $=$ "Tim"
food $=$ "Pizza"
print("Name:", name, "Favorite Food:", food)
\qquad

Standard Formatting Style

Formatting styles can vary depending on what the code is being used for, personal preference or the coding standards of a business or organization. A few common
formatting styles are PEP 8 Style Guide, the Google Python Style Guide, YAPF, PyCharm and Docstring Conventions. The coding examples given in this handout follow the PEP 8 Style Guide, which is standard for Python coding.
Simple Vector Graphics Using Lines
The code to create a vector graphic using lines is shown below. This code uses matplotlib to create this shape.
import matplotlib.pyplot as plt
\# Decide what figure you will create and the axis
fig, ax = plt.subplots()
\# Define the coordinates for each lines
$x_{1}, y_{1}=1,1$
$x 1, y 2=4,4$
$x 3, y 3=2,5$
\# Draw each lines
ax. plot($[x 1, x 2],[y 1, y 2]$, label= 'Line 1 ', color='blue', linewidth $=\mathbf{2}$) ax. plot $([x 2, x 3],[y 2, y 3]$, label='Line 2', color='red', linestyle='.-
\# Set the labels for each line and titles
ax. set_xlabel('X-axis')
ax.set ylabel(' Y -axis')
ax. set_title('Simple Vector Graphics with Lines')
\# Add the legend
ax. legend()
\# Show the plot
Simple Vector Graphics Using Circles
An example code to create a vector graphic using circles is shown below. This code uses matplotlib to create the shape.
import matplotlib.pyplot as plt

```
672024,152 5, m
    # In this example, putting the information that is calculated in a
    sentence helps convey what function was performed
    num1 = 7
sum_nesult = num1 + num2
print(f"The sum of {num1} and {num2} is {sum_result}.")
# Adding labels that show what }x,y\mathrm{ , and }z\mathrm{ correlate makes the display
easier to read
x = "Yes"
y = No 
print("For
# Adding units when displaying specific information can also make text
# Adding units when
lom
print(f"Loaded Weight: {num1}lbs Unloaded Weight: {num2}lbs")
# When there are several types of complex information being displayed,
descriptive labels can help clear any confusion
name = "Benjamin"
number = 4
transactions = 13
print(f"Customer: {name}")
print(f"Customer Number for December: {number}")
print(f"Number of Transaction for November: {transactions}")
Interactive Input Interfaces
When creating interactive input interfaces with relevant user prompts to acquire data
from a user, it is important the code is readable and easy to understand. This code
requires information from the user to display a certain message or action. An example
of a code that requires user input is shown below.
\# The prompt below asks for inputs from the user to display a welcome message
name = input("Enter your name:")
# Now the text will be displayed with the information that the user
added
print(f"Welcome {name}!")
672024,13
    # Decide what figure you will create and the axis
    fig, ax = plt.subplots()
    # Define the circle parameters
    circle1 = plt.Circle((1, 1), 0.5, edgecolor='blue', facecolor='none',
    linewidth=2, label='Circle 1')
    circle2 = plt.Circle((3,2), 0.8, edgecolor='red', facecolor='none',
    linewidth=2, label='Circle 2')
    # Add the circles to the axis
    ax.add_patch(circle1)
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set_title('Simple Vector Graphics with Circles')
    # Add the legend
    ax.legend()
    # Set the aspect ratio to ensure better representation
    ax.legend('equal', adjustable='box')
    # Show the plot
    plt.show()
Simple Vector Graphics Using Rectangles
An example code to create a vector graphic using rectangles is shown below. This
code uses matplotlib to create the shape
```

import matplotlib.pyplot as plt
import matplotlib.patches as patches
\# Decide what figure you will create and the axis fig, $a x=$ plt.subplots()
\# Define the rectangle parameters
rect1 $=$ patches. $\operatorname{Rectangle}((1,1), 2,3$, edgecolor='blue'
facector='none', linewidth $=2$, label $=$ 'Rectangle 1^{\prime})
facecolor-'none' linewidth -2 , label-' 2.5 , edgecolor='red'

Update to Content Accepted by SRP


```
    # Add the rectangles to the axis
    ax.add_patch(rect1)
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set_ylabel('Y-axis')
    ax.set_title('Simple Vector Graphics with Rectangles')
    # Add the legend
    ax.legend()
    # Set the aspect ratio to ensure better representation
    ax.legend('equal', adjustable='box')
    # Show the plot
    plt.show()
    Matplotlib is a widely-used library for creating static, animated and interactive
    visualizations. This example will showcase the inputs, outputs and data display for a
    line, circle or rectangle
    # dialog.py
    """Dialog-style application."""
    import sys
    from PyQt6.QtWidgets import (
        QApplication,
        QDialog,
        QDialogButtonBox,
        QFormLayout,
        QVBoxLayout
    )
    class Window(QDialog)
        def _init__(self):
        CEV 
```


(SE)(Breakout(s)) and (Citation Type(s))

(3)(B)(i), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Visual Presentation (Slides 31-40), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21653

Description of the specific location and hyperlink to the exact location of the proposed new content Visual Presentation Student Handout-Inputs, Outputs and Data Displays Examples, https://files.icevonline.com/html/CEV71620 V2 HTML/CEV71620 V2 HTML Student Handout Inputs Outputs and Data Displays Examples.htm
This Student Handout is found in the Visual Presentation lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

Update to Content Accepted by SRP

Hardware Inputs
- Are the physical components of a computer
- Are used to input data, commands or both into
a computer
- Can include:
- keyboard
- mouse
- microphone
-webcam
-touchpad
-touch screen
-copier/scanner
-buttons
CEV

Software Inputs
- Are programs and operating systems
running on a computer
- provide the interface through which a user can
give commands and perform tasks
- Can also take input in the form of data flow
- moving sequence of information that is
directed to a specific action
- Can include software applications such as:
- Windows 10
-Adobe Photoshop
-Google Chrome ${ }^{\text {mim }}$
CEV
32

32

Widget		
- Examples include: -Python and the PyQt framework versus Java and the Java Swing toolkit -each will give the Ul's created a distinct appearance		
CEEV		

PyQt Framework
- Can develop two types of GUI desktop
applications
- main window-style application
(QMain-Window)
-dialog-style application (QDialog)

6/20/2024

Update to Content Accepted by SRP

Screenshot of Proposed New Content

Insert a screenshot of your proposed new content.

Inputs, Outputs \& Data Displays Examples

Creating Outputs

To create a simple text output, the 'print' function is most often used, but it can have several variations to change how the data is displayed. Below are examples of how to create a text output with the print function for several different scenarios. Keep in mind when creating text output, the code in green is what will be displayed for the user.

```
# Basic text outnut using the print function
```

print("Hello World")
\# Specific information with text explain what the information shows
name $=$ "Tim"
print("Name:", name, "Favorite Food:", food)
\# Formatting specific results of a function
$\begin{aligned} \text { num1 } & =7 \\ \text { num2 } & =4\end{aligned}$
num $2=4$
print(f"The sum of \{num1\} and \{num2\} is \{sum_result\}.")
\# Multiple items in a text display
$x=$ "Yes"
$y=$ "No"
$y=$ "No"
$z=$ "Maybe
print("For this example x, y, and z represent:", x, y, z)

Properly Labeling and Displaying Outputs

When creating text output, it is important to make sure the user will understand what is being displayed. Properly labeling output is an important part of visual representation and can make code more user-friendly. Below are a few examples of labels to make the code easier to read and understand.
\# The labels 'Name' and 'Favorite Food' make the display more clear and help define what the terms relate to
and help defir
name $=$ "Tim"
name $=$ "Tim"
print("Name:", name, "Favorite Food:", food)


```
    # In this example, putting the information that is calculated in a
    sentence helps convey what function was performed
    num1 = 7
    sum_result = num1 + num2
    print(f"The sum of {num1} and {num2} is {sum_result}.")
    # Adding labels that show what }x,y\mathrm{ , and }z\mathrm{ correlate makes the display
    easier to read
    x = "Yes"
    y = "No"
    z="Maybe"
    print("For this example x, y, and z represent:", x, y, z)
    # Adding units when displaying specific information can also make text
    displays more clear
num1 = 7
num2 = 
# When there are several types of complex information being displayed,
descriptive labels can help clear any confusion
name = "Benjamin"
number = 4
transactions = }1
transa(f"Custore
print(f"Customer: {name}")
print(f"Number of Transaction for November: {transactions}")
```


Interactive Input Interfaces

```
When creating interactive input interfaces with relevant user prompts to acquire data from a user, it is important the code is readable and easy to understand. This code requires information from the user to display a certain message or action. An example of a code that requires user input is shown below.
\# The prompt below asks for inputs from the user to display a welcome message
name = input("Enter your name:")
\# Now the text will be displayed with the information that the user added
print(f"Welcome \{name\}!")
```


Update to Content Accepted by SRP


```
    Standard Formatting Styles
    Formatting styles can vary depending on what the code is being used for, personal
    preference or the coding standards of a business or organization. A few common
    PyCharm and Docstring Conventions. The coding examples given in this handout
    follow the PEP 8 Style Guide, which is standard for Python coding.
    Simple Vector Graphics Using Lines
    Simple Vector Graphics Using Lines 
    The code to create a vector gra
    import matplotlib.pyplot as plt
# Decide what figure you will create and the axis
fig, ax = plt.subplots()
# Define the coordinates for each lines
    x1, y1 =1,1
    x1,y1 = 1, 1
    # Draw each lines
    ax.plot([x1, x2], [y1, y2], label= 'Line 1',color='blue', linewidth=\mathbf{2}
    ax.plot([x2, x3], [y2, y3], label='Line 2',color='red', linestyle='--
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set ylabel('Y-axis')
ax.set_title('Simple Vector Graphics with Lines')
# Add the legend
ax.legend()
# Show the plot
plt.show()
Simple Vector Graphics Using Circles
An example code to create a vector graphic using circles is shown below. This code
Anexample code to create a vector
import matplotlib.pyplot as pIt
```



```
    # Add the rectangles to the axis
    ax.add_patch(rect1)
    ax.add_patch(rect2)
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set ylabel('Y-axis')
    ax.set_title('Simple vector Graphics with Rectangles')
    # Add the legend
    ax.legend()
    # Set the aspect ratio to ensure better representation
    ax.legend('equal', adjustable='box')
    # Show the plot
    plt.show()
Matplotlib is a widely-used library for creating static, animated and interactive
visualizations. This example will showcase the inputs, outputs and data display for a
line, circle or rectangle.
# dialog.py
"""Dialog-style application."""
import sys
from PyQt6.QtWidgets import (
    QApplication,
    QDialog,
    QDialog,
    QFormLayout,
    QLineEdit,
    QVBoxLayout,
)
class Window(QDialog):
    lol
    CCEV 
```


(3)(C)(i), Narrative

672024, 152 PM

```
```


Decide what figure you will create and the axis

```
```


Decide what figure you will create and the axis

Decide what figure you

Decide what figure you

Define the circle parameters

linewidth=2, label='Circle 1'
linewidth=2, label='Circle 1'
linewidth=2, label='Circle 1')
linewidth=2, label='Circle 1')
linewidth=2, label='(ircle 2')
linewidth=2, label='(ircle 2')

Add the circles to the axis

Add the circles to the axis

ax.add_patch(circle1)
ax.add_patch(circle1)

Set the labels for each line and titles

Set the labels for each line and titles

ax.set_xlabel('X-axis')
ax.set_xlabel('X-axis')
ax.set_xlabel('X-axis')
ax.set_xlabel('X-axis')
ax.set_title('Simple vector Graphics with Circles')
ax.set_title('Simple vector Graphics with Circles')

Add the legend

Add the legend

ax.legend()
ax.legend()

Set the aspect ratio to ensure better representation

Set the aspect ratio to ensure better representation

ax.legend('equal', adjustable='box')
ax.legend('equal', adjustable='box')

Show the plot

Show the plot

plt.show()
plt.show()
Simple Vector Graphics Using Rectangles
An example code to create a vector graphic
An example code to create a vector graphic
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt

Decide what figure you will create and the axis

Decide what figure you will create and the axis

fig, ax = plt.subplots()
fig, ax = plt.subplots()

Define the rectangle parameters

facecolor='none', linewidth=2, label='Rectangle 1')
facecolor='none', linewidth=2, label='Rectangle 1')
rect2 = patches.Rectangle((4, 2), 1.5,2.5, edgecolor='red',
rect2 = patches.Rectangle((4, 2), 1.5,2.5, edgecolor='red',
facecolor='none', linewidth=2, label='Rectangle 2')

```
```

facecolor='none', linewidth=2, label='Rectangle 2')

```
```

```
rect1 = patches.Rectangle((1, 1), 2, 3, edgecolor-'blue',
```

```
rect1 = patches.Rectangle((1, 1), 2, 3, edgecolor-'blue',
```


(SE)(Breakout(s)) and (Citation Type(s))

Update to Content Accepted by SRP

Description of the specific location and hyperlink to the exact location of currently adopted content Programming with Proper Format and Style (Slides 4-22), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21642

Description of the specific location and hyperlink to the exact location of the proposed new content Programming with Proper Format and Style (Slides 4-25), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22294
In the Programming with Proper Format \& Style PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Student Handout-Coding Examples,
https://files.icevonline.com/html/CEV71509 V2 HTML/CEV71509 V2 HTML Student Handout Coding Examples.htm
This Student Handout is found in the Programming with Proper Format \& Style lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

6/20/2024
6/20/2024

Proper Formatting \& Style

- Helps to make the code easier to read and understand, both for the person who wrote the code and for others who might need to read and work with the code in the future -Helps to ensure the code is consistent and follows established conventions, making it easier to maintain and update
- Can help to prevent syntax errors and other issues which can arise from incorrect formatting

CEV
15

Update to Content Accepted by SRP

6/20/2024

Programming Format
- Refers to the way in which the source code
of a program is written
- coding example is written in Python and
includes indentation, spacing, line breaks and
white space

Standardized Programming Style
- Refers to a set of conventions and
guidelines for writing and formatting source
code in a consistent manner
- Helps to make code more readable and
easier to understand
- Ensures the code is consistent and follows
established best practices
CEV

Update to Content Accepted by SRP

Improper Use of
Internal Comments

Spacing
- Refers to the use of spaces, tabs and blank
lines to separate elements of the code and
to format it in a way which is easy to read
and understand
- Enhances the readability of the code by:
-indicating the structure of the code
- grouping statements together
- Enhances the functionality of the code by:
- providing a standard format to make code run
properly in a program

Indentation
- Refers to the use of spaces or tabs at the
beginning of a line of code to indicate the
block structure of the code
- Enhances the readability of the code by:
- grouping statements together
-indicating which statements belong to a
particular block of code, such as a function,
loop or conditional statement
- Enhances the functionality of the code by:
- providing a standard format to make code run
properly in a program

6/20/2024
6/20/2024

16

Proper Formatting \& Style

- Helps to make the code easier to read and understand, both for the person who wrote the code and for others who might need to read and work with the code in the future - Helps to ensure the code is consistent and follows established conventions, making it easier to maintain and update
- Can help to prevent syntax errors and other issues which can arise from incorrect formatting
CEV
18

Snake Case
- Refers to the convention of writing
compound words by separating them with
underscores
- Works by the first letter of each word being
written in lowercase
- Examples include:
- snake_case
-discount_amount
CEEV

Camel Case
- Is a naming convention used for
variables, functions and other identifiers in
code
- Works by capitalizing the first letter of each
word, except the first word
- Examples include:
-camelCase
-employeeFirstName
CEEV

21

Docstring
- Is a string literal used to define a module,
function, class or method
- Is the first string in the definition of the
object
- Is enclosed in triple quotes (${ }^{\text {(u"m' }}$)
- Begins with a capital letter and ends with a
period
CEV
22

Block Structure
- Groups together a set of statements which belong together - Executes grouped statements as a single unit
23

9
10

Coding Examples

```
Programming Format Example (Slide 4)
import tokenize
import io
import sys
def check_formatting(filename):
    with open(filename, "rb") as f.
        try:
            tokens = tokenize(f.readline)
        except tokenize.TokenError as e:
            print("Formatting error:", e)
            return False
    return True
if len(sys,argv) != 2:
            print("Usage: python check_formatting.py you_file.py")
else:
    result = check_formatting(sys.argv[1])
    if result:
        print("Formatting is correct!")
    else:
        print("Formatting is incorrect.")
```


Standardized Programming Style Example (Slide 6)

\# This is a comment. Comments are used to explain the purpose and function of different parts of the code.
\# In Python, comments are preceded by the pound symbol (\#).
\# Variable names should be descriptive and use snake_case.
customer_name = "John Smith"
customer_age $=30$
\# Functions should also use snake_case and have a brief description of their purpose in a docstring. def calculate_discount(price, discount_percentage):

11

Update to Content Accepted by SRP


```
        """Calculate the discount amount for a given price and
discount percentage.*"
    discount_amount = price * (discount_percentage / 100)
    return discount amount
Descriptive Identifiers Example (Slide 8 & 9)
customer_name = "John Smith"
customer_age = 30
def calculate_discount(price, discount_percentage)
    discount_amount = price * (discount_percentage / 100)
    return discount_amount
class Customer
    def __init__(self, name, age):
        self.name = name
        self.age = age
White Space, Spacing & Indentation Example (Slide 16 & 17)
def greet(name)
    # This function uses white space to indent the code
within the function block.
    greeting = "Hello, " + name + "!"
    print(greeting)
# White space is also used to separate the function
definition from the rest of the code.
greet("Alice")
greet("Bob")
Proper Formatting & Style Example (Slide 24)
# This is a comment. Comments are used to explain the purpose
and function of different parts of the code.
# In Python, comments are preceded by the pound symbol (#).
# Variable names should be descriptive and use snake_case.
customer_name = "John Smith"
customer age = 30
```


(SE)(Breakout(s)) and (Citation Type(s))

(3)(C)(ii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Programming with Proper Format and Style (Slides 4-22), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21642

Description of the specific location and hyperlink to the exact location of the proposed new content Programming with Proper Format and Style (Slides 4-25), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22294
In the Programming with Proper Format \& Style PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Student Handout-Coding Examples, https://files.icevonline.com/html/CEV71509 V2 HTML/CEV71509 V2 HTML Student Handout -

Coding Examples.htm

This Student Handout is found in the Programming with Proper Format \& Style lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

6/20/2024

Update to Content Accepted by SRP

Docstring
- Is a string literal used to define a module
function, class or method
- Is the first string in the definition of the
object
- Is enclosed in triple quotes ("""')
CEV
19

Update to Content Accepted by SRP

 Insert a screenshot of your proposed new content.

Screenshot of Proposed New Content

Internal Comments
- Are comments placed within the body of a
function or other block of code
- Enhance the readability of the code by:
-explaining the purpose or function of specific
lines or blocks of code
- providing more detailed explanations or
clarifications of the code
- Enhance the functionality of the code by:
- providing descriptions when the code is
complex or performs a function that is not
obvious

6/20/2024
6/20/2024

Improper Use of Internal Comments
- Makes code harder to understand and
maintain
- Include internal comments which are:
-redundant
- misleading
-outdated
-excessive
-unclear
CEEV
12

Update to Content Accepted by SRP

Snake Case
- Refers to the convention of writing
compound words by separating them with
underscores
- Works by the first letter of each word being
written in lowercase
- Examples include:
- snake_case
-discount_amount
CEE
20

Camel Case
- Is a naming convention used for
variables, functions and other identifiers in
code
- Works by capitalizing the first letter of each
word, except the first word
- Examples include:
-camelCase
-employeeFirstName
CEEV

Block Structure
- Groups together a set of statements which belong together - Executes grouped statements as a single unit
CEV

Coding Examples

672024, 1.59 PM
"""Calculate the discount amount for a given price and
discount percentage."""
discount_amount $=$ price * (discount_percentage / 100) return discount amount

Descriptive Identifiers Example (Slide 8 \& 9)
customer_name $=$ "John Smith"
customer age $=30$
def calculate_discount (price, discount_percentage):
discount_amount $=$ price * (discount_percentage / 100)
return discount_amount
class Customer
def __init__(self, name, age):
self.name $=$ name

White Space, Spacing \& Indentation Example (Slide 16 \& 17)
def greet (name)
\# This function uses white space to indent the code within the function block.
greeting $=$ "Hello, " + name + "!"
print(greeting)
\# White space is also used to separate the function definition from the rest of the code.
greet("Alice")
greet("Bob")
Proper Formatting \& Style Example (Slide 24)
\# This is a comment. Comments are used to explain the purpose and function of different parts of the code.
\# In Python, comments are preceded by the pound symbol (\#).
\# Variable names should be descriptive and use snake_case.
customer_name = "John Smith"
customer age $=30$

Programming Format Example (Slide 4)
import tokenize
import to
import io
import sys
def check_formatting(filename):
with open(filename, "rb") as f :
try:
tokens $=$ tokenize(f.readline)
except tokenize.TokenError as e:
print("Formatting error:", e)
return True
if len(sys.argv) != 2:
print("Usage: python check_formatting.py you_file.py")
else:
result = check_formatting(sys.argv[1])
if result:
print("Formatting is correct!")
else:
print("Formatting is incorrect.")
Standardized Programming Style Example (Slide 6)
\# This is a comment. Comments are used to explain the purpose and function of different parts of the code.
\# In Python, comments are preceded by the pound symbol (\#).
\# Variable names should be descriptive and use snake_case. customer_name $=$ "John Smith"
customer_age $=30$
\# Functions should also use snake_case and have a brief description of their purpose in a docstring. def calculate_discount(price, discount_percentage):

11
2024.49 日i (
\# Functions should also use snake_case and have a brief description of their purpose in a docstring.
def calculate_discount (price, discount_percentage):
"""Calculäte the discount amount for a given price and
discount percentage."".
discount_amount $=$ price * (discount_percentage / 100) return discount_amount
\# Class names should use CamelCase
class Customer:
def __init__(self, name, age):
self.age = age
def get_name(self):
return self.name
def get_age(self):
return self.age

Proper Formatting \& Style Example (Slide 25)

price $=100$
discount_amount = calculate_discount(price,
discount_percentage)
total_price = price - discount_amount
print("Total price:", total_price)
\# Blank lines can be used to separate logical sections of code and make it easier to read.
customer = Customer(customer_name, customer_age)
print("Customer name:", customer.get_name())
print("Customer age:", customer.get_age())
\qquad

Update to Content Accepted by SRP

Description of the specific location and hyperlink to the exact location of currently adopted content Programming with Proper Format and Style (Slides 4-22), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21642

Description of the specific location and hyperlink to the exact location of the proposed new content Programming with Proper Format and Style (Slides 4-25), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22294
In the Programming with Proper Format \& Style PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Student Handout-Coding Examples,
https://files.icevonline.com/html/CEV71509 V2 HTML/CEV71509 V2 HTML Student Handout Coding Examples.htm
This Student Handout is found in the Programming with Proper Format \& Style lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

6/20/2024

6/20/2024

Update to Content Accepted by SRP

6/20/2024

Block Structure
- Groups together a set of statements which belong together - Executes grouped statements as a single unit
20

6/20/2024
8

Programming Format
- Refers to the way in which the source code
of a program is written
- coding example is written in Python and
includes indentation, spacing, line breaks and
white space

Standardized Programming Style
- Refers to a set of conventions and
guidelines for writing and formatting source
code in a consistent manner
- Helps to make code more readable and
easier to understand
- Ensures the code is consistent and follows
established best practices
CEV

Improper Use of
Internal Comments

Spacing
- Refers to the use of spaces, tabs and blank
lines to separate elements of the code and
to format it in a way which is easy to read
and understand
- Enhances the readability of the code by:
-indicating the structure of the code
- grouping statements together
- Enhances the functionality of the code by:
- providing a standard format to make code run
properly in a program

Indentation
- Refers to the use of spaces or tabs at the
beginning of a line of code to indicate the
block structure of the code
- Enhances the readability of the code by:
- grouping statements together
-indicating which statements belong to a
particular block of code, such as a function,
loop or conditional statement
- Enhances the functionality of the code by:
- providing a standard format to make code run
properly in a program

6/20/2024
6/20/2024

Proper Formatting \& Style

- Helps to make the code easier to read and understand, both for the person who wrote the code and for others who might need to read and work with the code in the future - Helps to ensure the code is consistent and follows established conventions, making it easier to maintain and update
- Can help to prevent syntax errors and other issues which can arise from incorrect formatting
CEV
18

Snake Case
- Refers to the convention of writing
compound words by separating them with
underscores
- Works by the first letter of each word being
written in lowercase
- Examples include:
- snake_case
-discount_amount
CEEV

Camel Case
- Is a naming convention used for
variables, functions and other identifiers in
code
- Works by capitalizing the first letter of each
word, except the first word
- Examples include:
-camelCase
-employeeFirstName
CEEV

21

Docstring
- Is a string literal used to define a module,
function, class or method
- Is the first string in the definition of the
object
- Is enclosed in triple quotes (${ }^{\text {(u"m' }}$)
- Begins with a capital letter and ends with a
period
CEV
22

Block Structure
- Groups together a set of statements which belong together - Executes grouped statements as a single unit
23

9
10

Coding Examples

```
Programming Format Example (Slide 4)
import tokenize
import io
import sys
def check_formatting(filename):
    with open(filename, "rb") as f.
        try:
            tokens = tokenize(f.readline)
        except tokenize.TokenError as e:
            print("Formatting error:", e)
            return False
    return True
if len(sys,argv) != 2:
            print("Usage: python check_formatting.py you_file.py")
else:
    result = check_formatting(sys.argv[1])
    if result:
        print("Formatting is correct!")
    else:
        print("Formatting is incorrect.")
```


Standardized Programming Style Example (Slide 6)

\# This is a comment. Comments are used to explain the purpose and function of different parts of the code.
\# In Python, comments are preceded by the pound symbol (\#).
\# Variable names should be descriptive and use snake_case.
customer_name = "John Smith"
customer_age $=30$
\# Functions should also use snake_case and have a brief description of their purpose in a docstring. def calculate_discount(price, discount_percentage):

11

Update to Content Accepted by SRP


```
```

 """Calculate the discount amount for a given price and
    ```
```

 """Calculate the discount amount for a given price and
 discount percentage."""
discount percentage."""
discount_amount = price * (discount_percentage / 100)
discount_amount = price * (discount_percentage / 100)
return discount amount
return discount amount
Descriptive Identifiers Example (Slide 8\& \&)
Descriptive Identifiers Example (Slide 8\& \&)
customer_name = "John Smith"
customer_name = "John Smith"
customer_age = 30
customer_age = 30
def calculate_discount(price, discount_percentage)
def calculate_discount(price, discount_percentage)
discount_amount = price * (discount_percentage / 100)
discount_amount = price * (discount_percentage / 100)
return discount_amount
return discount_amount
class Customer
class Customer
def __init__(self, name, age):
def __init__(self, name, age):
self.name = name
self.name = name
self.name = nam
self.name = nam
White Space, Spacing \& Indentation Example (Slide 16 \& 17)
White Space, Spacing \& Indentation Example (Slide 16 \& 17)
def greet(name)
def greet(name)
\# This function uses white space to indent the code
\# This function uses white space to indent the code
within the function block.
within the function block.
greeting = "Hello," + name + "!"
greeting = "Hello," + name + "!"
print(greeting)
print(greeting)

White space is also used to separate the function

White space is also used to separate the function

definition from the rest of the code.
definition from the rest of the code.
greet("Alice")
greet("Alice")
greet("Bob")
greet("Bob")
Proper Formatting \& Style Example (Slide 24)
Proper Formatting \& Style Example (Slide 24)

This is a comment. Comments are used to explain the purpose

This is a comment. Comments are used to explain the purpose

and function of different parts of the code.
and function of different parts of the code.

In Python, comments are preceded by the pound symbol (\#).

In Python, comments are preceded by the pound symbol (\#).

Variable names should be descriptive and use snake_case.

```
# Variable names should be descriptive and use snake_case.
```

```
customer_name = "John Smith"
```

customer_name = "John Smith"
customer age = 30

```
customer age = 30
```


\# Functions should also use snake_case and have a brief
description of their purpose in a docstring,
def calculate_discount (price, discount_percentage)
""n"Calculate the discount amount for a given price and
discount percentage."""
discount_amount $=$ price * (discount_percentage / 100)
return discount amount
\# Class names should use CamelCase.
class Customer
def __init__(self, name, age):
self.name = name
self.age = age
def get_name(self):
return self.name
def get_age(self):
return self.age
Proper Formatting \& Style Example (Slide 25)
Proper Format
price $=100$
price= 100
discount_percentage)
total_price = price - discount_amount
print("Total price:", total_price)
\# Blank lines can be used to separate logical sections of
code and make it easier to read.
customer = Customer(customer_name, customer_age)
print("Customer name:", customer.get_name($\overline{)}$)
print("Customer name:", customer.get_name()
print("Customer age:", customer.get_age())
(SE)(Breakout(s)) and (Citation Type(s)) (3)(C)(iv), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content

 Programming with Proper Format and Style (Slides 4-22), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21642Description of the specific location and hyperlink to the exact location of the proposed new content Programming with Proper Format and Style (Slides 4-25), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22294
In the Programming with Proper Format \& Style PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Student Handout-Coding Examples, https://files.icevonline.com/html/CEV71509 V2 HTML/CEV71509 V2 HTML Student Handout Coding Examples.htm
This Student Handout is found in the Programming with Proper Format \& Style lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

6/20/2024

Update to Content Accepted by SRP

| Docstring |
| :--- |
| - Is a string literal used to define a module |
| function, class or method |
| - Is the first string in the definition of the |
| object |
| - Is enclosed in triple quotes ("""') |
| |
| CEV |
| 19 |

Update to Content Accepted by SRP

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

| Internal Comments |
| :--- |
| - Are comments placed within the body of a |
| function or other block of code |
| - Enhance the readability of the code by: |
| -explaining the purpose or function of specific |
| lines or blocks of code |
| - providing more detailed explanations or |
| clarifications of the code |
| - Enhance the functionality of the code by: |
| - providing descriptions when the code is |
| complex or performs a function that is not |
| obvious |

6/20/2024

6/20/2024

| Improper Use of
 Internal Comments |
| :--- |
| - Makes code harder to understand and |
| maintain |
| - Include internal comments which are: |
| -redundant |
| - misleading |
| -outdated |
| -excessive |
| -unclear |
| CEEV |
| 12 |

Update to Content Accepted by SRP

| Snake Case |
| :--- |
| - Refers to the convention of writing |
| compound words by separating them with |
| underscores |
| - Works by the first letter of each word being |
| written in lowercase |
| - Examples include: |
| - snake_case |
| -discount_amount |
| CEE |
| 20 |

| Camel Case |
| :--- |
| - Is a naming convention used for |
| variables, functions and other identifiers in |
| code |
| - Works by capitalizing the first letter of each |
| word, except the first word |
| - Examples include: |
| -camelCase |
| -employeeFirstName |
| CEEV |

| Block Structure |
| :--- |
| - Groups together a set of statements which
 belong together
 - Executes grouped statements as a single
 unit |
| |
| CEV |

Coding Examples

672024, 1.59 PM
"""Calculate the discount amount for a given price and
discount percentage."""
discount_amount $=$ price * (discount_percentage / 100) return discount amount

Descriptive Identifiers Example (Slide 8 \& 9)
customer_name $=$ "John Smith"
customer age $=30$
def calculate_discount (price, discount_percentage):
discount_amount $=$ price * (discount_percentage / 100)
return discount_amount
class Customer
def __init__(self, name, age):
self.name $=$ name

White Space, Spacing \& Indentation Example (Slide 16 \& 17)
def greet (name)
\# This function uses white space to indent the code within the function block.
greeting $=$ "Hello, " + name + "!"
print(greeting)
\# White space is also used to separate the function definition from the rest of the code.
greet("Alice")
greet("Bob")
Proper Formatting \& Style Example (Slide 24)
\# This is a comment. Comments are used to explain the purpose and function of different parts of the code.
\# In Python, comments are preceded by the pound symbol (\#).
\# Variable names should be descriptive and use snake_case.
customer_name = "John Smith"
customer age $=30$

Programming Format Example (Slide 4)
import tokenize
import to
import io
import sys
def check_formatting(filename):
with open(filename, "rb") as f :
try:
tokens $=$ tokenize(f.readline)
except tokenize.TokenError as e:
print("Formatting error:", e)
return True
if len(sys.argv) != 2:
print("Usage: python check_formatting.py you_file.py")
else:
result = check_formatting(sys.argv[1])
if result:
print("Formatting is correct!")
else:
print("Formatting is incorrect.")
Standardized Programming Style Example (Slide 6)
\# This is a comment. Comments are used to explain the purpose and function of different parts of the code.
\# In Python, comments are preceded by the pound symbol (\#).
\# Variable names should be descriptive and use snake_case. customer_name $=$ "John Smith"
customer_age $=30$
\# Functions should also use snake_case and have a brief description of their purpose in a docstring. def calculate_discount(price, discount_percentage):

11

\# Functions should also use snake_case and have a brief description of their purpose in a docstring.
def calculate_discount (price, discount_percentage):
"""Calculäte the discount amount for a given price and
discount percentage."".
discount_amount $=$ price * (discount_percentage / 100) return discount_amount
\# Class names should use CamelCase
class Customer:
def __init__(self, name, age):
self.age = age
def get_name(self):
return self.name
def get_age(self):
return self.age

Proper Formatting \& Style Example (Slide 25)

price $=100$
discount_amount = calculate_discount(price,
discount_percentage)
total_price = price - discount_amount
print("Total price:", total_price)
\# Blank lines can be used to separate logical sections of code and make it easier to read.
customer = Customer(customer_name, customer_age)
print("Customer name:", customer.get_name($\overline{)}$)
print("Customer age:", customer.get_age())
\qquad

Update to Content Accepted by SRP

Description of the specific location and hyperlink to the exact location of currently adopted content Programming with Proper Format and Style (Slides 4-22), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21642

Description of the specific location and hyperlink to the exact location of the proposed new content Programming with Proper Format and Style (Slides 4-25), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22294
In the Programming with Proper Format \& Style PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Student Handout-Coding Examples,
https://files.icevonline.com/html/CEV71509 V2 HTML/CEV71509 V2 HTML Student Handout Coding Examples.htm
This Student Handout is found in the Programming with Proper Format \& Style lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

6/20/2024

6/20/2024

Update to Content Accepted by SRP

6/20/2024

| Block Structure |
| :--- |
| - Groups together a set of statements which
 belong together
 - Executes grouped statements as a single
 unit |
| |
| 20 |

6/20/2024
8

| Programming Format |
| :---: |
| - Refers to the way in which the source code |
| of a program is written |
| - coding example is written in Python and |
| includes indentation, spacing, line breaks and |
| white space |

| Standardized Programming Style |
| :--- |
| - Refers to a set of conventions and |
| guidelines for writing and formatting source |
| code in a consistent manner |
| - Helps to make code more readable and |
| easier to understand |
| - Ensures the code is consistent and follows |
| established best practices |
| CEV |

| Internal Comments |
| :--- |
| - Makes code harder to understand and |
| maintain |
| - Include internal comments which are: |
| -redundant |
| -misleading |
| -outdated |
| -excessive |
| -unclear |

| Spacing |
| :--- |
| - Refers to the use of spaces, tabs and blank |
| lines to separate elements of the code and |
| to format it in a way which is easy to read |
| and understand |
| - Enhances the readability of the code by: |
| -indicating the structure of the code |
| - grouping statements together |
| - Enhances the functionality of the code by: |
| - providing a standard format to make code run |
| properly in a program |

| Indentation |
| :--- |
| - Refers to the use of spaces or tabs at the |
| beginning of a line of code to indicate the |
| block structure of the code |
| - Enhances the readability of the code by: |
| - grouping statements together |
| -indicating which statements belong to a |
| particular block of code, such as a function, |
| loop or conditional statement |
| - Enhances the functionality of the code by: |
| - providing a standard format to make code run |
| properly in a program |

6/20/2024
6/20/2024

Proper Formatting \& Style

- Helps to make the code easier to read and understand, both for the person who wrote the code and for others who might need to read and work with the code in the future - Helps to ensure the code is consistent and follows established conventions, making it easier to maintain and update
- Can help to prevent syntax errors and other issues which can arise from incorrect formatting
CEV
18

| Snake Case |
| :--- |
| - Refers to the convention of writing |
| compound words by separating them with |
| underscores |
| - Works by the first letter of each word being |
| written in lowercase |
| - Examples include: |
| - snake_case |
| -discount_amount |
| CEEV |

| Camel Case |
| :--- |
| - Is a naming convention used for |
| variables, functions and other identifiers in |
| code |
| - Works by capitalizing the first letter of each |
| word, except the first word |
| - Examples include: |
| -camelCase |
| -employeeFirstName |
| CEEV |

21

| Docstring |
| :--- |
| - Is a string literal used to define a module, |
| function, class or method |
| - Is the first string in the definition of the |
| object |
| - Is enclosed in triple quotes (${ }^{\text {(u"m' }}$) |
| - Begins with a capital letter and ends with a |
| period |
| CEV |
| 22 |

| Block Structure |
| :--- |
| - Groups together a set of statements which
 belong together
 - Executes grouped statements as a single
 unit |
| |
| 23 |

9
10

Coding Examples

```
Programming Format Example (Slide 4)
import tokenize
import io
import sys
def check_formatting(filename):
    with open(filename, "rb") as f.
        try:
            tokens = tokenize(f.readline)
        except tokenize.TokenError as e:
            print("Formatting error:", e)
            return False
    return True
if len(sys,argv) != 2:
            print("Usage: python check_formatting.py you_file.py")
else:
    result = check_formatting(sys.argv[1])
    if result:
        print("Formatting is correct!")
    else:
        print("Formatting is incorrect.")
```


Standardized Programming Style Example (Slide 6)

\# This is a comment. Comments are used to explain the purpose and function of different parts of the code.
\# In Python, comments are preceded by the pound symbol (\#).
\# Variable names should be descriptive and use snake_case.
customer_name = "John Smith"
customer_age $=30$
\# Functions should also use snake_case and have a brief description of their purpose in a docstring. def calculate_discount(price, discount_percentage):

11

Update to Content Accepted by SRP


```
        """Calculate the discount amount for a given price and
discount percentage."""
    discount_amount = price * (discount_percentage / 100)
    return discount amount
Descriptive Identifiers Example (Slide 8 & 9)
customer_name = "John Smith"
customer_age = 30
def calculate_discount(price, discount_percentage)
    discount_amount = price * (discount_percentage / 100)
    return discount_amount
class Customer
    def __init__(self, name, age):
        self.name = name
        self.age = age
White Space, Spacing & Indentation Example (Slide 16 & 17)
def greet(name)
    # This function uses white space to indent the code
within the function block.
    greeting = "Hello, " + name + "!"
    print(greeting)
# White space is also used to separate the function
definition from the rest of the code.
greet("Alice")
greet("Bob")
Proper Formatting & Style Example (Slide 24)
# This is a comment. Comments are used to explain the purpose
and function of different parts of the code.
# In Python, comments are preceded by the pound symbol (#).
# Variable names should be descriptive and use snake_case.
customer_name = "John Smith"
customer age = 30
```

(SE)(Breakout(s)) and (Citation Type(s)) (3)(C)(vi), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Programming with Proper Format and Style (Slides 4-22), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21642

Description of the specific location and hyperlink to the exact location of the proposed new content Programming with Proper Format and Style (Slides 4-25), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22294
In the Programming with Proper Format \& Style PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Student Handout-Coding Examples, https://files.icevonline.com/html/CEV71509 V2 HTML/CEV71509 V2 HTML Student Handout Coding Examples.htm
This Student Handout is found in the Programming with Proper Format \& Style lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Standardized Programming Style

- Refers to a set of conventions and
guidelines for writing and formatting source code in a consistent manner
- Helps to make code more readable and easier to understand
- Ensures the code is consistent and follows established best practices

CEV
5

6/20/2024

| Internal Comments |
| :--- |
| - Are comments placed within the body of a |
| function or other block of code |
| - Are used to explain the purpose or function |
| of specific lines or blocks of code |
| - Are typically used to provide more detailed |
| explanations or clarifications of the code |
| - Can be especially useful when the code is |
| complex or does something which is not |
| obvious |
| CEV |

| Standardized Programming
 Style | |
| :--- | :---: |
| •Example:
 -this Python code provides comments,
 descriptive identifiers, white space, spacing
 and indentation | |
| | |
| 6 | |

| Descriptive Identifiers |
| :--- |
| - Are names used for variables, functions |
| and other elements of the code |
| - Are chosen to accurately and concisely |
| describe their purpose or meaning |
| - Can make the code easier to read and |
| understand, both for the person who wrote |
| the code and for others who might need to |
| read and work with the code in the future |
| CEV |

6/20/2024
2

| Descriptive Identifiers |
| :--- |
| - Example:
 -in this code the identifiers "customer_name",
 "customer_age", "calculate_discount" and"
 "Customer" are all descriptive |
| |
| CEV |

Update to Content Accepted by SRP

| Docstring |
| :--- |
| - Is a string literal used to define a module |
| function, class or method |
| - Is the first string in the definition of the |
| object |
| - Is enclosed in triple quotes ("""') |
| |
| CEV |
| 19 |

Update to Content Accepted by SRP

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

| Internal Comments |
| :--- |
| - Are comments placed within the body of a |
| function or other block of code |
| - Enhance the readability of the code by: |
| -explaining the purpose or function of specific |
| lines or blocks of code |
| - providing more detailed explanations or |
| clarifications of the code |
| - Enhance the functionality of the code by: |
| - providing descriptions when the code is |
| complex or performs a function that is not |
| obvious |

6/20/2024
6/20/2024

| Improper Use of
 Internal Comments |
| :--- |
| - Makes code harder to understand and |
| maintain |
| - Include internal comments which are: |
| -redundant |
| - misleading |
| -outdated |
| -excessive |
| -unclear |
| CEEV |
| 12 |

Update to Content Accepted by SRP

| Snake Case |
| :--- |
| - Refers to the convention of writing |
| compound words by separating them with |
| underscores |
| - Works by the first letter of each word being |
| written in lowercase |
| - Examples include: |
| - snake_case |
| -discount_amount |
| CEE |
| 20 |

| Camel Case |
| :--- |
| - Is a naming convention used for |
| variables, functions and other identifiers in |
| code |
| - Works by capitalizing the first letter of each |
| word, except the first word |
| - Examples include: |
| -camelCase |
| -employeeFirstName |
| CEEV |

| Block Structure |
| :--- |
| - Groups together a set of statements which
 belong together
 - Executes grouped statements as a single
 unit |
| |
| 23 |

Coding Examples

672024, 1.59 PM
"""Calculate the discount amount for a given price and
discount percentage."""
discount_amount $=$ price * (discount_percentage / 100) return discount amount

Descriptive Identifiers Example (Slide 8 \& 9)
customer_name $=$ "John Smith"
customer age $=30$
def calculate_discount (price, discount_percentage):
discount_amount $=$ price * (discount_percentage / 100)
return discount_amount
class Customer
def __init__(self, name, age):
self.name $=$ name

White Space, Spacing \& Indentation Example (Slide 16 \& 17)
def greet (name)
\# This function uses white space to indent the code within the function block.
greeting $=$ "Hello, " + name + "!"
print (greeting)
\# White space is also used to separate the function definition from the rest of the code.
greet("Alice")
greet("Bob")
Proper Formatting \& Style Example (Slide 24)
\# This is a comment. Comments are used to explain the purpose and function of different parts of the code.
\# In Python, comments are preceded by the pound symbol (\#).
\# Variable names should be descriptive and use snake_case.
customer_name = "John Smith"
customer age $=30$

Programming Format Example (Slide 4)
import tokenize
import to
import io
import sys
def check_formatting(filename):
with open(filename, "rb") as f :
try:
tokens $=$ tokenize(f.readline)
except tokenize.TokenError as e:
print("Formatting error:", e)
return True
if len(sys.argv) != 2:
print("Usage: python check_formatting.py you_file.py")
else:
result $=$ check_formatting(sys.argv[1])
if result:
print("Formatting is correct!")
else:
print("Formatting is incorrect.")
Standardized Programming Style Example (Slide 6)
\# This is a comment. Comments are used to explain the purpose and function of different parts of the code.
\# In Python, comments are preceded by the pound symbol (\#).
\# Variable names should be descriptive and use snake_case. customer_name $=$ "John Smith"
customer_age $=30$
\# Functions should also use snake_case and have a brief description of their purpose in a docstring. def calculate_discount(price, discount_percentage):

11

\# Functions should also use snake_case and have a brief description of their purpose in a docstring.
def calculate_discount (price, discount_percentage):
"""Calculäte the discount amount for a given price and
discount percentage."".
discount_amount $=$ price * (discount_percentage / 100) return discount_amount
\# Class names should use CamelCase
class Customer:

$$
\begin{aligned}
& \text { def _init__(self, name, age): } \\
& \text { self.name = name } \\
& \text { self.age }=\text { age } \\
& \text { def get_name(self): } \\
& \text { return self.name } \\
& \text { def get_age(self): } \\
& \text { return self.age }
\end{aligned}
$$

Proper Formatting \& Style Example (Slide 25)

price $=100$
discount_amount = calculate_discount(price,
discount_percentage)
total_price = price - discount_amount
print("Total price:", total_price)
\# Blank lines can be used to separate logical sections of code and make it easier to read.
customer = Customer(customer_name, customer_age)
print("Customer name:", customer.get_name())
print("Customer age:", customer.get_age())
\qquad

Update to Content Accepted by SRP

Description of the specific location and hyperlink to the exact location of currently adopted content Programming with Proper Format and Style (Slides 4-22), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21642

Description of the specific location and hyperlink to the exact location of the proposed new content Programming with Proper Format and Style (Slides 4-25), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22294
In the Programming with Proper Format \& Style PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Student Handout-Coding Examples,
https://files.icevonline.com/html/CEV71509 V2 HTML/CEV71509 V2 HTML Student Handout Coding Examples.htm
This Student Handout is found in the Programming with Proper Format \& Style lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

6/20/2024

6/20/2024

Proper Formatting \& Style

- Helps to make the code easier to read and understand, both for the person who wrote the code and for others who might need to read and work with the code in the future -Helps to ensure the code is consistent and follows established conventions, making it easier to maintain and update
- Can help to prevent syntax errors and other issues which can arise from incorrect formatting
CEV
15

Update to Content Accepted by SRP

6/20/2024

| Block Structure |
| :--- |
| - Groups together a set of statements which
 belong together
 - Executes grouped statements as a single
 unit |
| |
| 20 |

6/20/2024

8

Screenshot of Proposed New Content

 Insert a screenshot of your proposed new content.| Programming Format |
| :---: |
| - Refers to the way in which the source code |
| of a program is written |
| - coding example is written in Python and |
| includes indentation, spacing, line breaks and |
| white space |

| Standardized Programming Style |
| :--- |
| - Refers to a set of conventions and |
| guidelines for writing and formatting source |
| code in a consistent manner |
| - Helps to make code more readable and |
| easier to understand |
| - Ensures the code is consistent and follows |
| established best practices |
| CEV |

| Improper Use of |
| :---: |
| Internal Comments |

| Spacing |
| :--- |
| - Refers to the use of spaces, tabs and blank |
| lines to separate elements of the code and |
| to format it in a way which is easy to read |
| and understand |
| - Enhances the readability of the code by: |
| -indicating the structure of the code |
| - grouping statements together |
| - Enhances the functionality of the code by: |
| - providing a standard format to make code run |
| properly in a program |

| Indentation |
| :--- |
| - Refers to the use of spaces or tabs at the |
| beginning of a line of code to indicate the |
| block structure of the code |
| - Enhances the readability of the code by: |
| - grouping statements together |
| -indicating which statements belong to a |
| particular block of code, such as a function, |
| loop or conditional statement |
| - Enhances the functionality of the code by: |
| - providing a standard format to make code run |
| properly in a program |

6/20/2024
6/20/2024

Proper Formatting \& Style

- Helps to make the code easier to read and understand, both for the person who wrote the code and for others who might need to read and work with the code in the future - Helps to ensure the code is consistent and follows established conventions, making it easier to maintain and update
- Can help to prevent syntax errors and other issues which can arise from incorrect formatting
CEV
18

| Snake Case |
| :--- |
| - Refers to the convention of writing |
| compound words by separating them with |
| underscores |
| - Works by the first letter of each word being |
| written in lowercase |
| - Examples include: |
| - snake_case |
| -discount_amount |
| CEEV |

| Camel Case |
| :--- |
| - Is a naming convention used for |
| variables, functions and other identifiers in |
| code |
| - Works by capitalizing the first letter of each |
| word, except the first word |
| - Examples include: |
| -camelCase |
| -employeeFirstName |
| CEEV |

21

| Docstring |
| :--- |
| - Is a string literal used to define a module, |
| function, class or method |
| - Is the first string in the definition of the |
| object |
| - Is enclosed in triple quotes (${ }^{\text {(u"m' }}$) |
| - Begins with a capital letter and ends with a |
| period |
| CEV |
| 22 |

| Block Structure |
| :--- |
| - Groups together a set of statements which
 belong together
 - Executes grouped statements as a single
 unit |
| |
| 23 |

9
10

Coding Examples

```
Programming Format Example (Slide 4)
import tokenize
import io
import sys
def check_formatting(filename):
    with open(filename, "rb") as f.
        try:
            tokens = tokenize(f.readline)
        except tokenize.TokenError as e:
            print("Formatting error:", e)
            return False
    return True
if len(sys,argv) != 2:
            print("Usage: python check_formatting.py you_file.py")
else:
    result = check_formatting(sys.argv[1])
    if result:
        print("Formatting is correct!")
    else:
        print("Formatting is incorrect.")
```


Standardized Programming Style Example (Slide 6)

\# This is a comment. Comments are used to explain the purpose and function of different parts of the code.
\# In Python, comments are preceded by the pound symbol (\#).
\# Variable names should be descriptive and use snake_case.
customer_name = "John Smith"
customer_age $=30$
\# Functions should also use snake_case and have a brief description of their purpose in a docstring. def calculate_discount(price, discount_percentage):

11

Update to Content Accepted by SRP


```
        """Calculate the discount amount for a given price and
discount percentage."""
    discount_amount = price * (discount_percentage / 100)
    return discount amount
Descriptive Identifiers Example (Slide 8 & 9)
customer_name = "John Smith"
customer_age = 30
def calculate_discount(price, discount_percentage)
    discount_amount = price * (discount_percentage / 100)
    return discount_amount
class Customer
    def __init__(self, name, age):
        self.name = name
        self.age = age
White Space, Spacing & Indentation Example (Slide 16 & 17)
def greet(name)
    # This function uses white space to indent the code
within the function block.
    greeting = "Hello, " + name + "!"
    print(greeting)
# White space is also used to separate the function
definition from the rest of the code.
greet("Alice")
greet("Bob")
Proper Formatting & Style Example (Slide 24)
# This is a comment. Comments are used to explain the purpose
and function of different parts of the code.
# In Python, comments are preceded by the pound symbol (#).
# Variable names should be descriptive and use snake_case.
customer_name = "John Smith"
customer age = 30
```

(SE)(Breakout(s)) and (Citation Type(s)) (3)(C)(viii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Programming with Proper Format and Style (Slides 4-22), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21642

Description of the specific location and hyperlink to the exact location of the proposed new content Programming with Proper Format and Style (Slides 4-25), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22294
In the Programming with Proper Format \& Style PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Student Handout-Coding Examples, https://files.icevonline.com/html/CEV71509 V2 HTML/CEV71509 V2 HTML Student Handout Coding Examples.htm
This Student Handout is found in the Programming with Proper Format \& Style lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

6/20/2024

Update to Content Accepted by SRP

Update to Content Accepted by SRP

Screenshot of Proposed New Content

Insert a screenshot of your proposed new content.

| Programming Format |
| :---: |
| - Refers to the way in which the source code
 of a program is written
 -coding example is written in Python and
 includes indentation, spacing: line breaks and
 white space |
| NOTE Use the Coding Examples Student Handout for referancess. |

| Standardized Programming Style |
| :--- | :--- |
| - Example:
 -this Python code provides comments,
 descriptive identifiers, white space, spacing
 and indentation |
| NOTE: Use the Coding Examples Student Handout tor referances.
 6
 CEV |

| Standardized Programming Style |
| :--- |
| - Refers to a set of conventions and |
| guidelines for writing and formatting source |
| code in a consistent manner |
| - Helps to make code more readable and |
| easier to understand |
| - Ensures the code is consistent and follows |
| established best practices |
| CEEV |

| Descriptive Identifiers |
| :--- |
| - Enhance the readability of the code by: |
| - allowing other users to understand what the |
| creator intended |
| -increasing understanding of code |
| - describing the purpose behind a code |
| - Enhance the functionality of the code by: |
| - providing descriptions of the coding process |
| -adding necessary details to the code to allow |
| future users to adapt a code for a different use |

| Internal Comments |
| :--- |
| - Are comments placed within the body of a |
| function or other block of code |
| - Enhance the readability of the code by: |
| -explaining the purpose or function of specific |
| lines or blocks of code |
| - providing more detailed explanations or |
| clarifications of the code |
| - Enhance the functionality of the code by: |
| - providing descriptions when the code is |
| complex or performs a function that is not |
| obvious |

6/20/2024
6/20/2024

| Spacing |
| :--- |
| - Refers to the use of spaces, tabs and blank |
| lines to separate elements of the code and |
| to format it in a way which is easy to read |
| and understand |
| - Enhances the readability of the code by: |
| -indicating the structure of the code |
| - grouning statements together |
| - Enhances the functionality of the code by: |
| - providing a standard format to make code run |
| properly in a program |

| Improper Use of
 Internal Comments |
| :--- |
| - Makes code harder to understand and |
| maintain |
| - Include internal comments which are: |
| -redundant |
| - misleading |
| -outdated |
| -excessive |
| -unclear |
| CEEV |
| 12 |

| White Space |
| :--- |
| - Refers to the blank space between code |
| - Enhance the readability of the code by: |
| - indicating the structure of the code |
| - grouping statements together |
| - Enhance the functionality of the code by: |
| - providing a standard format to make code run |
| properly in a program |

Update to Content Accepted by SRP

| Snake Case |
| :--- |
| - Refers to the convention of writing |
| compound words by separating them with |
| underscores |
| - Works by the first letter of each word being |
| written in lowercase |
| - Examples include: |
| - snake_case |
| -discount_amount |
| CEEV |
| 20 |

| Camel Case |
| :--- |
| - Is a naming convention used for |
| variables, functions and other identifiers in |
| code |
| - Works by capitalizing the first letter of each |
| word, except the first word |
| - Examples include: |
| -camelCase |
| -employeeFirstName |
| CEEV |
| 21 |

| Block Structure |
| :--- |
| - Groups together a set of statements which
 belong together
 - Executes grouped statements as a single
 unit |
| |
| 23 |

Update to Content Accepted by SRP

(SE)(Breakout(s)) and (Citation Type(s))
(3)(D)(i), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content

Update to Content Accepted by SRP

Visual Presentation (Slides 43-48),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21653

Project-Data Visualization Program, https://login.icevonline.com/download/cef8f65d-3b5b-495f-93aa806de17f41d6

Description of the specific location and hyperlink to the exact location of the proposed new content Visual Presentation Student Handout-Inputs, Outputs and Data Displays Examples, https://files.icevonline.com/html/CEV71620 V2 HTML/CEV71620 V2 HTML Student Handout Inputs Outputs and Data Displays Examples.htm
This Student Handout is found in the Visual Presentation lesson beneath the Instructional Materials heading.

Coding Challenge: Simple Linear Regression, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22046/CEV71809 SIM01 Access to the interactive coding environment can be located beneath the Interactive Assignments heading by clicking the link to the Coding Challenge. Once clicked, the link will take you to a page prompting you to click Start. Select Start to view the Coding Challenge in the interactive environment.

Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Update to Content Accepted by SRP

Project - Data Visualization Program
Visual Presentation
Visual Prosentation
$10 f 1$
ミー

```
    Project Overview:
    You will create a program which displays a data set in a visually
    appealing way using appropriate formatting styles and graphics.
    Dreetions:
        1. On your computer, accoss the matpotitib flbrary. The matplotivib
        Mbrary is not in the Standard Python Llbrary. You can find an onfine
        compiler by antering "onlire matpottioc compler" in a seerch
    *ngine
        2. Enter and run the following code.
            #Sample Data
            # Sample Data 
            # Create a line chart
            plt.plot(x, y)
            #Add Labels and title
            plt.xabel(X-axis label)
            pitt xabel('Tile of the char')
            # Display the chart
    3.Thls code will create alline graph with the given x and y deta, then
        add labols anda atitle to the chert Change the data and customize
        the chert by adding meeningfut axis labels and a meaningful titit.
        Acfust the colors,, markers and other properties of the chart
        staments. Foel tree to increase the quantity of data points. Format
        your code for readabifity. Watching a video on matplotilib plots for
    a features may be helofol.
    4. Anayze the rasulting graph and answer the following questions in a
        parggraph:
            How do the changes you made impact the message the
            graph imparts
            Doss the formatting of the code and the mumeric formetting
            impact the output
    5. Once complott, submit your drojoct. You can finda A fubric at the
    and of this Project.
```


Update to Content Accepted by SRP

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

Update to Content Accepted by SRP


```
    # Add the rectangles to the axis
    ax.add_patch(rect1)
    ax.add_patch(rect2)
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set_ylabel('Y-axis'
ax.set_title('Simple Vector Graphics with Rectangles')
    # Add the legend
    ax.legend()
    # Set the aspect ratio to ensure better representation
    ax.legend('equal', adjustable='box')
    # Show the plot
    Matplotib is a widely-used library for creating static, animated and interactive
    visualizations. This example will showcase the inputs, outputs and data display for a
    line, circle or rectangle
# dialog.py
"""Dialog-style application."""
import sys
from PyQt6.QtWidgets import 
    eApplication,
    QDialog,
    QDialogButtonBox,
    QFormLayout,
    QLineEdIt,
)
class Window(QDialog):
    def __init__(self): (parent-None)
    CCEV 
```


My Courses / Computer Science I - UPDATED / Coding Challenge: Simple Linear Regression - NEW ITEM / Coding Challenge: Simple Linear Regression
Highlight any text to hear text-to-voice speech.
G Select Language

Coding Challenge: Simple Linear Regression

(SE)(Breakout(s)) and (Citation Type(s))
(3)(E)(i), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Visual Presentation (Slides 49-54),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21653

Update to Content Accepted by SRP

Description of the specific location and hyperlink to the exact location of the proposed new content Visual Presentation Student Handout-Inputs, Outputs and Data Displays Examples, https://files.icevonline.com/htmI/CEV71620 V2 HTML/CEV71620 V2 HTML Student Handout Inputs Outputs and Data Displays Examples.htm
This Student Handout is found in the Visual Presentation lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content Insert a screenshot of your currently adopted content.

Update to Content Accepted by SRP

3

Screenshot of Proposed New Content

 Insert a screenshot of your proposed new content.```
 Inputs, Outputs & Data Displays Examples
```


## Creating Outputs

```
To create a simple text output, the 'print' function is most often used, but it can have several variations to change how the data is displayed. Below are examples of how to create a text output with the print function for several different scenarios. Keep in mind when creating text output, the code in green is what will be displayed for the user.
```

```
* Basic text output using the print function
```

* Basic text output using the print function
print("Hello World")


# Specific information with text explain what the information shows

name = "Tim"
food ="Pizza", name, "Favorite Food:", food)

# Formatting specific results of a function

num1 = 7
sum result = num1 + num2
print(f"The sum of {num1} and {num2} is {sum_result}.")

# Multiple items in a text display

x = "Yes"
y="No"
print("For this example }x,y,\mathrm{ and z represent:", x, y, z)

```

\section*{Properly Labeling and Displaying Outputs}
```

When creating text output, it is important to make sure the user will understand what is being displayed. Properly labeling output is an important part of visual representation and can make code more user-friendly. Below are a few examples of labels to make the code easier to read and understand.
\# The labels 'Name' and 'Favorite Food' make the display more clear and help define what the terms relate to
and help defi
name $=$ "Tim"
name $=$ "Tim"
food $=$ "Pizza"
print("Name:", name, "Favorite Food:", food)
easier to read
x = "Yes"

```

\# In this example, putting the information that is calculated in a sentence helps convey what function was performed
num \(1=7\)
num \(2=4\)
sum_result \(=\) num1 + num 2
print(\(f\) "The sum of \{num1\} and \{num2\} is \{sum_result\}.")
\# Adding labels that show what \(x, y\), and \(z\) correlate makes the display
z = "Maybe
print("For this example \(x, y\), and \(z\) represent:", \(x, y, z\))
\# Adding units when displaying specific information can also make text displays more clear
num1 \(=7\)
num2 \(=4\)
num2 \(=4\)
print(f"Loaded Weight: \{num1\}lbs Unloaded Weight: \{num2\}lbs")
\# When there are several types of complex information being displayed, descriptive labels can help clear any confusion
name \(=\) "Benjamin"
number \(=4\)
transactions \(=13\)
print(f"Customer: \{name\}")
print (f"Customer Number for December: \{number\}")
print(f"Number of Transaction for November: \{transactions\}")
Interactive input interfaces
When creating interactive input interfaces with relevant user prompts to acquire data from a user, it is important the code is readable and easy to understand. This code requires information from the user to display a certain message or action. An example of a code that requires user input is shown below.
\# The prompt below asks for inputs from the user to display a welcome message
name = input("Enter your name:")
\# Now the text will be displayed with the information that the user added
print(f"Welcome \{name\}!")

\section*{Update to Content Accepted by SRP}

```

    Standard Formatting Styles
    Formatting styles can vary depending on what the code is being used for, personal
    preference or the coding standards of a business or organization. A few common
    PyCharm and Docstring Conventions. The coding examples given in this handout
    follow the PEP 8 Style Guide, which is standard for Python coding.
    Simple Vector Graphics Using Lines
    Simple Vector Graphics Using Lines 
    The code to create a vector gra
    import matplotlib.pyplot as plt
    
# Decide what figure you will create and the axis

fig, ax = plt.subplots()

# Define the coordinates for each lines

    x1, y1 =1,1
    x1,y1 = 1, 1
    # Draw each lines
    ax.plot([x1, x2], [y1, y2], label= 'Line 1', color='blue', linewidth=2
    ax.plot([x2, x3], [y2, y3], label='Line 2',color='red', linestyle='--
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set ylabel('Y-axis')
ax.set_title('Simple Vector Graphics with Lines')

# Add the legend

ax.legend()

# Show the plot

plt.show()
Simple Vector Graphics Using Circles
An example code to create a vector graphic using circles is shown below. This code
Anexample code to create a vector
import matplotlib.pyplot as plt
62024,1:52 PM
\# Add the rectangles to the axis
ax.add_patch(rect1)
ax.add_patch(rect2)
\# Set the labels for each line and titles
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis'
ax.set_title('Simple Vector Graphics with Rectangles')
\# Add the legend
ax.legend()
\# Set the aspect ratio to ensure better representation
ax.legend('equal', adjustable='box')
\# Show the plot
plt.show()
Matplotlib is a widely-used library for creating static, animated and interactive
visualizations. This example will showcase the inputs, outputs and data display for a
line, circle or rectangle.

# dialog.py

"""Dialog-style application."""
import sys
from PyQt6.QtWidgets import (
QApplication
QDialog,
QDialogButtonBox,
QFormLayout,
QLineEdit,
QVBoxLayout,
)
class Window(QDialog):
lol

```

(SE)(Breakout(s)) and (Citation Type(s)) (3)(E)(ii), Narrative \& Activity

\section*{Update to Content Accepted by SRP}

Description of the specific location and hyperlink to the exact location of currently adopted content Visual Presentation (Slides 49-54),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21653
Project- Data Visualization Program,
https://files.icevonline.com/html/CEV71620 TXP24/CEV71620 TXP24 Project -
Data Visualization Program.htm
Description of the specific location and hyperlink to the exact location of the proposed new content Visual Presentation Student Handout-Inputs, Outputs and Data Displays Examples, https://files.icevonline.com/htmI/CEV71620 V2 HTML/CEV71620 V2 HTML Student Handout Inputs Outputs and Data Displays Examples.htm
This Student Handout is found in the Visual Presentation lesson beneath the Instructional Materials heading.

Project- Data Visualization Program, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22314/CEV71620 V2 Project01
This Project is found in the Visual Presentation lesson beneath the Interactive Assignments heading. After clicking the link to the Project, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Project.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

\section*{Update to Content Accepted by SRP}

Project - Data Visualization Program
Visual Presentation
sual Prasentation
1 of 1
:

Directlons:
1. On your computer, access the matplotili ilibrary, The matpotilib Ilbrary is not in the Standard Python Ubrary. You can find an online compller by entering "oniline matpotilib complier in a search engine. 2. Enter and run the following code.
import matplotilib.pyplot as pit
\# Sample Data
\# Sample Data
\(x=[1,2,3,4,5]\)
\(y=[2,4,6,8,10]\)
\#Create a line char
plt.plot \((x, y)\)
\# Add Labels and title
pit.xlabel(\(X\)-axis label)
pit.x.abel('X-axis label')
plt.x.abel('Y-axis label')
pit.xabel('Title of the chart')
\#Display the ch
plt.show()
3. This code will create a line graph with the given \(x\) and \(y\) data, then add labels and a tite to the chart. Change the data and customize the chart by adding meaningful axis labeis and a meaningful ttie. Adjust the colors, markers and other properties of the chart dements. Feel free io increase the quantty of data polints. Formas your code for readabllty. Watching a video on matplotllo plots for the reauting eraph may be helpful. aph and answer the following questions in a paragraph:
- graph Imparts

Does the frm
Impact the output
5. Once complete, submit your Project You can find a Rubircic at the end of this Project

Rubric

4 国Review

\section*{Update to Content Accepted by SRP}

\section*{Screenshot of Proposed New Content} Insert a screenshot of your proposed new content.

\section*{Update to Content Accepted by SRP}

```

    # Add the rectangles to the axis
    ax.add_patch(rect1)
    ax.add_patch(rect2)
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set_ylabel('Y-axis'
    ax.set_title('Simple Vector Graphics with Rectangles')
    # Add the legend
    ax.legend()
    # Set the aspect ratio to ensure better representation
    ax.legend('equal', adjustable='box')
    # Show the plot
    plt.show()
    Matplotlib is a widely-used library for creating static, animated and interactive
    visualizations. This example will showcase the inputs, outputs and data display for a
    line, circle or rectangle.
    # dialog.py
    """Dialog-style application."""
    import sys
    from PyQt6.QtWidgets import (
        QApplication,
        QDialog,
        QDialogButtonBox,
        QFormLayout
        QLineEdit,
        QVBoxLayout,
    )
class Window(QDialog):
def _init__(self):
CCEV %

```


Project - Data Visualization Program
Visual Presentation

1 of 1 :

\section*{Directions:}

Directions:
1. On your computer, access the matplotib library. The matplotib
library is not in the Standard Python Library. You can find an online
compiler by entering "online matplotilib compiler" in a search engine.
2. Enter and run each of the following codes. The codes will create a
line graph, circle graph and rectangle graph with the given \(x\) and \(y\)
data. Add labels and a title to the chart. Change the data and
customize each chart by adding meaningful axis labels and a
meaningtul titie. Adjust the cololrs, markers and other properties of
the chart elements. Feel free to increase the quantity of dala points. Format your code for readability. Watching a video on matplotilib plots for adding these extra features may be helpful. 3. Line Graph
import notplotisb. pyplot as plt
* Sample Data
\(x=[1,2,3,4,5]\)
\(y=[2,4,6,8,19]\)
\(\pi\) Create a line chart
olt.plot(x, y)
* Add labels and title
pit.xlatell('X-axis label'
plt.ylatel(' \(Y\)-axis label')
plt.titie('Title of the chart')
* Display the chart
plt. show()
4. Cirole Graph
import matplotlib.pyplot as plt
import matplotliib.patches as patches
\# Define the figure and the axis
fig, \(a x=\) plt. subplots()
* Define the circle parameters
circle1 \(=\) plt.Circle \(((1,1), 0.5\), edgecolor='blu
circle \(=\) plt.circle \(((3,2)\), , 0.8 , edgecolor='red
* Add the circles to the axis
ax.add_patch(circle1)

ax.set_ylabel((\(~\)
\(\gamma\) -axisis')
ax.set_title('Title of chart.)
* Add the legend
ax.legend()
* Set the aspect ratio to ensure better represen
ax.legend('equal', adjustable='box')
* Show the plot plt. show()
5. Rectangle Graph
import matplotlib. pyplot as plt
import matplotlib.patches as patches
\# Decide what figure you will create and the axi
fig, ax = plt.subplots()
\# Define the rectangle parameters
\(\begin{aligned} & \text { rect1 }=\text { patches.Rectangle }((1,1), 2,3 \text {, edgecolo } \\ & \text { rect } 2\end{aligned}=\) patches. .ectangle \(((4,2), 1,5,5\).
rect2 \(=\) patches.Rectangle \(((4,2), 1.5,2.5\), edge
* Add the rectangles to the axis
ax.add_patch(rect1)
* Set the labels for each line and titles
ax. set_xlabel(' \(X\)-axis')
ax. Set_ylabel(' \(Y\)-axis'
ax.set_title('Title of chart')
* Add the legend
ax. legend()
* Set the aspect ratio to ensure better represen
ax.legend('equal', adjustable='box')
* Show the plot plt.show()
6. Analyze the resulting graphs and answer the following questions in
a paragraph:
o How do
- How do the ch
graph imparts
- Does the formatting of the code and the numeric formatting
impact the output
- How did formatting the data improve the numeric display

\section*{Update to Content Accepted by SRP}

(SE)(Breakout(s)) and (Citation Type(s)) (3)(E)(iii), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Visual Presentation (Slides 49-54), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21653

Project- Data Visualization Program, https://files.icevonline.com/html/CEV71620 TXP24/CEV71620 TXP24 Project Data Visualization Program.htm

Description of the specific location and hyperlink to the exact location of the proposed new content Visual Presentation Student Handout-Inputs, Outputs and Data Displays Examples, https://files.icevonline.com/html/CEV71620 V2 HTML/CEV71620 V2 HTML Student Handout Inputs Outputs and Data Displays Examples.htm
This Student Handout is found in the Visual Presentation lesson beneath the Instructional Materials heading.

Project- Data Visualization Program, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22314/CEV71620 V2 Project01 This Project is found in the Visual Presentation lesson beneath the Interactive Assignments heading. After clicking the link to the Project, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Project.

\section*{Update to Content Accepted by SRP}

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

\section*{6/21/2024}

50

6/21/2024

\section*{Update to Content Accepted by SRP}

Project - Data Visualization Program
Visual Prosentation
Visual Prosentation
1 of 1
:

Directlons:
1. On your computer, access the matplotill illbrary. The matpotilib ibrary is not in the Standard Python Lbbray. You can find an online
complier by entering ooniline matpotilib complier In a search engine. 2. Enter and run the following code.
import matpotili.pyplot as plt
\# Sample Data
\(\mathrm{x}=[1,2,3,4,5]\)
\(x=[1,2,3,4,5]\)
\(y=[2,4,6,8,10]\)
\#Create a lin
pit.plot \((x, y)\)
\# Add Labels and titie
pit.xlabel(' \(X\)-axis label')
plt.xabel(TTite of the chart')
\#Display the
plt.show()
3. This code will create a line graph with the given \(x\) and \(y\) data, then add labels and a title to the chart. Change the data and customize the chart by adding meaningtul axis labeis and a meaningful ttie. Adjust the colors, markers and other properties of the chart elements. Fee free bo increase the quantity of data points. Format
your code for readabilly. Watching a video on matplotilb plots for
your code for readability. Watching a videco on matpiotilo plots ior
adding these extra features may be helpful.
4. Analyze the resulting graph and answer the fol
paragraph:
- How do the changes you made impact the message the - graph Imparts
- Does the formating of the cose and the numeric formatiling
impact the output Impact the output
- How did formatting
5. Once complete, submity your Project. You can find a Rubric at the end of this Project

Rubric

4 Review

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

\section*{Update to Content Accepted by SRP}

\section*{Inputs, Outputs \& Data Displays Examples}

\section*{Creating Outputs}

To create a simple text output, the 'print' function is most often used, but it can have several variations to change how the data is displayed. Below are examples of how to create a text output with the print function for several different scenarios. Keep in mind when creating text output, the code in green is what will be displayed for the user.
\# Basic text output using the print function
print("Hello World")
\# Specific information with text explain what the information shows
name \(=\) "Tim"
food = "Pizza"
print("Name:", name, "Favorite Food:", food)
\# Formatting specific results of a function
num1 \(=7\)
num2 \(=4\)
sum_result \(=\) num1 + num2
print (f"The sum of \{num1\} and \{num2\} is \{sum_result\}.")
\# Multiple items in a text display
\(x=\) "Yes"
\(y=\) "No"
\(z=\) "Maybe"
print("For this example \(x, y\), and \(z\) represent:", \(x, y, z\))

\section*{Properly Labeling and Displaying Outputs}

When creating text output, it is important to make sure the user will understand what is When creating text output, it is important to make sure the user will understand what is being displayed. Properly labeling output is an important part of visual representation
and can make code more user-friendly. Below are a few examples of labels to make the code easier to read and understand.
\# The labels 'Name' and 'Favorite Food' make the display more clear and help define what the terms relate to
ood = "Pizza"
print("Name:", name, "Favorite Food:", food)
\(\qquad\)

\section*{Standard Formatting Style}

Formatting styles can vary depending on what the code is being used for, personal preference or the coding standards of a business or organization. A few common
formatting styles are PEP 8 Style Guide, the Google Python Style Guide, YAPF, PyCharm and Docstring Conventions. The coding examples given in this handout follow the PEP 8 Style Guide, which is standard for Python coding.
Simple Vector Graphics Using Lines
The code to create a vector graphic using lines is shown below. This code uses matplotlib to create this shape,
import matplotlib.pyplot as plt
\# Decide what figure you will create and the axis
fig, ax = plt.subplots()
\# Define the coordinates for each lines
\(x_{1}, y_{1}=1,1\)
\(x 1, y 2=1,4\)
\(x 3, y 3=2,5\)
\# Draw each lines
ax. plot(\([x 1, x 2],[y 1, y 2]\), label= 'Line 1 ', color='blue', linewidth \(=\mathbf{2}\)) ax. plot ([x2, x3], [y2, y3], label='Line 2', color='red', linestyle='.1inewidth=2)
\# Set the labels for each line and titles
ax. set_xlabel(\(X\)-axis')
ax.set-ylabel(' Y -axis')
ax. set_title('Simple Vector Graphics with Lines')
\# Add the legend
ax. legend()
\# Show the plot
Simple Vector Graphics Using Circles
An example code to create a vector graphic using circles is shown below. This code uses matplotlib to create the shape.
import matplotlib.pyplot as plt
```

672024,152 5, m
\# In this example, putting the information that is calculated in a
sentence helps convey what function was performed
num1 = 7
sumpesult = num1 + num2
print(f"The sum of {num1} and {num2} is {sum_result}.")

# Adding labels that show what }x,y\mathrm{ , and }z\mathrm{ correlate makes the display

easier to read
x = "Yes"
y = No
z="Maybe"

# Adding units when displaying specific information can also make text

# Adding units when

num1 = 7
print(f"Loaded Weight: {num1}lbs Unloaded Weight: {num2}lbs")

# When there are several types of complex information being displayed,

descriptive labels can help clear any confusion
name = "Benjamin"
number = 4
transactions = 13
print(f"Customer: {name}")
print(f"Customer Number for December: {number}")
print(f"Number of Transaction for November: {transactions}")
Interactive Input Interfaces
When creating interactive input interfaces with relevant user prompts to acquire data
from a user, it is important the code is readable and easy to understand. This code
requires information from the user to display a certain message or action. An example
of a code that requires user input is shown below.
\# The prompt below asks for inputs from the user to display a welcome message
name = input("Enter your name:")

# Now the text will be displayed with the information that the user

added
print(f"Welcome {name}!")

```


```

    # Decide what figure you will create and the axis
    fig, ax = plt.subplots()
    # Define the circle parameter
    circle1 = plt.Circle((1, 1), 0.5, edgecolor='blue', facecolor='none'
    linewidth=2, label='Circle 1'
    circle2 = plt.Circle((3,2), 0.8, edgecolor='red', facecolor='none',
    linewidth=2, label='Circle 2')
    # Add the circles to the axis
    ax.add_patch(circle1)
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set title('Simple vector Graphics with Circles')
    # Add the legend
    ax.legend()
    # Set the aspect ratio to ensure better representation
    ax.legend('equal', adjustable='box')
    # Show the plot
    plt.show()
    Simple Vector Graphics Using Rectangles
An example code to create a vector graphic using rectangles is shown below. This
code uses matplotlib to create the shape
import matplotlib.pyplot as plt
import matplotlib.patches as patches
\# Decide what figure you will create and the axis fig, ax = plt.subplots()
\# Define the rectangle parameters
rect1 $=$ patches. $\operatorname{Rectangle}((1,1), 2,3$, edgecolor='blue',
, , linewidth=2, label='Rectangle $1^{\prime}$ '
rect2 $=$ patches. Rectangle $((4,2), 1.5,2.5$, edgecolor='red'
facecolor='none'. Iinewidth $=2$, Iabel='Rectangle 2')

```

\section*{Update to Content Accepted by SRP}

```

    # Add the rectangles to the axis
    ax.add_patch(rect1)
    ax.add_patch(rect2)
    # Set the labels for each line and titles
    ax.set_xlabel('X-axis')
    ax.set_ylabel('Y-axis'
    ax.set_title('Simple Vector Graphics with Rectangles')
    # Add the legend
    ax.legend()
    # Set the aspect ratio to ensure better representation
    ax.legend('equal', adjustable='box')
    # Show the plot
    plt.show()
    Matplotlib is a widely-used library for creating static, animated and interactive
    visualizations. This example will showcase the inputs, outputs and data display for a
    line, circle or rectangle.
    
# dialog.py

"""Dialog-style application."""
import sys
from PyQt6.QtWidgets import (
QApplication,
QDialog,
QDialogButtonBox,
QFormLayout,
QLineEdit,
QVBoxLayout,
)
class Window(QDialog):
def _init__(self): (parent-None)
CCEV %

```

```

            Mroject - Data Visualization Program
                1 of 1 
                You will create angogram which displovs, ,deta set in, y.visually,
            Directions:
                1. On your computer, access the matplotib library. The matplotib
            1. On your computer, access the matplotibiblibrary. The matplotib
            2. Enter and run each of the following codes. The codes will create a
            line graph, circlegraph and rectangle graph with the given x and y
            l
            &ustomize each chart by adding meaningful axis labels and a
            meaningtul title. Adjust the colors,markers and other properties of 
            the chart elements. Feel free to increase the quantily of data points.
            Formal your code for readabily. Walching a video on
            3. Line Graph
                    Import natplotilv.pyplot as plt
                    * Sample Data
                    Sample Data
                    l
                    Create a line chart
                    plt.plot(x, y)
                    * add Labels and title
                    plt.xlatel('X-Xxis label')
                    git.ylatel(' }Y\mathrm{ -axis label')
                    plt.titie('Title of the chart')
                    * Display the chart
                    plt.show()
        4. Circle Graph
            import matplotlib.pyplot as plt
            Import matplotlib.patches as patches
            * Define the figure and the axis
            # Define the figure and (
            Define the circle parameters
            ircle1 = plt.Circle((1, 1), 0.5, edgecolor='blu
            circle2 = plt.circle(( }3,2), 0.8, edgecolor='red
            * Add the circles to the axis
            # Add the circles to the
    ```
 *)
```

    *)
    ax.set_ylabel(' ' 
    ax.set_ylabel(' ' 
    # add the legend
    # add the legend
    ax.legend()
    ax.legend()
    * Set the aspect ratio to ensure better represen
    * Set the aspect ratio to ensure better represen
    ax.legend('equal', adjustable='box')
    ax.legend('equal', adjustable='box')
    * show the plot plt.show()
    * show the plot plt.show()
    5. Reclangle Graph
6. Reclangle Graph
import matplot1ib.pyplot as plt
import matplot1ib.pyplot as plt
import matplotlib.patches as patch
import matplotlib.patches as patch

# Decide what figure you will create and the axi

# Decide what figure you will create and the axi

fig, ax = plt.subplots()
fig, ax = plt.subplots()

# Define the rectangle parameters

# Define the rectangle parameters

rect1 = patches.Rectangle((1, 1), 2, 3, edgecolo
rect1 = patches.Rectangle((1, 1), 2, 3, edgecolo
rect2 = patches.Rectangle((4, 2), 1.5, 2.5, edge
rect2 = patches.Rectangle((4, 2), 1.5, 2.5, edge
    * Add the rectangles to the axis
    * Add the rectangles to the axis
ax.add_patch(rect1)
ax.add_patch(rect1)
ax.add_patch(rect2)
ax.add_patch(rect2)
    * Set the labels for each line and titles
    * Set the labels for each line and titles
ax.set_xlabel('x-axis')
ax.set_xlabel('x-axis')
ax.set_ylabel(' }Y\mathrm{ -axis')
ax.set_ylabel(' }Y\mathrm{ -axis')
ax.set_title('Title of chart')
ax.set_title('Title of chart')
    * Add the legend
    * Add the legend
*a.legend()
*a.legend()
    * Set the aspect ratio to ensure better represen
    * Set the aspect ratio to ensure better represen
ax.legend('equal', adjustable='box')
ax.legend('equal', adjustable='box')
    * Show the plot plt.show()
    * Show the plot plt.show()
7. Analyze the resulting graphs and answer the following questions in
8. Analyze the resulting graphs and answer the following questions in
a paragraph:
```
```

    a paragraph:
    ```
```




```
```

    graph imparts
    ```
```

    graph imparts
    - Does the formatting of the code and the numeric formatting
    - Does the formatting of the code and the numeric formatting
    impact the output
    impact the output
    - How did formatting the data improve the numeric display
    ```
```

    - How did formatting the data improve the numeric display
    ```
```


## Update to Content Accepted by SRP



(SE)(Breakout(s)) and (Citation Type(s))
(4)(A)(i), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Programming Problem-Solving Processes-Overview of Solving Processes (00:15-3:12), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21654

Description of the specific location and hyperlink to the exact location of the proposed new content Programming Problem-Solving Processes Student Handout-Creating Program Solutions, https://files.icevonline.com/html/CEV81114 V2 HTML/CEV81114 V2 HTML Student Handout Creating Program Solutions.htm
This Student Handout is found in the Programming Problem-Solving Processes lesson beneath the Instructional Materials heading.
Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.
20024.4.24 PM

## Programming Problem-Solving Processes

The content within this transcript has been created utilizing a third-party software company which complies with all federal accessibility laws and international standards for web accessibility, providing a measured accuracy rate of 99.6 percent.

## 1. Overview of the Solving Processes

TEXT ON SCREEN
Programming Problem-Solving Processes
Overview of Solving Processes
Computer programming is the process used to write code that instructs how a computer, application or software program performs. Computer programming's core function is to solve or create solutions to problems or needs. The process of making a program or a set of instructions for a computer to execute includes the following stepsunderstand the problem, design a solution, translate the solution into a program, and test and debug the program.

The first step of the programming problem-solving process is understanding the problem. This can be done through research, questioning, and identifying key components of the problem. Most of the time, this information will come from the customer or the key identifier of the problem.

Once the data has been collected and the problem is understood, the next step is to design a solution. Charting and working through ideas will create a solution. We'll use the example of making a peanut butter and jelly sandwich to better visualize this process.

Look at the diagram. It shows the potential choices needed to make a peanut butter and jelly sandwich. The first decision answers the question, what kind of peanut butter? Chunky or creamy? The next decision involves the type of jelly to use. This process continues building on this concept until all possibilities in making
IMAGE ON SCREEN- A diagram showing the choices to make a peanut butter and jelly sandwich. At the top it starts with the question, what kind of peanut butter would you like. Then it has two arrows going down, on the left it says creamy and then on the right it says chunky. Then there are two more arrows going down to the question what kind of jelly would you like.
the sandwich are explored- bread type,
IMAGE ON SCREEN-A diagram showing the choices of bread type. At the top it starts with the question, what type of bread is used. Then it has two arrows going down, on the left it says white and on the right it says wheat.

squares and the one on the far left says triangle. Then the next question is asked, should the crusts be on or off. Then it has two arrows going down, the one on the left says one and the one on the right says off.
in this case, the first question that would be seen by the user is, what kind of peanut butter would you like? Chunky or creamy?
IMAGE ON SCREEN A graphic of a co? ON SCREEN- A graphic of a computer screen is detalled with a diagram showing the choices to make a peanut butter and jelly sandwich. At the top it starts with the question, what kind of peanut butter would you like. Then it has two arrows going down, on the left it says creamy and then on the right it says chunky.
The program prompts the user to provide an input to the question before moving on to the next step.
MAGE ON SCREEN- A graphic of a computer screen is detailed with a diagram showing the choices to make a peanut butter and jelly sandwich. At the top it arrows going question, what kind of jelly would you like. Then it has three arrows going down, on the left it says grape, in the middle it says apricot and then on the right it says strawberry.

It goes through these steps until the end. Then the program gives an output of every selection and requests a confirmation of the options that the customer chose before finalizing the order.
IMAGE ON SCREEN- A graphic of a computer screen is detalled with various questions sliding on and off the screen. The title of the computer is order summary. Question one- what kind of peanut butter would you like? Creamy. Question two- what kind of jelly would you like? Grape. Question three- What type of bread is used? White. Question four- How should the sandwich be cut? Keep as is. Question five- should the crusts be on or off? On. The last slide on the computer screen states thank you for your order.

Finally, after the program is created, it is tested and refined.
TEXT ON SCREEN
Test and debug he program
This process resets and starts again at step one to continuously improve and refine the original program version.
TEXT ON SCREEN- Steps are listed to make a program or a set of instructions for a computer to execute. Step 1: understand the problem, step 2: design a solution, step 3: translate a solution into a program, step 4: test and debug the program.
2. Tasks \& Subtasks for Solving Problems

6220224,424 P1
how to cut the sandwich
IMAGE ON SCREEN-A diagram showing the choices of cutting a sandwich. At the top it starts with the question, how should the sandwich be cut. Then it has four arrows going down, the one on the left says keep as is, the next one over says halved, the next one says squares and the one on the far left says triangle.

## crusts on or off.

IMAGE ON SCREEN- A diagram showing the choices of crusts being on or off. At the top it starts with the question, should the crusts be on or off. Then it has two arrows going down, the one on the left says one and the one on the right says off.

The process of making a sandwich is simple, but the same process is used to design a new phone app for a customer or a computer program for a major corporation.

The next step in the programming problem-solving process is translating the gathered information and solution into a program. Programs are built on a step-by-step proces called an algorithm.

Algorithms are used in mathematics when following the order of operations to solve equations.
IMAGE ON SCREEN- PEMDAS is titled on screen to show how mathematics is used to follow the order of operations. P- parentheses, E - exponents, M - mutiple, D- dived, A- add, and S- subtract. The following equation explains PEMDAS: $4 \times 5$ $(6+4)=200$

Let us explore some of the steps for making a program using the peanut butter and jelly sandwich Example we know from the first program what people want on their sandwich before it is made.
We want to use the same questions and answers from our explored solutions IMAGE ON SCREEN- IMAGE ON SCREEN- A dlagram showing the cholces to make a peanut butter and jelly sandwich. At the top it starts with the question, what kind of peanut butter would you like. Then it has two arrows going down, is what kind of jelly would you like. The question about jelly has three arrows going down from it. The arrow on the left says grape, the arrow in the middle goins apricot and the arrow on the right says strawberry. Then the next question is asked, what type of bread is used. Then it has two arrows going down, on the left it says white and on the right it says wheat Then the next question is asked, how should the sandwich be cut. Then it has four arrows going down, the one on the left says keep as is, the next one over says halved, the next one says

6novat, 424 P

## TEXT ON SCREEN

Programming Problem-Solving Processes
Tasks and Subtasks for Solving Problems
OK. We understand the steps for solving programming design problems. Now, let us break them into tasks and subtasks. Tasks are the steps needed to solve the problem or deliverable. Subtasks are smaller tasks associated with a larger and more complex task, which can be broken into three types- sequential, conditional, and iterative.
Sequential subtasks are items that execute in order. Sequential subtasks are used in programs that have a linear flow. These subtasks are used in programs that do not offer choices to repeat a process.
IMAGE ON SCREEN-A graphic with a man standing and looking at a phone. On the phone is a timer with the words start and stop. The timer is enlarged on th left side of the screen as well. The timer is started and goes until 60 seconds.

Asking the user for two numbers followed by a program, adding the numbers together, is an example of a sequential subtask
IMAGE ON SCREEN- IMAGE ON SCREEN- A graphic with a man standing and looking at a phone. On the phone is a dial consisting of numbers. On the far left It starts with $1,2,3$, going down on the left it starts with $\mathbf{4 , 5 , 6 , \text { golng down on }}$ the far left it starts with $7,8,9$, and going down at the very bottom starting on the
left is an $X, 0$, check mark. The dial is also enlarged on the left side of the screen. The man taps 3 and 6 . Then $3+6=9$ pops up enlarged on the left side in replace of the dial.

Conditional subtasks offer choices in the form of true/false statements.
Conditional subtasks are used when programs need to make decisions about what to do based on user input or the results of other actions in the program.
IMAGE ON SCREEN-A graphic with a man standing and looking at a phone. On the phone is the cholces $\mathbf{A}$ and B . The cholces A and B are also enlarged on the left side of the screen as Choice "A" and Choice " $B$ ". The man standing at the phone chooses $A$ or Choice " $A$ ". The Choice " $A$ " on the left side of the screen funnels down to Choice " $A$ " and Choice " $B$ ". Choice " $A$ " and Choice " $B$ " are connected. The man selects Choice " $B$ " then from Choice " $B$ " it funnels down to Choce " $A$ " and Choice " $B$ ". They are connected. Choice " $A$ " is selected.

Asking a user if they would like to play a game again is a conditional subtask because the game will either start or exit depending on the answer.
MAGE ON SCREEN-A graphic with a man standing and looking at a phone. On the phone is the choices yes or no. The choices yes or no are also enlarged on

# Update to Content Accepted by SRP 

the left side of the screen. The choice yes is selected by the man

Finally, iterative subtasks create a loop that continues until certain conditions are met. This specific subtasks can create infinite loops if not used correctly. IMAGE ON SCREEN - A graphic with a man standing and looking at a phone. On the phone is the choices stop and start with a coin. The coin is also enlarged on the left side of the screen. The enlarged coin flips continuously as the man presses start on the phone.

Iterative subtasks repeat until a condition is met. A timer that counts down to 0 and ends once it hits 0 is an iterative subtask.
IMAGE ON SCREEN-A graphic with a man standing and looking at a phone. On the phone is the choices start and stop with a timer of $0: 03.00$. The timer is also enlarged on the left side of the screen. The man presses start, and the timer goes from 0:02.60 to 0:00.00

## 3. Data Types \& Objects Needed

TEXT ON SCREEN
Programming Problem-Solving Processes
Date Types \& Objects Needed
There will be different data types associated with whatever specific computer programming language is used. In Python, the data types are numeric, int, integer, that holds signed integers of non-limited length. Long hold long integers. Float holds floating precision numbers and is accurate up to 15 decimal places. Complex holds complex numbers.

String is a sequence of characters which can be letters, numbers, or special. And lists are used to store a set of information. For example, 0,12 , or purple, blue, red. The problem must be analyzed, and the solution must be explored to understand the data types and objects needed to create the program.
In most cases, it will need multiple data types in the same program to make it work. Remember the sandwich program discussed earlier. We would use the string data type to store the user's answers to the questions crunchy or creamy. We would use the int data type to store how many sandwiches they would like to order.

A list can be used to print out all the options that the user has entered for the entire program before they confirm that they are done with their order.

## 4. Applying the Process



In line number six, system.out.printin original number plus num, it creates an output to the screen that the user can see. Original number, 1234
MAGE ON SCREEN- Coding is displayed on screen
Line 6 System.out.printIn( "Original Number : " + num); with printin in brown, "Original Number : " In orange and + In dark blue

Line number eight is a note that only programmers see and helps identify what the lines of code are being used for.
IMAGE ON SCREEN-Coding is displayed on screen.
Line $8 / /$ run loop until num becomes 0 with everything in gray
Line number nine, while integer num is not equal to 0 , the program will repeat. in (
Line 9 while (num != 0 ) $\{$ with while, 1 and $=$ in blue, and 0 in green
Line number 11 is another note created by the programmer to identify the next section of code will get the last number from the int named num
IMAGE ON SCREEN-Coding is displayed on screen
Line 11 // get last digit from num with everything in gray
Line number 12 is creating an int named digit, which is equal to num modulo 10. Modulo returns the remainder from division.
IMAGE ON SCREEN- Coding is displayed on screen.
Line 12 int digit = num \% 10; with int in blue, = and in dark blue, and 10 in green
Line number 13 is now making reversed equal reversed multiply 10 plus digit.
IMAGE ON SCREEN- Coding is displayed on screen.
Line 13 reversed = reversed * 10 + digit; with = and * in dark blue, 10 in green, and $+i$ in blue

Line number 15 is the final programming note that line number 16 will remove the last digit from number.
IMAGE ON SCREEN- Coding is dlsplayed on screen.
Line 15 // remove the last digit from num with everything gray
Line number 16, num divide and assignment operator 10
IMAGE ON SCREEN- Coding is displayed on screen
Line 16 num /=10; with / and = in dark blue and 10 in green
Line 17 \}
Finally, line number 19, system.out.println reversed number plus reversed, will send a message to the screen for the user to read, stating, reversed number- 4321. IMAGE ON SCREEN-Coding is displayed on screen

## 672024, 4.24 PM

## TEXT ON SCREEN

Programming Problem-Solving Processes
Applying the Process
Feathered Paws, a new pet store, hired computer programmers to help their new application be more secure when users enter data. Currently, users need to input four-digit code to gain access to their mobile application. Let us look at creating a program that can help users protect their data.

Step one, understanding the problem. Through discussions with the client, when users select their four-digit code, it is transferred to Feathered Paws's database in plain text. This means whatever the user enters is sent exactly as selected.

There are ways that hackers can collect information being sent over the internet. Feathered Paws needs additional security for their data transfer to protect the information. If a hacker steals the information, they can access the user's account, and this causes possible legal actions against Feathered Paws. That is the problem.

Now move on to step number two, design a solution that researches and creates ideas to solve Feathered Paws's problem. After some research into basic cybersecunty lead on the project and after discussing the options with your colleagues, you decide to reverse the order of the four-digit code to help protect the data.

Step three, translate the solution into a program using the iterative subtasks to create the code.

In lines number one and number two, this is the basic language that is used when starting programs. Most programming software will atomically have lines number one and number two written for you.
MAGE ON SCREEN- Coding is displayed.
LIne 1 class Maln \{ with class in blue
Line 2 public static void main(String [ ] args) \{ with public static void and String in blue

In line number four, we are creating an int named num that is storing a four-digit number, 1234, and reversed that is storing 0 .
Line 4 int num = 1234, reversed $=0$; with int in blue, $=$ signs in dark blue, and 1234 and 0 in green

A202024,424
lin 19 Syster
Line 19 System.out.printIn("Reversed Number: " + reversed); with printIn in brow, "Reversed Number : "in red, and + in blue Line 20 icon of a light bulb
Line 21 \}
When programming, always look for ways to reuse previously created lines of code or create processes that reduce the lines of code needed to make the program function This saves time for the programmer, uses less space on the device's storage, and allows any other programmers that are working on the project have an easier time reading the code.
As seen in the example, system.out.println was used in two different sections of the program. The line was copied for reuse and updated to produce the new required output.
IMAGE ON SCREEN- Coding is displayed.
Line 1 class Main \{ with class in blue
Line 2 public static void main(String [ ] args) \{ with public static void and String in blue
1234 and 0 in green Line 6 System.out.printin( "Original Number : " +
Line $8 / /$ run loop until num becomes 0 with everything in gray
Line 9 while (num $!=0$ ) $\{$ with while, 1 and $=$ in blue, and 0 in green
Line 11 // get last digit from num with everything in gray
Line 12 int digit = num \% 10; with int in blue, = and in dark blue, and 10 in green Line 13 reversed = reversed * 10 + digit; with $=$ and *in dark blue, 10 in green, and + in blue
Line 15 // remove the last digit from num with everything gray
Line 16 num /= 10; with / and = in dark blue and 10 in green
Line 17 \}
Line 19 System.out.printin("Reversed Number: " + reversed); with printin in brown, "Reversed Number: " In red, and + In blue Line 20 icon of a light bulb \}
Line 21 \}
Line 6 and 19 are highlighted to show how the line was copied, reused and updated to produce the new required output.

Step four, test and debug the solution...
TEXT ON SCREEN
...Program

## Update to Content Accepted by SRP

6:202024. $1: 24 \mathrm{pm}$
When testing this program, a four-digit number can be entered, and the output is the number reversed. If it does not have the requested outcome of reversing the order of the number, refine your program and retest.
$\qquad$

## Screenshot of Proposed New Content

Insert a screenshot of your proposed new content.


## Update to Content Accepted by SRP

```
Step 1: Understand the problem
 - Identify issues in a code
 - Analyze inputs and outputs
 - Examine error codes
Step 2: Design a solution
 - Break the problem into smaller sub-steps
 - Create a new approach to completing the code
 - Identify how to solve error codes
Step 3: Translate a solution into a program
 - Use a specific coding language
 - Write a fixed code that solves previous issues
 - Implement any data found missing
Step 4: Test and debug the program
 - Develop test cases
 - Execute tests
 - Resolve bugs identified in the code
 - Repeat testing until the code is functional
// Pseudocode for tasks and subtasks
// Main program # The main program in the example above keeps each
subtask running until the conditions of the iterative subtask are met
or until the user selects 'no' on the conditional subtask
 //Sequential_subtask() # This is a subtask that asks the
 user for items that execute in order. In the above
 example, this subtask asks users for two numbers to then
 add together
 examplel = float(input("Enter information: "))
 example2 = float(input("Enter information: "))
 # Then this would perform a specific function with the
 information provided
 result = example1 () example2
 print(f"The function performed on {example1} and
 {example2} is: {result}")
```

(SE)(Breakout(s)) and (Citation Type(s)) (4)(I)(i), Narrative and Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Error Types and Debugging Strategies (Slide 18), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644

Activity-Debugging, Project-Error Types and Debugging, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644/CEV71511 Activity01

Description of the specific location and hyperlink to the exact location of the proposed new content Error Types and Debugging Strategies Student Handout-Testing Program Solutions, https://login.icevonline.com/download/c46dac71-1b97-4a29-b4b4-8f45c0d2c910
This Student Handout is found in the Error Types \& Debugging Strategies lesson beneath the Instructional Materials heading.

Project-Error Types and Debugging, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22298/CEV71511 V2 Project01 This Project is found in the Error Types \& Debugging Strategies lesson beneath the Interactive Assignments heading. After clicking the link to the Project, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Project.

## Screenshot of Currently Adopted Content

 Insert a screenshot of your currently adopted content.
## Update to Content Accepted by SRP

## Valid \& Invalid Test Data

- Include ways to test the program solutions and analyze the resulting behavior -write test cases which include valid and invalid input data
-run the program with the test data
-observe the behavior of the program and compare it to the expected behavior - if the program does not produce the expected behavior, debug the program

CEV



Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

## Update to Content Accepted by SRP

## Testing Program Solutions

Testing Program Solutions with Valid and Invalid Test Data
Test data is what a user inputs that allows a function to be performed to test a system of programs. Valid test data is when the information added is in a recognizable range and format. When test data is invalid, it is not recognized by the program and will produce errors. The code below is an example of a program with invalid test data.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: 8 "))
num2 $=$ float (input("Enter the second number: none "))
result $=$ num1 + num 2
print (f"The sum of \{num1\} and \{num2\} is: \{result\}")
When examining the code, the num 2 input is not a number, but a word inserted instead. In this scenario, the code would not recognize a term other than a number and would not produce an answer. This would result in a ValueError code if tested. To mak As lest data valid, he word nore would need to be replaced with a number. Analyzing important step in debugging any errors.

## Solving Problems

The following task is an example of a program that is correctly coded and will display a correct solution.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 = float (input("Enter the first number: "))
num2 $=$ float(input("Enter the second number: "))
result $=$ num1 + num 2
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")

## The following task is an example of the same code as above, but with an error that will

 cause the program to display an error message.\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 = float(input("Enter the first number: "
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
Another example of a code with errors is shown below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input ("Enter the first number: "))
num $2=$ float(input ("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of num1 and num2 is: result")
In this code, there are no brackets around the 'num1' and num2' or the 'result' displays in the print function. This would cause a runtime error, possibly causing the program to crash. To resolve this issue, look at language documentation such as Python documentation. This programming language code documentation can help explain
what is required for a code to be functional. The corrected code is shown below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together
num1 $=$ float(input("Enter the first number: "))
num $2=$ float (input ("Enter the second number: "))
result = num1 + num2
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
num2 = float(input("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and (num2\} is: \{result\}")
When this code is inputted in Python, the following error message will occur.
File "example.py", line 1
num1 = float(input("Enter the first number: "
SyntaxError: unexpected EOF while parsing
After reading the error message, it is noted there is a syntax error near the end of line four. To solve this problem, the code must be fixed and the correct syntax should be four. To solve this problem, the code must be fixed and the correct syntax should be

Another example of a potential problem and solution is shown in the example below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together
num1 $=$ float (("Enter the first number: "))
num $2=$ float ( ("Enter the second number: "))
result $=$ num1 + num2
print (f"The sum of \{num1\} and (num2\} is: \{result\}")
In this example, the code was copied over from a reference material, but the programmer missed putting in the input function after the float function. Without the input function, the numbers added by the user would not become a string, and then into a float. This would display an error. One way to fix this issue would be to use a search engine to find the error or double-check the source of the code for missing information. This issue could also be resolved by analyzing the reference material and double checking for errors. The corrected code will appear as shown below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float(input("Enter the first number: ")) num $2=$ float(input("Enter the second number: "))
result $=$ num1 + num2

## Update to Content Accepted by SRP

Proclamation 2024 Computer Science II My
Profile | Tutorials | Log Out
$\qquad$
scheduleonline training

## Computer Science I - UPDATED

My Courses / Computer Science I-UPDATED / Error Types \& Debugging Strategies - UPDATED
/ Project - Error Types \& Debugging
$\frac{\text { Highlight any text to hear text-to-voice speech. }}{\text { Selocet Language }}$
Select Language |
Error Typas \& Dabugging Strategias
1 of 1
roject Overview
You will conduct research on error types and debugging techniques to create a slide presentation to detail your findings.

Directions:

1. Conduct research on error types and debugging techniques.
2. Create a slide presentation to share your findings. Your presentation should cover the following topics:

- What are emrors

How to test program solutions with valid and invalid test data include coding examples for both data types

- Common types of errors with invalid test data in Python programming, such as:
syntax errors
run-time error
run-time emror
- type errors
- logic errors
- Iexical errors

Resulting behavior after using valid and invalid data in Python programming
Techniques for debugging errors while working with invalid test data, including built-in lools and advanced technique
. Include examples in your presentation to illustrate the concepts. You can create your own code 3. Include examples in your presentation to illustrate the concepts. You can create your own
examples or use examples from online resources. Make sure to cite any sources used.

- Use your IDE to write a program that has at least three errors, take a screenshot of those errors and insert into your presentation
errors and insert into your presentation
- Make the necessary changes so the program runs correctly, take a screenshot and insert into your presentation
Once complete, upload your presentation in the space provided below, then submit your Project. You can find a Rubric at the end of this Project.

Rubric

| Description | Possible <br> Points |
| :--- | :---: |
| Research \& Organization: <br> - Proper research was conducted to complete the <br> assignment <br> - Sources were cited appropriately <br> - Error types and debugging information was presented <br> in a logical organized manner | 10 |
| Concept \& Understanding: <br> - Understanding of the error types is clearly evident <br> - Effective strategies were used to include coding <br> examples <br> - Techniques for debugging is clearly understood | 40 |
| Creativity/Craftmanship: <br> - Slide presentation is unique and reflects the student's <br> or group's individuality <br> - Slide presentation is clearly high quality | 10 |
| Production/Effort: <br> - Class time provided for the slide presentation was <br> used efficiently <br> - Slide presentation answers all topic bullets listed <br> - Time and effort are evident in the execution of the <br> slide presentation |  |
| Total Points |  |

## Update to Content Accepted by SRP

## (SE)(Breakout(s)) and (Citation Type(s))

(4)(I)(ii), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Error Types and Debugging Strategies (Slide 18), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644

Activity-Debugging, Project-Error Types and Debugging, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644/CEV71511 Activity01

Description of the specific location and hyperlink to the exact location of the proposed new content Error Types and Debugging Strategies Student Handout-Testing Program Solutions, https://login.icevonline.com/download/c46dac71-1b97-4a29-b4b4-8f45c0d2c910 This Student Handout is found in the Error Types \& Debugging Strategies lesson beneath the Instructional Materials heading.

Project-Error Types and Debugging, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22298/CEV71511 V2 Project01
This Project is found in the Error Types \& Debugging Strategies lesson beneath the Interactive Assignments heading. After clicking the link to the Project, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Project.

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Valid \& Invalid Test Data

```
- Include ways to test the program solutions and analyze the resulting behavior -write test cases which include valid and invalid input data
-run the program with the test data
-observe the behavior of the program and
compare it to the expected behavior
- if the program does not produce the expected
```

behavior, debug the program

# Update to Content Accepted by SRP 



## Screenshot of Proposed New Content

Insert a screenshot of your proposed new content.

## Testing Program Solutions

Testing Program Solutions with Valid and Invalid Test Data
Test data is what a user inputs that allows a function to be performed to test a system of programs. Valid test data is when the information added is in a recognizable rang produce ens. The code below is an example of a program with invalid ted data.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float(input("Enter the first number: 8 "))
num $2=$ float (input("Enter the second number: none "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
When examining the code, the num2 input is not a number, but a word inserted instead. In this scenario, the code would not recognize a term other than a number and would not produce an answer. This would result in a valueError code if lested. To make this test data valid, the word 'none' would need to be replaced with a number. Analyzing the resulting behavior and comparing it to the expected behavior is an important step in debugging any errors.

## Solving Problems

The following task is an example of a program that is correctly coded and will display a correct solution.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: "))
num 2 = float (input ("Enter the second number: ") )
result = num1 + num2
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
The following task is an example of the same code as above, but with an error that will cause the program to display an error message.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together. num1 = float(input("Enter the first number: "
num2 $=$ float(input("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and (num2\} is: \{result\}")
When this code is inputted in Python, the following error message will occur.
File "example.py", line 1
num1 = float(input("Enter the first number: "
SyntaxError: unexpected EOF while parsing
After reading the error message, it is noted there is a syntax error near the end of line four. To solve this problem, the code must be fixed and the correct syntax should be used. Once the error has been resolved the code will match the first example given.

Another example of a potential problem and solution is shown in the example below.
\# This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
num1 $=$ float (("Enter the first number: "))
result $=$ num1 + num2
print (f"The sum of \{num1\} and \{num2\} is: \{result\}")
In this example, the code was copied over from a reference material, but the programmer missed putting in the input function after the float function. Without the input function, the numbers added by the user would not become a string, and then into a float. This would display an error. One way to fix this issue would be to use a into a float. This would display an error. One way to fix this issue would be to use a information. This issue could also be resolved by analyzing the reference material and double checking for errors. The corrected code will appear as shown below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: "))
num2 $=$ float(input("Enter the second number: "))
result $=$ num1 + num2

## Update to Content Accepted by SRP

## print(f"The sum of \{num1\} and \{num2\} is: \{result\}")

```
Another example of a code with errors is shown below.
This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
 num1 = float(input("Enter the first number: "))
 num2 = float(input("Enter the second number: "))
 result = num1 + num2
 print(f"The sum of num1 and num2 is: result")
In this code, there are no brackets around the 'num1' and num2' or the 'result' displays
in the print function. This would cause a runtime error, possibly causing the program to
```



```
documentation. This programming language code documentation can help explain
what is required for a code to be functional. The corrected code is shown below.
This is a sequential subtask. It asks the users for two
numbers and then it will add them together
 num1 = float(input("Enter the first number: "))
 num2 = float(input("Enter the second number: "))
 result = num1 + num2
 print(f"The sum of {num1} and {num2} is: {result}")
```

$\qquad$

```
Project - Error Types & Debugging
```

Error Typas \& Dabugging Strategias

1of 1 貝

## Project Overview:

You will conduct research on error types and debugging techniques to create a slide presentation to detail your findings.

Directions: Conduct research on error types and debugging techniques.
1.
2. Create a slide presentation to share your findings. Your presentation should cover the following topics:

- How to test program solutions with valid and invalid test data
- include coding examples for both data types
- Common types of errors with invalid test data in Python programming, such as:
- syntax errors
- run-time errors
- type errors
- lexical errors

Resulting behavior after using valid and invalid data in Python programming

- Techniques for debugging errors while working with invalid test data, including built-in tools and advanced techniques
- Best practices for debugging - Best practices for debugging

3. Include examples in your presentation to illustrate the concepts. You can create your own code examples or use examples from online resources. Make sure to cite any sources used. Use your IDE to write a program that has at least three errors, take a screenshot of those errors and insert into your presentation
Make the necessary changes so the program runs correctly, take a screenshot and insert into your presentation
 You can find a Rubric at the end of this Project.

## Update to Content Accepted by SRP

Rubric

| Description | Possible <br> Points |
| :--- | :---: |
| Research \& Organization: <br> - Proper research was conducted to complete the <br> assignment <br> - Sources were cited appropriately <br> - Error types and debugging information was presented <br> in a logical organized manner | 10 |
| Concept \& Understanding: <br> - Understanding of the error types is clearly evident <br> - Effective strategies were used to include coding <br> examples <br> - Techniques for debugging is clearly understood | 40 |
| Creativity/Craftmanship: <br> - Slide presentation is unique and reflects the student's <br> or group's individuality <br> - Slide presentation is clearly high quality | 10 |
| Production/Effort: <br> - Class time provided for the slide presentation was <br> used efficiently <br> - Slide presentation answers all topic bullets listed <br> - Time and effort are evident in the execution of the <br> slide presentation |  |
| Total Points |  |

## (SE)(Breakout(s)) and (Citation Type(s))

(4)(I)(iii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Error Types and Debugging Strategies (Slide 18), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644

Activity-Debugging, Project-Error Types and Debugging, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644/CEV71511 Activity01

Description of the specific location and hyperlink to the exact location of the proposed new content Error Types and Debugging Strategies Student Handout-Testing Program Solutions, https://login.icevonline.com/download/c46dac71-1b97-4a29-b4b4-8f45c0d2c910
This Student Handout is found in the Error Types \& Debugging Strategies lesson beneath the Instructional Materials heading.

Project-Error Types and Debugging, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22298/CEV71511 V2 Project01
This Project is found in the Error Types \& Debugging Strategies lesson beneath the Interactive Assignments heading. After clicking the link to the Project, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Project.

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

## Update to Content Accepted by SRP

## Valid \& Invalid Test Data

- Include ways to test the program solutions and analyze the resulting behavior -write test cases which include valid and invalid input data
-run the program with the test data
-observe the behavior of the program and compare it to the expected behavior - if the program does not produce the expected behavior, debug the program

CEV



Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

## Update to Content Accepted by SRP

## Testing Program Solutions

Testing Program Solutions with Valid and Invalid Test Data
Test data is what a user inputs that allows a function to be performed to test a system of programs. Valid test data is when the information added is in a recognizable range and format. When test data is invalid, it is not recognized by the program and will produce errors. The code below is an example of a program with invalid test data.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: 8 "))
num2 $=$ float(input("Enter the second number: none "))
result $=$ num1 + num 2
print (f"The sum of \{num1\} and \{num2\} is: \{result\}")
When examining the code, the num 2 input is not a number, but a word inserted instead. In this scenario, the code would not recognize a term other than a number and would not produce an answer. This would result in a ValueError code if tested. To mak Anstying the resulting bord hore' wound need it to the expected benuber. Analyzing the resulting behavior and comparing it to the expected behavior is an important step in debugging any errors.

## Solving Problems

The following task is an example of a program that is correctly coded and will display a correct solution.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 = float (input("Enter the first number: "))
num2 $=$ float(input("Enter the second number: "))
result $=$ num1 + num 2
print (f"The sum of \{num1\} and \{num2\} is: \{result\}")

## The following task is an example of the same code as above, but with an error that will

 cause the program to display an error message.\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 = float(input("Enter the first number: "
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
Another example of a code with errors is shown below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input ("Enter the first number: "))
num $2=$ float(input("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of num1 and num2 is: result")
In this code, there are no brackets around the 'num1' and num2' or the 'result' displays in the print function. This would cause a runtime error, possibly causing the program to crash. To resolve this issue, look at language documentation such as Python documentation. This programming language code documentation can help explain
what is required for a code to be functional. The corrected code is shown below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together
num1 $=$ float(input("Enter the first number: "))
num $2=$ float (input ("Enter the second number: "))
result = num1 + num2
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
num2 = float(input("Enter the second number: "))
result $=$ num1 + num2
print( $\mathbf{f}$ "The sum of \{num1\} and (num2\} is: \{result\}")
When this code is inputted in Python, the following error message will occur.
File "example.py", line 1
num1 = float(input("Enter the first number: "
SyntaxError: unexpected EOF while parsing
After reading the error message, it is noted there is a syntax error near the end of line four. To solve this problem, the code must be fixed and the correct syntax should be four. To solve this problem, the code must be fixed and the correct syntax should be

Another example of a potential problem and solution is shown in the example below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together
num1 $=$ float (("Enter the first number: "))
num $2=$ float ( ("Enter the second number: "))
result $=$ num1 + num2
print (f"The sum of \{num1\} and (num2\} is: \{result\}")
In this example, the code was copied over from a reference material, but the programmer missed putting in the input function after the float function. Without the input function, the numbers added by the user would not become a string, and then into a float. This would display an error. One way to fix this issue would be to use a search engine to find the error or double-check the source of the code for missing information. This issue could also be resolved by analyzing the reference material and double checking for errors. The corrected code will appear as shown below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float(input("Enter the first number: ")) num $2=$ float(input("Enter the second number: "))
result $=$ num1 + num2

## Update to Content Accepted by SRP

Proclamation 2024 Computer Science I| My
Profile | Tutorials | Log Out
$\qquad$
scheduleonline training

## Computer Science I - UPDATED

My Courses / Computer Science I-UPDATED / Error Types \& Debugging Strategies - UPDATED
/ Project - Error Types \& Debugging
$\frac{\text { Highlight any text to hear text-to-voice speech. }}{\text { Selocet Language }}$
Select Language |
Error Typas \& Dabugging Strategias
1 of 1
roject Overview
You will conduct research on error types and debugging techniques to create a slide presentation to detail your findings.

Directions:

1. Conduct research on error types and debugging techniques.
2. Create a slide presentation to share your findings. Your presentation should cover the following topics:

- What are emrors

How to test program solutions with valid and invalid test data
include coding examples for both data types

- Common types of errors with invalid test data in Python programming, such as:
syntax errors
run-time error
run-time emror
- type errors
- logic errors
- Iexical errors

Resulting behavior after using valid and invalid data in Python programming
Techniques for debugging errors while working with invalid test data, including built-in lools and advanced technique
Include examples in your presentation to illustrate the concepts. You can create your own code 3. Include examples in your presentation to illustrate the concepts. You can create your own
examples or use examples from online resources. Make sure to cite any sources used.

- Use your IDE to write a program that has at least three errors, take a screenshot of those errors and insert into your presentation
- Make the necessary changes so the program runs correctly, take a screenshot and insert into your presentation
Once complete, upload your presentation in the space provided below, then submit your Project You can find a Rubric at the end of this Project.

Rubric

| Description | Possible <br> Points |
| :--- | :---: |
| Research \& Organization: <br> - Proper research was conducted to complete the <br> assignment <br> - Sources were cited appropriately <br> - Error types and debugging information was presented <br> in a logical organized manner | 10 |
| Concept \& Understanding: <br> - Understanding of the error types is clearly evident <br> - Effective strategies were used to include coding <br> examples <br> - Techniques for debugging is clearly understood | 40 |
| Creativity/Craftmanship: <br> - Slide presentation is unique and reflects the student's <br> or group's individuality <br> - Slide presentation is clearly high quality | 10 |
| Production/Effort: <br> - Class time provided for the slide presentation was <br> used efficiently <br> - Slide presentation answers all topic bullets listed <br> - Time and effort are evident in the execution of the <br> slide presentation |  |
| Total Points |  |

# Update to Content Accepted by SRP 

## (SE)(Breakout(s)) and (Citation Type(s))

(4)(I)(iv), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Error Types and Debugging Strategies (Slide 18), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644

Activity-Debugging, Project-Error Types and Debugging, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644/CEV71511 Activity01

Description of the specific location and hyperlink to the exact location of the proposed new content Error Types and Debugging Strategies Student Handout-Testing Program Solutions, https://login.icevonline.com/download/c46dac71-1b97-4a29-b4b4-8f45c0d2c910 This Student Handout is found in the Error Types \& Debugging Strategies lesson beneath the Instructional Materials heading.

Project-Error Types and Debugging, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22298/CEV71511 V2 Project01
This Project is found in the Error Types \& Debugging Strategies lesson beneath the Interactive Assignments heading. After clicking the link to the Project, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Project.

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

Valid \& Invalid Test Data

```
 - Include ways to test the program solutions and analyze the resulting behavior -write test cases which include valid and invalid input data
-run the program with the test data
-observe the behavior of the program and
compare it to the expected behavior
- if the program does not produce the expected
```

behavior, debug the program

# Update to Content Accepted by SRP 



## Screenshot of Proposed New Content <br> Insert a screenshot of your proposed new content.

## Testing Program Solutions

Testing Program Solutions with Valid and Invalid Test Data
Test data is what a user inputs that allows a function to be performed to test a system of programs. Valid test data is when the information added is in a recognizable range and format. When test data is invalid, it is not recognized by the program and will produce errors. The code below is an example of a program with invalid test data.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together
num1 $=$ float (input("Enter the first number: 8 "))
num1 $=$ float (input("Enter the first number: 8 "))
num $2=$ float(input("Enter the second number: none "))
result $=$ num1 + num 2
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
When examining the code, the num2 input is not a number, but a word inserted instead. In this scenario, the code would not recognize a term other than a number and would not produce an answer. This would result in a ValueError code if tested. To make this test data valid, the word 'none' would need to be replaced with a number. Analyzing the resulting behavior and comparing it to the expected behavior is an important step in debugging any errors.

## Solving Problems

The following task is an example of a program that is correctly coded and will display a correct solution.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together
num1 = float(input("Enter the first number: "))
num $2=$ float(input("Enter the second number: "))
result $=$ num1 + num2
print (f"The sum of \{num1\} and \{num2\} is: \{result\}")
The following task is an example of the same code as above, but with an error that will cause the program to display an error message.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 = float(input("Enter the first number: "
num2 = float(input("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and (num2\} is: \{result\}")
When this code is inputted in Python, the following error message will occur.
File "example.py", line 1
num1 = float(input("Enter the first number: "
SyntaxError: unexpected EOF while parsing
After reading the error message, it is noted there is a syntax error near the end of line four. To solve this problem, the code must be fixed and the correct syntax should be used. Once the error has been resolved the code will match the first example given.
Another example of a potential problem and solution is shown in the example below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float(("Enter the first number: "))
num2 $=$ float (("Enter the second number: "))
result $=$ num1 + num2
print (f"The sum of \{num1\} and (num2\} is: \{result\}")
In this example, the code was copied over from a reference material, but the programmer missed putting in the input function after the float function. Without the input function, the numbers added by the user would not become a string, and then into a float. This would display an error. One way to fix this issue would be to use a search engine to find the error or double-check the source of the code for missing information. This issue could also be resolved by analyzing the reference material and double checking for errors. The corrected code will appear as shown below.
\# This is a sequential subtask. It asks the users for two
numbers and then it will add them together
num1 $=$ float(input("Enter the first number: "))
num2 $=$ float(input("Enter the second number: "))
result $=$ num1 + num 2

## Update to Content Accepted by SRP

## print(f"The sum of \{num1\} and \{num2\} is: \{result\}")

```
Another example of a code with errors is shown below.
This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
 num1 = float(input("Enter the first number: "))
 num2 = float(input("Enter the second number: ")
 result = num1 + num2
 print(f"The sum of num1 and num2 is: result")
In this code, there are no brackets around the 'num1' and num2' or the 'result' displays
in the print function. This would cause a runtime error, possibly causing the program to
*) this issue, look at language documentation such as Python
documentation. This programming language code dacumentation can help explain
what is required for a code to be functional. The corrected code is shown below.
This is a sequential subtask. It asks the users for two
numbers and then it will add them together
 num1 = float(input("Enter the first number: "))
 num2 = float(input("Enter the second number: "))
 result = num1 + num2
 print(f"The sum of {num1} and {num2} is: {result}")
```

$\qquad$

## Project Overview:

You will conduct research on error types and debugging techniques to create a slide presentation to detail your findings.

## Directions:

1. Conduct research on error types and debugging techniques.
2. Create a slide presentation to share your findings. Your presentation should cover the following topics:
How to test program solutions with valid and invalid test data
- include coding examples for both data types
- Common types of errors with invalid test data in Python programming, such as:
- syntax errors
run-time
type errors
logic errors
- lexical ertors
Resulting behavior after using valid and invalid data in Python programming
Techniques for debugging errors while working with invalid test data, including built-in
tools and advanced techniques
- Best practices for debugging
3. Include examples in your presentation to illustrate the concepts. You can create your own code
examples or use examples from online resources. Make sure to cite any sources used.
- Use your IDE to write a program that has at least three errors, take a screenshot of those
errors and insert into your presentation
Make the necessary changes so the program runs correclly, take a screenshot and insert
into your presentation
. Once complete, upload your presentation in the space provided below, then submit your Project.
You can find a Rubric at the end of this Project.

## Update to Content Accepted by SRP

Rubric

(SE)(Breakout(s)) and (Citation Type(s)) (4)(J)(v), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Error Types and Debugging Strategies (Slides 10-20), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644

Description of the specific location and hyperlink to the exact location of the proposed new content Error Types and Debugging Strategies Student Handout-Testing Program Solutions, https://login.icevonline.com/download/c46dac71-1b97-4a29-b4b4-8f45c0d2c910
This Student Handout is found in the Error Types \& Debugging Strategies lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content Insert a screenshot of your currently adopted content.

| Debugging |
| :--- |
| - Is the process of identifying and fixing |
| errors or bugs in a software program |
| - Is a crucial step in the software |
| development process |
| -helps to ensure the final product is reliable |
| and functional |
| - Requires careful language documentation |
| to keep track of progress and methods |


| Critical Thinking |
| :--- |
| - Is often the first step in debugging |
| - Requires utilization of problem-solving |
| skills, such as: |
| -identifying the problem |
| -brainstorming possible causes of the problem |
| -planning strategies and methods to solve the |
| problem |

11


| Print Statements |
| :--- |
| - Is a technique involving adding print |
| statements to the code to display the |
| values of variables and check the flow of |
| the program |
| - displays the values of variables |
| -checks the flow of the program |
| -helps identify where the error is occurring and |
| which values are being processed at the point |



2

6/21/2024 6/21/2024




## Screenshot of Proposed New Content

Insert a screenshot of your proposed new content.

## Testing Program Solutions

Testing Program Solutions with Valid and Invalid Test Data
Test data is what a user inputs that allows a function to be performed to test a system of programs. Valid test data is when the information added is in a recognizable range and forma. When test data is invalid, it is not recognized by the program and will produce errors. The code below is an example of a program with invalid test data.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: 8 "))
num $2=$ float (input("Enter the second number: none "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
When examining the code, the num2 input is not a number, but a word inserted instead. In this scenario, the code would not recognize a term other than a number and would not produce an answer. This would result in a ValueError code if tested. To make this test data valid, the word 'none' would need to be replaced with a number. Analyzing the resulting behavior and comparing it to the expected behavior is an important step in debugging any errors.

## Solving Problems

The following task is an example of a program that is correctly coded and will display a correct solution.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: "))
num 2 = float (input ("Enter the second number: "))
result $=$ num1 + num2
print ( $\mathbf{f}$ "The sum of \{num1\} and (num2\} is: \{result\}")
The following task is an example of the same code as above, but with an error that will cause the program to display an error message.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 = float(input("Enter the first number: "
num2 = float(input("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and (num2\} is: \{result\}")
When this code is inputted in Python, the following error message will occur.
File "example.py", line 1
num1 = float(input("Enter the first number: "
SyntaxError: unexpected EOF while parsing
After reading the error message, it is noted there is a syntax error near the end of line four. To solve this problem, the code must be fixed and the correct syntax should be used. Once the error has been resolved the code will match the first example given.
Another example of a potential problem and solution is shown in the example below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
$\begin{aligned} \text { num1 } & =\text { float (("Enter the first number: ")) } \\ \text { num2 } & =\text { float (("Enter the second number: ")) }\end{aligned}$
result $=$ num1 + num2
print(f"The sum of \{num1\} and (num2\} is: \{result\}")
In this example, the code was copied over from a reference material, but the programmer missed putting in the input function after the float function. Without the input function, the numbers added by the user would not become a string, and then into a float. This would display an error. One way to fix this issue would be to use a search engine to find the error or double-check the source of the code for missing information. This issue could also be resolved by analyzing the reference material and double checking for errors. The corrected code will appear as shown below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: "))
num2 $=$ float(input("Enter the second number: "))
result $=$ num1 + num2

## Update to Content Accepted by SRP

```
 print(f"The sum of {num1} and {num2} is: {result}")
```

```
Another example of a code with errors is shown below.
\# This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
 num1 \(=\) float(input("Enter the first number: "))
 num \(2=\) float(input("Enter the second number: "))
 result \(=\) num1 + num2
 print(f"The sum of num1 and num2 is: result")
```

In this code, there are no brackets around the 'num1' and num2' or the 'result' displays
in the print function. This would cause a runtime error, possibly causing the program to
crash. To resolve this issue, look at language documentation such as Python
documentation. This programming language code documentation can help explain
what is required for a code to be functional. The corrected code is shown below.
\# This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
num1 $=$ float(input("Enter the first number: "))
num $2=$ float (input ("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
-iCEV $\overline{\text { copyngrtcey Nutimedia, uc }}$

## (SE)(Breakout(s)) and (Citation Type(s))

(4)(J)(vi), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Error Types and Debugging Strategies (Slides 10-20),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644

Description of the specific location and hyperlink to the exact location of the proposed new content
Error Types and Debugging Strategies Student Handout-Testing Program Solutions,
https://login.icevonline.com/download/c46dac71-1b97-4a29-b4b4-8f45c0d2c910
This Student Handout is found in the Error Types \& Debugging Strategies lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content Insert a screenshot of your currently adopted content.

| Debugging |
| :--- |
| - Is the process of identifying and fixing |
| errors or bugs in a software program |
| - Is a crucial step in the software |
| development process |
| -helps to ensure the final product is reliable |
| and functional |
| - Requires careful language documentation |
| to keep track of progress and methods |


| Critical Thinking |
| :--- |
| - Is often the first step in debugging |
| - Requires utilization of problem-solving |
| skills, such as: |
| -identifying the problem |
| -brainstorming possible causes of the problem |
| -planning strategies and methods to solve the |
| problem |

11


| Print Statements |
| :--- |
| - Is a technique involving adding print |
| statements to the code to display the |
| values of variables and check the flow of |
| the program |
| - displays the values of variables |
| -checks the flow of the program |
| -helps identify where the error is occurring and |
| which values are being processed at the point |



2
6/21/2024 6/21/2024



## Screenshot of Proposed New Content

Insert a screenshot of your proposed new content.

## Testing Program Solutions

Testing Program Solutions with Valid and Invalid Test Data
Test data is what a user inputs that allows a function to be performed to test a system of programs. Valid test data is when the information added is in a recognizable range and format. When test data is invalid, it is not recognized by the program and will produce errors. The code below is an example of a program with invalid test data
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: 8 "))
num $2=$ float (input("Enter the second number: none "))
result = num1 + num2
print (f"The sum of \{num1\} and \{num2\} is: \{result\}")
When examining the code, the num2 input is not a number, but a word inserted instead. In this scenario, the code would not recognize a term other than a number and would not produce an answer. This would result in a ValueError code if tested. To make this test data valid, the word 'none' would need to be replaced with a number. Analyzing the resulting behavior and comparing it to the expected behavior is an important step in debugging any errors.

## Solving Problems

The following task is an example of a program that is correctly coded and will display a correct solution.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: "))
num $2=$ float (input ("Enter the second number: "))
result = num1 + num2
print(f"The sum of \{num1\} and (num2\} is: \{result\}")
The following task is an example of the same code as above, but with an error that will cause the program to display an error message.
\# This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
num1 = float(input("Enter the first number: "
num2 $=$ float(input("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and (num2\} is: \{result\}")
When this code is inputted in Python, the following error message will occur.
File "example.py", line 1
num1 $=$ float (input("Enter the first number: "
SyntaxError: unexpected EOF while parsing
After reading the error message, it is noted there is a syntax error near the end of line four. To solve this problem, the code must be fixed and the correct syntax should be used. Once the error has been resolved the code will match the first example given.

Another example of a potential problem and solution is shown in the example below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (("Enter the first number: "))
num2 $=$ float(("Enter the second number: ") $)$
result $=$ num1 + num2
print (f"The sum of \{num1\} and (num2\} is: \{result\}")
In this example, the code was copied over from a reference material, but the programmer missed putting in the input function after the float function. Without the programmer missed putting in the input function, the numbers added by the user would not become a string, and then input function, the numbers added by the user would not become a string, and the
into a float. This would display an error. One way to fix this issue would be to use a into a float. This would display an error. One way to fix this issue would be to use a
search engine to find the error or double-check the source of the code for missing information. This issue could also be resolved by analyzing the reference material and double checking for errors. The corrected code will appear as shown below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: "))
num $2=$ float(input("Enter the second number: "))
result $=$ num1 + num2

## Update to Content Accepted by SRP

```
print(f"The sum of {num1} and {num2} is: {result}")
```

```
Another example of a code with errors is shown below.
\# This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
 num1 \(=\) float(input("Enter the first number: "))
 num \(2=\) float(input("Enter the second number: "))
 result \(=\) num1 + num2
 print(f"The sum of num1 and num2 is: result")
```

In this code, there are no brackets around the 'num1' and num2' or the 'result' displays
in the print function. This would cause a runtime error, possibly causing the program to
crash. To resolve this issue, look at language documentation such as Python
documentation. This programming language code documentation can help explain
what is required for a code to be functional. The corrected code is shown below.
\# This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
num1 $=$ float(input("Enter the first number: "))
num $2=$ float(input ("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
-iCEV $\overline{\text { copyngrtcey Nutimedia, uc }}$
(SE)(Breakout(s)) and (Citation Type(s))
(4)(J)(vii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Error Types and Debugging Strategies (Slides 10-20), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21644

Description of the specific location and hyperlink to the exact location of the proposed new content Error Types and Debugging Strategies Student Handout-Testing Program Solutions, https://login.icevonline.com/download/c46dac71-1b97-4a29-b4b4-8f45c0d2c910 This Student Handout is found in the Error Types \& Debugging Strategies lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content Insert a screenshot of your currently adopted content.

| Debugging |
| :--- |
| - Is the process of identifying and fixing |
| errors or bugs in a software program |
| - Is a crucial step in the software |
| development process |
| -helps to ensure the final product is reliable |
| and functional |
| - Requires careful language documentation |
| to keep track of progress and methods |


| Critical Thinking |
| :--- |
| - Is often the first step in debugging |
| - Requires utilization of problem-solving |
| skills, such as: |
| -identifying the problem |
| -brainstorming possible causes of the problem |
| -planning strategies and methods to solve the |
| problem |

11


| Print Statements |
| :--- |
| - Is a technique involving adding print |
| statements to the code to display the |
| values of variables and check the flow of |
| the program |
| - displays the values of variables |
| -checks the flow of the program |
| -helps identify where the error is occurring and |
| which values are being processed at the point |



2
6/21/2024 6/21/2024



## Screenshot of Proposed New Content

Insert a screenshot of your proposed new content.

## Testing Program Solutions

Testing Program Solutions with Valid and Invalid Test Data
Test data is what a user inputs that allows a function to be performed to test a system of programs. Valid test data is when the information added is in a recognizable range and format. When test data is invalid, it is not recognized by the program and will produce errors. The code below is an example of a program with invalid test data
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: 8 "))
num $2=$ float (input("Enter the second number: none "))
result = num1 + num2
print (f"The sum of \{num1\} and \{num2\} is: \{result\}")
When examining the code, the num2 input is not a number, but a word inserted instead. In this scenario, the code would not recognize a term other than a number and would not produce an answer. This would result in a ValueError code if tested. To make this test data valid, the word 'none' would need to be replaced with a number. Analyzing the resulting behavior and comparing it to the expected behavior is an important step in debugging any errors.

## Solving Problems

The following task is an example of a program that is correctly coded and will display a correct solution.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: "))
num $2=$ float (input ("Enter the second number: "))
result = num1 + num2
print(f"The sum of \{num1\} and (num2\} is: \{result\}")
The following task is an example of the same code as above, but with an error that will cause the program to display an error message.
\# This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
num1 = float(input("Enter the first number: "
num2 $=$ float(input("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and (num2\} is: \{result\}")
When this code is inputted in Python, the following error message will occur.
File "example.py", line 1
num1 $=$ float (input("Enter the first number: "
SyntaxError: unexpected EOF while parsing
After reading the error message, it is noted there is a syntax error near the end of line four. To solve this problem, the code must be fixed and the correct syntax should be used. Once the error has been resolved the code will match the first example given.

Another example of a potential problem and solution is shown in the example below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (("Enter the first number: "))
num2 $=$ float(("Enter the second number: ") $)$
result $=$ num1 + num2
print (f"The sum of \{num1\} and (num2\} is: \{result\}")
In this example, the code was copied over from a reference material, but the programmer missed putting in the input function after the float function. Without the programmer missed putting in the input function, the numbers added by the user would not become a string, and then input function, the numbers added by the user would not become a string, and the
into a float. This would display an error. One way to fix this issue would be to use a into a float. This would display an error. One way to fix this issue would be to use a
search engine to find the error or double-check the source of the code for missing information. This issue could also be resolved by analyzing the reference material and double checking for errors. The corrected code will appear as shown below.
\# This is a sequential subtask. It asks the users for two numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: "))
num $2=$ float(input("Enter the second number: "))
result $=$ num1 + num2

## Update to Content Accepted by SRP

```
print(f"The sum of {num1} and {num2} is: {result}")
```

Another example of a code with errors is shown below.
\# This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
num1 $=$ float (input("Enter the first number: "))
num2 $=$ float(input("Enter the second number: "))
result = num1 + num2
print(f"The sum of num1 and num2 is: result")
In this code, there are no brackets around the 'num1' and num2' or the 'result' displays
in the print function. This would cause a runtime error, possibly causing the program to
rash. To this issue, look at anguage do such as Python
what is required for a code to be functional. The corrected code is shown below
\# This is a sequential subtask. It asks the users for two
numbers and then it will add them together.
num1 $=$ float(input("Enter the first number: "))
num2 $=$ float(input("Enter the second number: "))
result $=$ num1 + num2
print(f"The sum of \{num1\} and \{num2\} is: \{result\}")
-iCEV
(SE)(Breakout(s)) and (Citation Type(s))
(4)(Q)(i), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Problem Solving with Algorithms Programming Concepts (00:50-1:41), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21655

Description of the specific location and hyperlink to the exact location of the proposed new content Problem Solving with Algorithms Student Handout-Problem Solving with Algorithms, https://files.icevonline.com/html/CEV81115 V2 HTML/CEV81115 V2 HTML Student Handout -
Problem Solving with Algorithms.htm
This Student Handout is found in the Problem Solving with Algorithms lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

Ar2024,4.41 PM

## Problem Solving with Algorithms

The content within this transcript has been created utilizing a third-party software company which complies with all federal accessibility laws and international standards for web accessibility, providing a measured accuracy rate of 99.6 percent.

## 1. Common Algorithms

TEXT ON SCREEN
Problem Solving with Algorithms
Common Algorithms
What are algorithms? An algorithm is a set of well-defined logical steps to follow when performing a task. For example, the procedure or algorithm for boiling water would be fill a pot with water. Place the pot on a burner on the stove. Turn on the burner to high. Observe the water until it starts bubbling. When the water is bubbling, the water is boiling.
When are algorithms used? Algorithms are used in every part of computer science. They form the field's backbone. In computer science, an algorithm gives the computer a specific set of instructions, which allows the computer to do everything, be it running a calculator or running a rocket

Computer programs are at their core algorithms written in programming languages that the computer can understand. Computer algorithms play a big role in how social media the computer can understand. Computer algorithms play a big role in how social med
works, which posts show up, which ads are seen, and so on. These decisions are all warks, which posts

Programmers who build search engines use algorithms to optimize searches, predic what users are going to type, and more. Much of computer programming involves using algorithms to solve problems, such as increasing the relevance of search results or making websites load faster. Programming has almost unlimited uses and applications.

Smartphones are just one example of devices utilizing programming. Although each app is programmed differently for different functions, all programming uses similar logic to process data and produce results. Another example where programming is especially useful is the field of data science and analytics. Many companies collect user data to make product decisions. These data collections are very large and need to be organized, sorted, and manipulated before analysis can begin. The programming language Python is used extensively for data analysis.

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 620024,431 PM |  | thea com | arntanuceve |
| The Euclidean algorithm is a better way of finding the greatest common factor. It works as follows. Given two numbers, where $a$ is the larger value and $b$ the smaller, divide $a$ $b y b$ and get the remainder $r$. Then replace $a$ with $b$ and replace $b$ with $r$. Repeat this process until r equal 0 . When the remainder equal $\mathrm{O}, \mathrm{b}$ is the greatest common factor of the two numbers. |  |  |  |
| IMAGE ON SCREEN-A graphic of a computer screen with the following text: Find the GCF of a and b (where $\mathrm{a}>\mathrm{b}$ ): |  |  |  |
| Repeat until $\mathrm{r}=0$ |  |  |  |
| $a+b-$ ? | $r=$ ? |  |  |
| $a \div$ |  | $\begin{aligned} & r=? \\ & b=? \end{aligned}$ | $\mathrm{r}=0$ |

Here's an example. Find the greatest common factor of 30 and 12. First, divide the larger number 30 by the smaller number 12 . The result is 2 with a remainder of 6 .

Now continue and divide 12 by 6, the remainder in the previous step. 12 divided by 6 equals 2 with no remainder. Because there is no remainder, the task is complete. And the last number used to divide is the greatest common factor, which in this case is 6 .

Let's do another example. Find the greatest common factor of 123 and 36.123 divided by 36 is 3 with a remainder of 15 . Continue to divide 36 by 15 because 15 was the remainder of the previous step.

36 divided by 15 equals 2 with a remainder of 6 . Continue to divide 15 by 6 , which equals 2 with a remainder of 3 . And, finally, 6 divided by 3 equals 2 with no remainder. Therefore, our greatest common factor is 3 .

## TEXT ON SCREEN

Common Algorithms:...
...Finding the biggest number-- here is another type of calculation.
Given three integer numbers, called num1, num2, and num3, respectively find the largest number using an algorithm like this. Check if num1 is greater than num2. If true check if num1 is greater than num3. If true, then show num1 is the largest number. If false, then show num3 as the largest number. If num1 is not greater than num2, check if num2 is greater than num3. If true, then show num2 to as the largest number. If false, then show num3 as the largest number. This algorithm or set of steps will always work given any three numbers.
MAGE ON SCREEN- A graphic organizer is displayed.
The very top box: find the largest number [num1], [num2], [num3]
Branching from the above box it splits into two boxes: on the left is true and on Branching from
the right is false.

G20024,431 PM

Common algorithms-- when writing an algorithm, it's often helpful to have a good understanding of some common, well-known algorithms. This helps save time because programmers can re-use or adapt the algorithm to fit their needs.

For example, to sort the items of a list, often referred to as an array, into a particular order, it is helpful to refer to sorting algorithms
IMAGE ON SCREEN- A graphic displays four books and they are labeled A, B, C, and $D$, from left to right. A and $D$ are then switched, so $D$ is on the far left and $A$ is $B$ is on the right in the middle. Therefore, the books end up in the order $D, C, B$, and $A$ from left to right.

Similarly, searching algorithms are used to find and retrieve an element from wherever It is stored in a data structure.
IMAGE ON SCREEN- A computer screen is displayed with an algorithm: array [duck, duck, goose]. Then a magnifying glass is seen at the bottom by the word goose. This means the searching algorithm is looking for goose. The magnifying glass then goes up to the algorithm to find the word goose.

Finding the Greatest Common Factor, GCF. The greatest common factor, sometimes called the greatest common divisor, is the largest number that divides two or more numbers without a remainder. For example, the greatest common factor of 4 and 10 is 2 because 2 is the largest number divisible into 4 and 10 without a remainder. IMAGE ON SCREEN- The numbers 4 and 10 are displayed. Under 4 are two lines each pointing to the number 2 . Under 10 are two lines, one pointing to the number 5 and the other pointing to the number $\mathbf{2}$. Number 2 is circled under both 4 and 10.

Computing a greatest common factor is important because it allows us to reduce fractions efficiently. On paper, it may seem simple to explain the process or algorithm of finding the greatest common factor.
One way is to simply divide two numbers by all the numbers less than the smaller number until the largest number that divides into both is found. This strategy will work However, there is a better way to reduce the number of total calculations, which increases overall efficiency
IMAGE ON top. The numbers 4 and 10 are on screen. Underneath $\mathbf{4}$ are the following circled. Underneath 10 are the following equations: $10 \div 4=2.5$ marked out, $10 \div 3$ $=3.333 \ldots$ marked out, and $10 \div 2=5$ with the 2 in the equation circled.

## Boxes underneath true:

is [num1] > [num3] ?
Branching into two: True on the left or False on the right Box underneath True: [num1] is the largest number Box underneath False: [num3 is the largest number Boxes underneath Fals
is [num2] > [num3] ?
Branching into two: True on the left or False on the right
Box underneath True: [num2] is the largest number
Box underneath False: [num3] is the largest number
Let's work through an example. Suppose num1 equals 6, num2 equals 10, and num3 equals 25 . Now use the algorithm above to determine the largest number. Is num question is, is num2 to greater than num3? In other words, is 10 greater than 25 ? The question is, is num2 to greater than num3? In other words, is 10 greater than IMAGE ON SCREEN-A graphic organizer is displayed.
The very top box: find the largest number num $=6$, num2 $=10$, num $3=25$ The next box branching down from the top box: is [num1] > [num2] ? $6>10$ ? Branching from the above box it splits into two boxes: on the left is true and on the right is false.
Boxes underneath true:
is [num1] > [num3] ?
Branching into two: True on the left or False on the right
Box underneath True: [num1] is the largest number
Box underneath False: [num3 is the largest number
Boxes underneath False:
is [num2] > [num3] ? $10>25$ ?
Branching into two: True on the left or False on the righ Box underneath True: [num2] is the largest number Box underneath False: [num3] is the largest number, $\mathbf{2 5}$ is the largest number

## TEXT ON SCREEN

Common Algorithms:...
...Finding primes-a prime number is a positive integer greater than 1 that can only be divided by itself and 1 . The numbers $2,3,5,7$, et cetera are prime numbers, as they do not have any other factors.
IMAGE ON SCREEN- A chart of prime numbers is displayed. The chart includes numbers:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 , 181, 191, 193, $197,199,211,232,129,233,239,241,251,257,263,259,271$, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,
277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379,

AR20124.4.31 PM
${ }^{383}, 389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479$, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, $601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701$, $709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823$, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 967, 971, 977, 983, 991, 997, 953

To test if a number is prime, check every number greater than 1 to see if the number divides the potential prime number.

One of the most widely used applications of prime numbers in computing is an encryption system. In 1978, Ron Rivest, Adi Shamir, and Leonhard Adleman combined some simple known facts about numbers to create RSA encryption, named after the inventors. The system they developed allows for the secure transmission of information, such as credit card numbers, online. The first ingredient required for the algorithm are two large prime numbers. The larger the numbers, the safer the encryption.

## TEXT ON SCREEN

Common Algorithms:..
...Making change-- when making a purchase with cash, the amount of change due is calculated using another common algorithm. Find the sum of all the purchases to store in a variable named totalcost. Input the cash paid in a different variable named amountPaid. Subtract total cost from amountPaid to find the change stored in a third variable named change. change equals amount paid minus totalCost.

## TEXT ON SCREEN

Common Algorithms:..
...Finding the average-- to find the arithmetic average or mean, add up a list of numbers. And then divide by the quantity of numbers summed up. Here is a set of eight numbers- $4,5,1,2,9,7,10,8$. The sum of the numbers is 4 plus 5 plus 1 plus 2 plus 9 plus 7 plus 10 plus 8 , which equals 46 . So the average is 46 divided by 8 , which comes to 5.75
2. Programming Concepts

TEXT ON SCREEN
Problem Solving with Algorithms
Probgramming Concepts
Part of learning how to program is learning what tools and functions can be leveraged to solve problems and write custom algorithms. When it comes to solving problems thed first step is to fully understand the problern at hand. Without proper understanding, it's


For example, if a contact form prompts a user to enter data into a database, the program must first ask the user for the data before it can be saved to the database. Oherwise, there is no data to save.
IMAGE ON SCREEN- A graphic of website. On the website Is the text Joln the mailing list and there is a place to enter an email address. Then there is a button to submit.
Conditional logic. Decision-making problems involve conditional statements or branching. Conditional statements are features of programming languages that tell the computer to execute certain actions provided certain user-defined conditions are met. IMAGE ON SCREEN- Conditional statement or branching graphic Begins at the word START
The IF stanen (condition) box
If false it branches the left or true on the right
If true it branches to a THEN (code) statement
Both else and then statements branch into the END statement
For example, a program used to enter student grades may ask a teacher to input grades until the entire class has a grade. Once that condition is met, the program will stop asking the teacher for grades.

Conditional statements are used through the various programming languages to instruct the computer on the decision to make when given some conditions. These decisions are made if and only if the pre-stated conditions are either true or false, depending on the functions the programmer has in mind.
IMAGE ON SCREEN- Conditional statement or branching graphic.
Begins at the word START
Branches to an IF (condition) box
The IF statement branches into false on the left or true on the right
If false it branches to an ELSE (code) statemen
If true It branches to a THEN (code) statement
Both else and then statements branch into the END statement
All programming languages have conditional expression syntax, although the syntax slightly differs from one programming language to the others.

Branching versus non-branching. When writing algorithms, it's often helpful to use a series of conditional statements to test complex criteria and execute appropriate to give precise instructions based on a variety of conditions and then output a relevant result. As opposed to branching, non-branching programming simply refers to

G220124, 4.31 PM
easy to make assumptions about problems and potential solutions without really getting a clear picture of what's going on
Once a problem has been identified, take time to consider a solution and focus on writing clear instructions one step at a time. Test the code to ensure it works as expected. Then continue to the next step.
Importance of order when using algorithms. Sequential algorithms follow a step-by-step process, and the order of those steps are crucial to ensuring the correctness of an algorithm.

Here's an algorithm for translating a word into Pig Latin.
TEXT ON SCREEN

One, append a hyphen
TEXT
PIG-

Two, append the first letter
TEXT ON SCREEN
PIG-P
Three, append $\mathrm{A}, \mathrm{Y}$.
TEXT ON SCREEN
PIG-PAY
Four, remove the first letter.
TEXT ON SCREEN
IG-PAY
If the steps are completed out of order, the result would be different and incorrect. TEXT ON SCREEN
PIG=IG-PAY in Pig Latin
Sequential algorithms must follow the same order of the steps to be effective TEXT ON SCREEN

TEX
1
2

G20224.431 PM
programs that don't use conditional statements a real world example would be furniture assembly instructions.

A program that doesn't use conditionals might resemble an input program that asks the user for data input to populate a database.
Think of an email sign-up form on a website. You enter your information and click Submit. There are not different paths or conditions that need to be accounted for. IMAGE ON SCREEN-A graphic of a website contact us page. There are four areas for a user to fill out: Name- Jonah Torres, Email- jonahpt@email.com,
Subject- Hours, and Message- What are your updated store hours? Subject- Hours, and Message- What are your updated store hours?

Examples of branching programming. Conditional statements have a simple job-check whether a condition has been met and return True if yes, and False if not. Then based on those outputs, programmers can automate other decisions or actions and so on.

Suppose a programmer is working on a program for teachers to enter student grades into a grade book. The programmer should consider how the data will be entered and saved into a database and create some conditional expressions to help make the teacher's job easier and minimize errors. To help avoid typos, the program could be written to check that values entered as grades are numeric or that the scores are no greater than a maximum value.

If a wrong number was entered, the program could display the grade in bright red or reject the input until an acceptable value is entered.

Then a variable could be created to capture whether or not all scores have been entered. It would initially be set to False. And then once all grades are entered, it would
IMAGE ON SCREEN- Numbers are counted from 1 to 100.
This type of variable is called a Boolean variable. These only have two states: True or False.
Iteration. Iteration is another way to say repetition. Programming that uses iteration will have some kind of loop that repeats a block of code. The repetition will terminate after a predetermined number of repetitions or when a certain condition is met. If there is a process needing to be run over and over again, its best to write the code so it can loop programming and makes the process more efficient Any program without a need to repeat a section of code could be considered non-lterative.

G202024, 4.31 PM
Using loops. Iteration is implemented using the loop in programming. The two most common types of loops are for-loop and the while-loop. The for-loop is used when a loop needs to be run a certain number of times. The other type of loop, the while-loop repeats until a specific condition is true. This is particularly useful when it's difficult or impossible to predict how many times the loop will execute.

Sequential search using loops. In computer science, linear search or sequential search is a method for finding a particular value in a list by checking each element in sequence until the desired element is found or the list is exhausted. The list doesn't have to be in order.

Here is an example. The process starts with setting up variables TEXT ON SCREEN
GOAL: find " 6 "
The first variable captures the search position and is initially set to a value of 0 . TEXT ON SCREEN
var position $=0$
The search position is the current position or current value being tested.
TEXT ON SCREEN
var position $=0$
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
A second Boolean variable stores one of two possible values, True or False
TEXT ON SCREEN
var position = 0
var isFound =
array $[2,4,6,8]$
$\mathbf{2}$ is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
At the start, this should be set to False.
TEXT ON SCREEN
var position $=0$
var isFound = false
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3

8220224, 4.31 PM

Once the condition is met, the variable will be instead set to True, and the code will stop running since the desired output has been generated.
TEXT ON SCREE
var position = 2
var isFound = true
array $[2,4,6,8]$
2 is in position 0,4 is in position 1, 6 is in position 2,8 is in position 3
The code works by looking at search position 0 and testing its condition.
TEXT ON SCREEN
var position = 0
var isFound = false
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
If the condition is met, the second variable is changed from False to True and the process is over.
TEXT ON SCREEN
var position = 0
var isFound = false to true
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
is " 2 " equal to " 6 " ?
If the condition is not met, and the value of the position variable is less than the length of the list, the code is set up to increment the position variable by 1.
TEXT ON SCREEN
var position $=0+1$
var isFound $=$ false
$0<3=$ true
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
is " 2 " equal to " 6 " ?

A20024.4.31 PM

This means the code will now check the contents of the second position and repeat the process. The code terminates when found equals True or when position equals the total number of positions, which means the condition was never met and found equals False still.
TEXT ON SCREEN
var position =2
var isFound = true
array $[2,4,6,8]$
array $[2,4,6,8]$
2 is in position 0,4 is in position 1, 6 is in position 2,8 is in position 3
is " 6 " equal to " 6 " ?
The power of iterative programming. Suppose a teacher wants to give their class 10 extra points on an exam. While the teacher could manually adjust each grade and do the calculation for every student, iterative program is useful because the calculation of adding 10 to each grade is repeated

This example demonstrates the calculation using Python but the logic for "for" and "while" loops is similar across languages.
IIAGE ON SCREEN- Coding is show on screen as 70, $\mathbf{7 0}, 50,75,90]$ with listOfTwentyScores in light blue and all numbers in yellow newScores $=[$ ] with newScores in light blue
for score in listofrwentyScores: with for and in in dark blue and
listofiwentyScores in light blue
newScores.append( score + 10) with newScores in light blue and score, .append and 10 in yellow
print( newScores) with print( in yellow and newScores in light blue
\#Output: In green
\#[95, 100, 80, 85, 93, 92, 91, 55, 88, 100, 66, 87, 55, 77, 90, 100, 80, 60, 85, 100] in green
The code starts with a variable storing an array of the grades of the 20 students in the class separated with commas. This variable is called list of 20 scores.
MAGE ON SCREEN-Codi, $0,70,75,83$, $82,81,45,78,90,56$
6, 77, 45, 67, 80, 90 $\mathbf{7 0}, 50,75,90]$ with listOfTwentyScores in light blue and all numbers in yellow

A new variable is created to hold the final values. Right now, it's blank.
*12
-
IMAGE ON SCREEN- Coding is shown on screen as follows:
listOfTwentyScores $=[85,90,70,75,83,82,81,45,78,90,56,77,45,67,80,90$, 70,50,75,90] with listOfTwentyScores in light blue and all numbers in yellow newScores = [ ] with newScores in light blue

Then for-loop starts. In plain language, this section accesses one score at a time within the list of 20 scores variable, adds 10 to it and appends it to the new score's variable Appending the new score allows the variable to hold multiple values and not get overwritten. This repeats until all 20 scores have been adjusted and stored in the new scores variable.
IMAGE ON SCREEN- Coding is shown on screen as follows:
listOfTwentyScores $=[85,90,70,75,83,82,81,45,78,90,56,77,45,67,80,90$, 70,50,75,90] with listOfTwentyScores in light blue and all numbers in yellow newScores $=[]$ with newScores in light blue
for score in IistOfTwentyScores: with for and in in dark blue and
listOfTwentyScores in light blue
newScores.append (score +10) with newScores in light blue and score, .append and 10 in yellow
print( newScores) with print( in yellow and newScores in light blue
\#Output: in green
\#[95, 100, 80, 85, 93, 92, 91, 55, 88, 100, 66, 87, 55, 77, 90, 100, 80, 60, 85, 100] in green

Knowing how to choose the best tool. Many problems in programming can be related back to one of the algorithms previously discussed. For example, an iterative looking program should be used if certain code can be reused, while a one-time calculation or action would use a non-iterative sequential algorithm.

Computer programmers constantly use algorithms, whether it's an existing algorithm for a common problem like sorting a list of values, or a completely new algorithm unique to the program. By understanding algorithms, programmers can make better decisions about which existing algorithms to use and learn how to make new algorithms that are correct and efficient.

## Problem Solving with Algorithims

Sequential Algorithm for Non-Branching Problems:
In computer programming and algorithm design, the term "non-branching" refers to a situation or code structure where there are no decision points or branches based on conditional statements.

- In a non-branching scenario, the code proceeds sequentially without any
alternative paths based on conditions
- Sequential algorithms for non-branching problems often involve iteration, calculation or manipulation of data without the need to make choices based on conditions
- Examples:
- summing an array
- finding the maximum element in a list
- reversing the order of elements in a sequence

Example: Sequential algorithm for calculating the sum of an array
Problem: Given an array of numbers, calculate the sum of all the elements
Algorithm:

1. Initialize a variable sum to 0 .
2. For each element in the array:
a. Add the element to the sum.
3. Display or return the sum.

## Sequential Algorithm for Non-lterative Problems:

Non-iterative problems refer to computational or algorithmic problems that do not require the use of iteration or repetitive structures to arrive at a solution.

- Iteration typically involves using loops or recursive functions to perform a set
of instructions repeatedly until a specific condition is met
- Examples:
- mathematical computations
- for example: calculating the square root of a number
- string manipulations
- for example: checking if a string is a palindrome
- direct conversions or computations that can be accomplished in a single pass through the data
- for example: calculating the average of a list of numbers

Example: Algorithm to convert Celsius to Fahrenheit
Problem: Convert a temperature from Celsius to Fahrenheit
Algorithm:

1. Accept a temperature in Celsius as input.

## Unpredictable and are often used in various algorithms and applications

The following are examples of random numbers in different languages.
C++: 'rand()'
Python: 'random()'
JavaScript: 'Math.random()

## Loops:

Structures that repeat a specific block of code until a certain condition is met
The following are examples of loops in different languages:

```
Python:
Problem: Print numbers from 1 to 5
Solution using a for loop
for i in range(1, 6):
print() # Move to the next line
Java:
public class LoopExample
 public static void main(String[] args) {
 // Solution using a for loop
 for (int i=1; i<= 5;++i){
 }
 System.out.println(); // Move to the next line
 }
}
C++:
#include <iostream>
int main() {
 // Problem: Print numbers from 1 to 5
 // Solution using a for loop
 for (int i=1;i<= 5; ++i) {
```

2. Calculate the equivalent temperature in Fahrenheit using the
formula: Fahrenheit $=($ Celsius $* 9 / 5)+32$.
formula: Fahrenheit $=$ (Celsius $* 9 / 5)+32$.
3. Display or return the temperature in Fahrenheit.
Sequential Algorithm for Branching Control Statements:
Branching control statements, also known as conditional statements, are programming
constructs that enable the execution of different sets of instructions based on certain
constructs that enable the execution of different sets of instructions based on certai
different paths, depending on whether a specified condition is true to branch into
primary branching control statements are the "if" statement and the "switch" statement.
    - The "if" statement is a fundamental branching control statement that allows a
The "if" statement is a fundamental branching control statement that allows a
program to make decisions based on a given condition
The "if" statement can be extended with an optional "else" clause to specify
n alternative set if instructions to be ex opted when the condition is false
        - The "switch" statement is used when there are multiple possible conditions to
The "switch" statement is used when ther
be checked against a single expression
The "switch" statement compares the expression against each case, and if
a match is found, the corresponding block of code is executed. The "break"
statement is used to exit the switch block
Example: Algorithm to determine if a number is even or odd
Problem: Determine if a given integer is even or odd
Problem: De
Algorithm:
Algorithm: Accept an integer as input.
4. Accept an integer as input.
5. If the input modulo 2 equals
a. Display "The number is even.
6. Else:
a. Display "The number is odd."
Including a switch:
7. Accept an integer as input.
8. Switch on the result of the input modulo 2
a. Case 0:
i. Display "The number is even."
ii. Break.
b. Case 1:
i. Display "The number is odd."
ii. Break.
c. Default:
i. Display "Invalid input." (optional, in case the input is not
an integer)
Random Numbers:
\}
std::cout << std::endl; // Move to the next line
return 0;
\}

Conditionals:
Allow the execution of different code blocks based on whether a specified condition
Allow the execution of diff
The following are examples of conditionals in different languages:

## Python:

```
Python:
Problem: Determine if a number is even or odd
Get user input
number = int(input("Enter an integer: "))
Use a conditional statement to check if the number is even or odd
if number % 2 == 0
 print(f"{number} is even.")
else:
Java:
Java:
public class ConditionalExample
 public static void main(String[] args) {
 // Problem: Determine if a number is even or odd
 // Get user input
 Scanner scanner = new Scanner(System,in);
 System.out.print("Enter an integer: ");
 int number = scanner.nextInt();
 // Use a conditional statement to check if the number is even
or odd
 if (number % 2 == \boldsymbol{0}){
 } else { (%).out.println(number + " is odd.");
```


## Update to Content Accepted by SRP

```
 // Close the scanner to avoid resource leaks
 scanner.close();
 }
C++:
#include <iostream>
int main()
 // Problem: Determine if a number is even or odd
 // Get user input
 int number;
 std::cout << "Enter an integer: ";
 std::cin >> numben
 // Use a conditional statement to check if the number is even or
 if (number % 2 == 0))
 std::cout << number << " is even." << std::endl;
 } else
 } std::cout << number << " is odd." << std::endl;
 }
 return 0;
 -CEV %
```

(SE)(Breakout(s)) and (Citation Type(s))
(4)(Q)(ii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Problem Solving with Algorithms Programming Concepts (00:50-1:41),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21655
Description of the specific location and hyperlink to the exact location of the proposed new content
Problem Solving with Algorithms Student Handout-Problem Solving with Algorithms, https://files.icevonline.com/html/CEV81115 V2 HTML/CEV81115 V2 HTML Student Handout -
Problem Solving with Algorithms.htm
This Student Handout is found in the Problem Solving with Algorithms lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

Ar2024,4.41 PM

## Problem Solving with Algorithms

The content within this transcript has been created utilizing a third-party software company which complies with all federal accessibility laws and international standards for web accessibility, providing a measured accuracy rate of 99.6 percent.

## 1. Common Algorithms

TEXT ON SCREEN
Problem Solving with Algorithms
Common Algorithms
What are algorithms? An algorithm is a set of well-defined logical steps to follow when performing a task. For example, the procedure or algorithm for boiling water would be fill a pot with water. Place the pot on a burner on the stove. Turn on the burner to high. Observe the water until it starts bubbling. When the water is bubbling, the water is boiling.
When are algorithms used? Algorithms are used in every part of computer science. They form the field's backbone. In computer science, an algorithm gives the computer a specific set of instructions, which allows the computer to do everything, be it running a calculator or running a rocket

Computer programs are at their core algorithms written in programming languages that the computer can understand. Computer algorithms play a big role in how social media the computer can understand. Computer algorithms play a big role in how social med
works, which posts show up, which ads are seen, and so on. These decisions are all warks, which posts

Programmers who build search engines use algorithms to optimize searches, predic what users are going to type, and more. Much of computer programming involves using algorithms to solve problems, such as increasing the relevance of search results or making websites load faster. Programming has almost unlimited uses and applications.

Smartphones are just one example of devices utilizing programming. Although each app is programmed differently for different functions, all programming uses similar logic to process data and produce results. Another example where programming is especially useful is the field of data science and analytics. Many companies collect user data to make product decisions. These data collections are very large and need to be organized, sorted, and manipulated before analysis can begin. The programming language Python is used extensively for data analysis.

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 620024,431 PM |  | thea com | arntanuceve |
| The Euclidean algorithm is a better way of finding the greatest common factor. It works as follows. Given two numbers, where $a$ is the larger value and $b$ the smaller, divide $a$ $b y b$ and get the remainder $r$. Then replace $a$ with $b$ and replace $b$ with $r$. Repeat this process until r equal 0 . When the remainder equal $\mathrm{O}, \mathrm{b}$ is the greatest common factor of the two numbers. |  |  |  |
| IMAGE ON SCREEN-A graphic of a computer screen with the following text: Find the GCF of a and b (where $\mathrm{a}>\mathrm{b}$ ): |  |  |  |
| Repeat until $\mathrm{r}=0$ |  |  |  |
| $a+b-$ ? | $r=$ ? |  |  |
| $a \div$ |  | $\begin{aligned} & r=? \\ & b=? \end{aligned}$ | $\mathrm{r}=0$ |

Here's an example. Find the greatest common factor of 30 and 12. First, divide the larger number 30 by the smaller number 12 . The result is 2 with a remainder of 6 .

Now continue and divide 12 by 6, the remainder in the previous step. 12 divided by 6 equals 2 with no remainder. Because there is no remainder, the task is complete. And the last number used to divide is the greatest common factor, which in this case is 6 .

Let's do another example. Find the greatest common factor of 123 and 36.123 divided by 36 is 3 with a remainder of 15 . Continue to divide 36 by 15 because 15 was the remainder of the previous step.

36 divided by 15 equals 2 with a remainder of 6 . Continue to divide 15 by 6 , which equals 2 with a remainder of 3 . And, finally, 6 divided by 3 equals 2 with no remainder. Therefore, our greatest common factor is 3 .

## TEXT ON SCREEN

Common Algorithms:...
...Finding the biggest number-- here is another type of calculation.
Given three integer numbers, called num1, num2, and num3, respectively find the largest number using an algorithm like this. Check if num1 is greater than num2. If true check if num1 is greater than num3. If true, then show num1 is the largest number. If false, then show num3 as the largest number. If num1 is not greater than num2, check if num2 is greater than num3. If true, then show num2 to as the largest number. If false, then show num3 as the largest number. This algorithm or set of steps will always work given any three numbers.
MAGE ON SCREEN- A graphic organizer is displayed.
The very top box: find the largest number [num1], [num2], [num3]
Branching from the above box it splits into two boxes: on the left is true and on Branching from
the right is false.

G20024,431 PM

Common algorithms-- when writing an algorithm, it's often helpful to have a good understanding of some common, well-known algorithms. This helps save time because programmers can re-use or adapt the algorithm to fit their needs.

For example, to sort the items of a list, often referred to as an array, into a particular order, it is helpful to refer to sorting algorithms
IMAGE ON SCREEN- A graphic displays four books and they are labeled A, B, C, and $D$, from left to right. A and $D$ are then switched, so $D$ is on the far left and $A$ is $B$ is on the right in the middle. Therefore, the books end up in the order $D, C, B$, and $A$ from left to right.

Similarly, searching algorithms are used to find and retrieve an element from wherever It is stored in a data structure.
IMAGE ON SCREEN- A computer screen is displayed with an algorithm: array [duck, duck, goose]. Then a magnifying glass is seen at the bottom by the word goose. This means the searching algorithm is looking for goose. The magnifying glass then goes up to the algorithm to find the word goose.

Finding the Greatest Common Factor, GCF. The greatest common factor, sometimes called the greatest common divisor, is the largest number that divides two or more numbers without a remainder. For example, the greatest common factor of 4 and 10 is 2 because 2 is the largest number divisible into 4 and 10 without a remainder. IMAGE ON SCREEN- The numbers 4 and 10 are displayed. Under 4 are two lines each pointing to the number 2 . Under 10 are two lines, one pointing to the number 5 and the other pointing to the number $\mathbf{2}$. Number 2 is circled under both 4 and 10.

Computing a greatest common factor is important because it allows us to reduce fractions efficiently. On paper, it may seem simple to explain the process or algorithm of finding the greatest common factor.
One way is to simply divide two numbers by all the numbers less than the smaller number until the largest number that divides into both is found. This strategy will work However, there is a better way to reduce the number of total calculations, which increases overall efficiency
IMAGE ON top. The numbers 4 and 10 are on screen. Underneath $\mathbf{4}$ are the following circled. Underneath 10 are the following equations: $10 \div 4=2.5$ marked out, $10 \div 3$ $=3.333 \ldots$ marked out, and $10 \div 2=5$ with the 2 in the equation circled.

## Boxes underneath true:

is [num1] > [num3] ?
Branching into two: True on the left or False on the right Box underneath True: [num1] is the largest number Box underneath False: [num3 is the largest number Boxes underneath Fals
is [num2] > [num3] ?
Branching into two: True on the left or False on the right
Box underneath True: [num2] is the largest number
Box underneath False: [num3] is the largest number
Let's work through an example. Suppose num1 equals 6, num2 equals 10, and num3 equals 25 . Now use the algorithm above to determine the largest number. Is num question is is num2 to greater than num3? In other words, is 10 greater than 25 ? question is, is num 2 to greater than num3? In other words, is 10 greater than 25 ? Th IMAGE ON SCREEN-A graphic organizer is displayed.
The very top box: find the largest number num $=6$, num2 $=10$, num $3=25$ The next box branching down from the top box: is [num1] > [num2] ? $6>10$ ? Branching from the above box it splits into two boxes: on the left is true and on the right is false.
Boxes underneath true:
is [num1] > [num3] ?
Branching into two: True on the left or False on the right
Box underneath True: [num1] is the largest number
Box underneath False: [num3 is the largest number
Boxes underneath False:
is [num2] > [num3] ? $10>25$ ?
Branching into two: True on the left or False on the righ Box underneath True: [num2] is the largest number Box underneath False: [num3] is the largest number, $\mathbf{2 5}$ is the largest number

## TEXT ON SCREEN

Common Algorithms:...
...Finding primes-a prime number is a positive integer greater than 1 that can only be divided by itself and 1 . The numbers $2,3,5,7$, et cetera are prime numbers, as they do not have any other factors.
IMAGE ON SCREEN- A chart of prime numbers is displayed. The chart includes numbers:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 , 181, 191, 193, $197,199,211,232,272,233,239,241,251,257,263,259,271$, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,
277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379,

AR20124.4.31 PM
${ }^{383}, 389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479$, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, $601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701$, $709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823$, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 967, 971, 977, 983, 991, 997, 953

To test if a number is prime, check every number greater than 1 to see if the number divides the potential prime number.

One of the most widely used applications of prime numbers in computing is an encryption system. In 1978, Ron Rivest, Adi Shamir, and Leonhard Adleman combined some simple known facts about numbers to create RSA encryption, named after the inventors. The system they developed allows for the secure transmission of information, such as credit card numbers, online. The first ingredient required for the algorithm are two large prime numbers. The larger the numbers, the safer the encryption.

## TEXT ON SCREEN

Common Algorithms:..
...Making change-- when making a purchase with cash, the amount of change due is calculated using another common algorithm. Find the sum of all the purchases to store in a variable named totalcost. Input the cash paid in a different variable named amountPaid. Subtract total cost from amountPaid to find the change stored in a third variable named change. change equals amount paid minus totalCost.

## TEXT ON SCREEN

Common Algorithms:..
...Finding the average-- to find the arithmetic average or mean, add up a list of numbers. And then divide by the quantity of numbers summed up. Here is a set of eight numbers- $4,5,1,2,9,7,10,8$. The sum of the numbers is 4 plus 5 plus 1 plus 2 plus 9 plus 7 plus 10 plus 8 , which equals 46 . So the average is 46 divided by 8 , which comes to 5.75
2. Programming Concepts

TEXT ON SCREEN
Problem Solving with Algorithms
Probgramming Concepts
Part of learning how to program is learning what tools and functions can be leveraged to solve problems and write custom algorithms. When it comes to solving problems thed first step is to fully understand the problern at hand. Without proper understanding, it's


For example, if a contact form prompts a user to enter data into a database, the program must first ask the user for the data before it can be saved to the database. Oherwise, there is no data to save.
IMAGE ON SCREEN- A graphic of website. On the website Is the text Join the mailing list and there is a place to enter an email address. Then there is a button to submit.
Conditional logic. Decision-making problems involve conditional statements or branching. Conditional statements are features of programming languages that tell the computer to execute certain actions provided certain user-defined conditions are met. IMAGE ON SCREEN- Conditional statement or branching graphic Begins at the word START
The IF stanen (condition) box
If false it branches the left or true on the right
If true it branches to a THEN (code) statement
Both else and then statements branch into the END statement
For example, a program used to enter student grades may ask a teacher to input grades until the entire class has a grade. Once that condition is met, the program will stop asking the teacher for grades.

Conditional statements are used through the various programming languages to instruct the computer on the decision to make when given some conditions. These decisions are made if and only if the pre-stated conditions are either true or false, depending on the functions the programmer has in mind.
IMAGE ON SCREEN- Conditional statement or branching graphic.
Begins at the word START
Branches to an IF (condition) box
The IF statement branches into false on the left or true on the right
If false it branches to an ELSE (code) statemen
If true It branches to a THEN (code) statement
Both else and then statements branch into the END statement
All programming languages have conditional expression syntax, although the syntax slightly differs from one programming language to the others.
Branching versus non-branching. When writing algorithms, it's often helpful to use a series of conditional statements to test complex criteria and execute appropriate to give precise instructions based on a variety of conditions and then output a relevant result. As opposed to branching, non-branching programming simply refers to

G220124, 4.31 PM
easy to make assumptions about problems and potential solutions without really getting a clear picture of what's going on
Once a problem has been identified, take time to consider a solution and focus on writing clear instructions one step at a time. Test the code to ensure it works as expected. Then continue to the next step.
Importance of order when using algorithms. Sequential algorithms follow a step-by-step process, and the order of those steps are crucial to ensuring the correctness of an algorithm.

Here's an algorithm for translating a word into Pig Latin.
TEXT ON SCREEN

One, append a hyphen
TEXT
PIG-

Two, append the first letter
TEXT ON SCREEN
PIG-P
Three, append $\mathrm{A}, \mathrm{Y}$.
TEXT ON SCREEN
PIG-PAY
Four, remove the first letter.
TEXT ON SCREEN
IG-PAY
If the steps are completed out of order, the result would be different and incorrect. TEXT ON SCREEN
PIG=IG-PAY in Pig Latin
Sequential algorithms must follow the same order of the steps to be effective TEXT ON SCREEN

TEX
1
2

G20224.431 PM
programs that don't use conditional statements a real world example would be furniture assembly instructions.

A program that doesn't use conditionals might resemble an input program that asks the user for data input to populate a database.
Think of an email sign-up form on a website. You enter your information and click Submit. There are not different paths or conditions that need to be accounted for. IMAGE ON SCREEN-A graphic of a website contact us page. There are four areas for a user to fill out: Name- Jonah Torres, Email- jonahpt@email.com,
Subject- Hours, and Message- What are your updated store hours? Subject- Hours, and Message- What are your updated store hours?

Examples of branching programming. Conditional statements have a simple job-check whether a condition has been met and return True if yes, and False if not. Then based on those outputs, programmers can automate other decisions or actions and so on.

Suppose a programmer is working on a program for teachers to enter student grades into a grade book. The programmer should consider how the data will be entered and saved into a database and create some conditional expressions to help make the teacher's job easier and minimize errors. To help avoid typos, the program could be written to check that values entered as grades are numeric or that the scores are no greater than a maximum value.

If a wrong number was entered, the program could display the grade in bright red or reject the input until an acceptable value is entered.

Then a variable could be created to capture whether or not all scores have been entered. It would initially be set to False. And then once all grades are entered, it would
IMAGE ON SCREEN- Numbers are counted from 1 to 100.
This type of variable is called a Boolean variable. These only have two states: True or False.
Iteration. Iteration is another way to say repetition. Programming that uses iteration will have some kind of loop that repeats a block of code. The repetition will terminate after a predetermined number of repetitions or when a certain condition is met. If there is a process needing to be run over and over again, its best to write the code so it can loop programming and makes the process more efficient Any program without a need to repeat a section of code could be considered non-lterative.

G202024, 4.31 PM
Using loops. Iteration is implemented using the loop in programming. The two most common types of loops are for-loop and the while-loop. The for-loop is used when a loop needs to be run a certain number of times. The other type of loop, the while-loop repeats until a specific condition is true. This is particularly useful when it's difficult or impossible to predict how many times the loop will execute.

Sequential search using loops. In computer science, linear search or sequential search is a method for finding a particular value in a list by checking each element in sequence until the desired element is found or the list is exhausted. The list doesn't have to be in order.

Here is an example. The process starts with setting up variables TEXT ON SCREEN
GOAL: find " 6 "
The first variable captures the search position and is initially set to a value of 0 . TEXT ON SCREEN
var position $=0$
the search position is the current position or current value being tested.
TEXT ON SCREEN
var position $=0$
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
A second Boolean variable stores one of two possible values, True or False
TEXT ON SCREEN
var position = 0
var isFound =
array [2, 4, 6, 8]
$\mathbf{2}$ is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
At the start, this should be set to False.
TEXT ON SCREEN
var position $=0$
var isFound = false
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3

## Aran24.4.31 PM


This means the code will now check the contents of the second position and repeat the process. The code terminates when found equals True or when position equals the total number of positions, which means the condition was never met and found equals False still.
TEXT ON SCREEN
var position = 2
var isFound = true
array $[2,4,6,8]$
array $[2,4,6,8]$
2 is in position 0,4 is in position 1, 6 is in position 2,8 is in position 3
is " 6 " equal to " 6 " ?
The power of iterative programming. Suppose a teacher wants to give their class 10 extra points on an exam. While the teacher could manually adjust each grade and do the calculation for every student, iterative program is useful because the calculation of adding 10 to each grade is repeated

This example demonstrates the calculation using Python but the logic for "for" and "while" loops is similar across languages.
IIAGE ON SCREEN- Coding is show on screen as 70, $\mathbf{7 0}, 50,75,90]$ with listOfTwentyScores in light blue and all numbers in yellow newScores $=[$ ] with newScores in light blue
for score in listOftwentyScores: with for and in in dark blue and listoflwentyScores in light blue
newScores.append( score + 10) with newScores in light blue and score, .append and 10 in yellow
print( newScores) with print( in yellow and newScores in light blue
\#Output: In green
\#[95, 100, 80, 85, 93, 92, 91, 55, 88, 100, 66, 87, 55, 77, 90, 100, 80, 60, 85, 100] in green
The code starts with a variable storing an array of the grades of the 20 students in the class separated with commas. This variable is called list of 20 scores.
MAGE ON SCREEN COdi Th 70,75 , $83,82,81,45,78,90,56$
6, 77, 45, 67, 80, 90, $\mathbf{7 0}, 50,75,90]$ with listOfTwentyScores in light blue and all numbers in yellow

A new variable is created to hold the final values. Right now, it's blank.

620024, 4.31 PM

Once the condition is met, the variable will be instead set to True, and the code will stop running since the desired output has been generated.
TEXT ON SCREE
var position = 2
var isFound = true
array [2, 4, 6, 8]
$\mathbf{2}$ is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
The code works by looking at search position 0 and testing its condition.
TEXT ON SCREEN
var position =0
var isFound = false
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
If the condition is met, the second variable is changed from False to True and the process is over.
TEXT ON SCREEN
var position = 0
var isFound = false to true
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
is " 2 " equal to " 6 "?
If the condition is not met, and the value of the position variable is less than the length of the list, the code is set up to increment the position variable by 1 .
TEXT ON SCREEN
var position $=0+1$
var isFound $=$ false
$0<3=$ true
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
is " 2 " equal to " 6 " ?
\$12
-
IMAGE ON SCREEN- Coding is shown on screen as follows:
istOfiwentyScores $=[85,90,70,75,83,82,81,45,78,90,56,77,45,67,80,90$, $70,50,75,90]$ with listOfTwentyScores in light blue and all numbers in yellow newScores = [ ] with newScores in light blue

Then for-loop starts. In plain language, this section accesses one score at a time within the list of 20 scores variable, adds 10 to it and appends it to the new score's variable Appending the new score allows the variable to hold multiple values and not get overwritten. This repeats until all 20 scores have been adjusted and stored in the new
scores variable. scores variable.
IMAGE ON SCREEN- Coding is shown on screen as follows:
listOfTwentyScores $=[85,90,70,75,83,82,81,45,78,90,56,77,45,67,80,90$, 70,50,75,90] with listOfTwentyScores in light blue and all numbers in yellow newScores $=[]$ with newScores in light blue
for score in IistOfTwentyScores: with for and in in dark blue and
listOfTwentyScores in light blue
newScores.append (score +10) with newScores in light blue and score, .append and 10 in yellow
print( newScores) with print( in yellow and newScores in light blue
$\#[95,100,80,85,93,92,91,55,88,100,66,87,55,77,90,100,80,60,85,100]$ in green

Knowing how to choose the best tool. Many problems in programming can be related back to one of the algorithms previously discussed. For example, an iterative looking program should be used if certain code can be reused, while a one-ime calculation or action would use a non-iterative sequential algorithm.

Computer programmers constantly use algorithms, whether it's an existing algorithm for a common problem like sorting a list of values, or a completely new algorithm unique to the program. By understanding algorithms, programmers can make better decisions about which existing algorithms to use and learn how to make new algorithms that are correct and efficient.

## Problem Solving with Algorithims

Sequential Algorithm for Non-Branching Problems:
In computer programming and algorithm design, the term "non-branching" refers to a situation or code structure where there are no decision points or branches based on conditional statements.

- In a non-branching scenario, the code proceeds sequentially without any
alternative paths based on conditions
- Sequential algorithms for non-branching problems often involve iteration, calculation or manipulation of data without the need to make choices based on conditions
- Examples:
- summing an array
- finding the maximum element in a list
- reversing the order of elements in a sequence

Example: Sequential algorithm for calculating the sum of an array
Problem: Given an array of numbers, calculate the sum of all the elements
Algorithm:

1. Initialize a variable sum to 0 .
2. For each element in the array:
a. Add the element to the sum.
3. Display or return the sum.

## Sequential Algorithm for Non-lterative Problems:

Non-iterative problems refer to computational or algorithmic problems that do not require the use of iteration or repetitive structures to arrive at a solution.

- Iteration typically involves using loops or recursive functions to perform a set
of instructions repeatedly until a specific condition is met
- Examples:
- mathematical computations
- for example: calculating the square root of a number
- string manipulations
- for example: checking if a string is a palindrome
- direct conversions or computations that can be accomplished in a single pass through the data
- for example: calculating the average of a list of numbers

Example: Algorithm to convert Celsius to Fahrenheit
Problem: Convert a temperature from Celsius to Fahrenheit
Algorithm:

1. Accept a temperature in Celsius as input.

Unpredictable and are often used in various algorithms and applications
The following are examples of random numbers in different languages:
C++: 'rand()'
Python: 'random()'
JavaScript: 'Math.random()'

## Loops:

Structures that repeat a specific block of code until a certain condition is met
The following are examples of loops in different languages:

```
Python:
Problem: Print numbers from 1 to 5
Solution using a for loop
for i in range(1, 6):
print() # Move to the next line
Java:
public class LoopExample {
 public static void main(String[] args) {
 // Solution using a for loop
 for (int i=1; i<= 5;++i){
 }
 System.out.println(); // Move to the next line
 }
}
C++:
int main() {
 // Problem: Print numbers from 1 to 5
 // Solution using a for loop
```

2. Calculate the equivalent temperature in Fahrenheit using the
formula: Fahrenheit $=($ Celsius $* 9 / 5)+32$.
formula: Fahrenheit $=$ (Celsius $* 9 / 5)+32$.
3. Display or return the temperature in Fahrenheit.
Sequential Algorithm for Branching Control Statements:
Branching control statements, also known as conditional statements, are programming
constructs that enable the execution of different sets of instructions based on certain
constructs that enable the execution of different sets of instructions based on certai
different paths, depending on whether a specified condition is true to branch into
primary branching control statements are the "if" statement and the "switch" statement.
    - The "if" statement is a fundamental branching control statement that allows a
The "if" statement is a fundamental branching control st
program to make decisions based on a given condition
program to make decisions based on a given condition "en clause to
n alternative set of instructions to we
an "wis
        - The "switch" statement is used when there are multiple possible conditions to
be checked against a single expression
The "switch" statement compares the expression against each case, and if
a match is found, the corresponding block of code is executed. The "break"
a match is found, the corresponding block
statement is used to exit the switch block
Example: Algorithm to determine if a number is even or odd
Problem: Determine if a given integer is even or odd
Problem: De
Algorithm:
Algorithm: Accept an integer as input.
4. Accept an integer as input.
5. If the input modulo 2 equals
a. Display "The number is even.
6. Else:
a. Display "The number is odd."
Including a switch:
7. Accept an integer as input.
8. Switch on the result of the input modulo 2
a. Case 0:
i. Display "The number is even."
ii. Break.
b. Case 1:
i. Display "The number is odd."
ii. Break.
c. Default:
i. Display "Invalid input." (optional, in case the input is not
an integer)
Random Numbers:
\}
std::cout << std::endl; // Move to the next line
return 0;
\}

Conditionals:
Allow the execution of different code blocks based on whether a specified condition
Allow the execution of diff
The following are examples of conditionals in different languages:

## Python:

```
Python:
Problem: Determine if a number is even or odd
Get user input
number = int(input("Enter an integer: "))
Use a conditional statement to check if the number is even or odd
if number % 2 == 0
 print(f"{number} is even.")
else:
Java:
Java:
public class ConditionalExample
 public static void main(String[] args) {
 // Problem: Determine if a number is even or odd
 // Get user input
 Scanner scanner = new Scanner(System.in);
 System.out.print("Enter an integer: ");
 int number = scanner.nextInt();
 // Use a conditional statement to check if the number is even
or odd
 if (number % 2 == 0) { {
 } else {
```


## Update to Content Accepted by SRP

```
 // Close the scanner to avoid resource leaks
 scanner.close();
 }
C++:
#include <iostream>
int main()
 // Problem: Determine if a number is even or odd
 // Get user input
 int number;
 std::cout << "Enter an integer: ";
 std::cin >> number
 // Use a conditional statement to check if the number is even or
 if (number % 2 == 0) %
 std::cout << number << " is even." << std::endl;
 } else
 } std::cout << number << " is odd." << std::endl;
 }
 return 0;
 -CEV %
```

(SE)(Breakout(s)) and (Citation Type(s))
(4)(R)(i), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Problem Solving with Algorithms Programming Concepts (1:42-2:59), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21655

Description of the specific location and hyperlink to the exact location of the proposed new content Problem Solving with Algorithms Student Handout-Problem Solving with Algorithms, https://files.icevonline.com/html/CEV81115 V2 HTML/CEV81115 V2 HTML Student Handout Problem Solving with Algorithms.htm
This Student Handout is found in the Problem Solving with Algorithms lesson beneath the Instructional Materials heading.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

Ar2024,4.41 PM

## Problem Solving with Algorithms

The content within this transcript has been created utilizing a third-party software company which complies with all federal accessibility laws and international standards for web accessibility, providing a measured accuracy rate of 99.6 percent.

## 1. Common Algorithms

TEXT ON SCREEN
Problem Solving with Algorithms
Common Algorithms
What are algorithms? An algorithm is a set of well-defined logical steps to follow when performing a task. For example, the procedure or algorithm for boiling water would be fill a pot with water. Place the pot on a burner on the stove. Turn on the burner to high. Observe the water until it starts bubbling. When the water is bubbling, the water is boiling.
When are algorithms used? Algorithms are used in every part of computer science. They form the field's backbone. In computer science, an algorithm gives the computer a specific set of instructions, which allows the computer to do everything, be it running a calculator or running a rocket

Computer programs are at their core algorithms written in programming languages that the computer can understand. Computer algorithms play a big role in how social media the computer can understand. Computer algorithms play a big role in how social med
works, which posts show up, which ads are seen, and so on. These decisions are all warks, which posts

Programmers who build search engines use algorithms to optimize searches, predic what users are going to type, and more. Much of computer programming involves using algorithms to solve problems, such as increasing the relevance of search results or making websites load faster. Programming has almost unlimited uses and applications.

Smartphones are just one example of devices utilizing programming. Although each app is programmed differently for different functions, all programming uses similar logic to process data and produce results. Another example where programming is especially useful is the field of data science and analytics. Many companies collect user data to make product decisions. These data collections are very large and need to be organized, sorted, and manipulated before analysis can begin. The programming language Python is used extensively for data analysis.

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 620024,431 PM |  | thea com | arntanuceve |
| The Euclidean algorithm is a better way of finding the greatest common factor. It works as follows. Given two numbers, where $a$ is the larger value and $b$ the smaller, divide $a$ $b y b$ and get the remainder $r$. Then replace $a$ with $b$ and replace $b$ with $r$. Repeat this process until r equal 0 . When the remainder equal $\mathrm{O}, \mathrm{b}$ is the greatest common factor of the two numbers. |  |  |  |
| IMAGE ON SCREEN-A graphic of a computer screen with the following text: Find the GCF of a and b (where $\mathrm{a}>\mathrm{b}$ ): |  |  |  |
| Repeat until $\mathrm{r}=0$ |  |  |  |
| $a+b-$ ? | $r=$ ? |  |  |
| $a \div$ |  | $\begin{aligned} & r=? \\ & b=? \end{aligned}$ | $\mathrm{r}=0$ |

Here's an example. Find the greatest common factor of 30 and 12. First, divide the larger number 30 by the smaller number 12 . The result is 2 with a remainder of 6 .

Now continue and divide 12 by 6, the remainder in the previous step. 12 divided by 6 equals 2 with no remainder. Because there is no remainder, the task is complete. And the last number used to divide is the greatest common factor, which in this case is 6 .

Let's do another example. Find the greatest common factor of 123 and 36.123 divided by 36 is 3 with a remainder of 15 . Continue to divide 36 by 15 because 15 was the remainder of the previous step.

36 divided by 15 equals 2 with a remainder of 6 . Continue to divide 15 by 6 , which equals 2 with a remainder of 3 . And, finally, 6 divided by 3 equals 2 with no remainder. Therefore, our greatest common factor is 3 .

## TEXT ON SCREEN

Common Algorithms:...
...Finding the biggest number-- here is another type of calculation.
Given three integer numbers, called num1, num2, and num3, respectively find the largest number using an algorithm like this. Check if num1 is greater than num2. If true check if num1 is greater than num3. If true, then show num1 is the largest number. If false, then show num3 as the largest number. If num1 is not greater than num2, check if num2 is greater than num3. If true, then show num2 to as the largest number. If false, then show num3 as the largest number. This algorithm or set of steps will always work given any three numbers.
MAGE ON SCREEN- A graphic organizer is displayed.
The very top box: find the largest number [num1], [num2], [num3]
Branching from the above box it splits into two boxes: on the left is true and on Branching from
the right is false.

G20024,431 PM

Common algorithms-- when writing an algorithm, it's often helpful to have a good understanding of some common, well-known algorithms. This helps save time because programmers can re-use or adapt the algorithm to fit their needs.

For example, to sort the items of a list, often referred to as an array, into a particular order, it is helpful to refer to sorting algorithms
IMAGE ON SCREEN- A graphic displays four books and they are labeled A, B, C, and $D$, from left to right. A and $D$ are then switched, so $D$ is on the far left and $A$ is $B$ is on the right in the middle. Therefore, the books end up in the order $D, C, B$, and $A$ from left to right.

Similarly, searching algorithms are used to find and retrieve an element from wherever It is stored in a data structure.
IMAGE ON SCREEN- A computer screen is displayed with an algorithm: array [duck, duck, goose]. Then a magnifying glass is seen at the bottom by the word goose. This means the searching algorithm is looking for goose. The magnifying glass then goes up to the algorithm to find the word goose.

Finding the Greatest Common Factor, GCF. The greatest common factor, sometimes called the greatest common divisor, is the largest number that divides two or more numbers without a remainder. For example, the greatest common factor of 4 and 10 is 2 because 2 is the largest number divisible into 4 and 10 without a remainder. IMAGE ON SCREEN- The numbers 4 and 10 are displayed. Under 4 are two lines each pointing to the number 2 . Under 10 are two lines, one pointing to the number 5 and the other pointing to the number $\mathbf{2}$. Number 2 is circled under both 4 and 10.

Computing a greatest common factor is important because it allows us to reduce fractions efficiently. On paper, it may seem simple to explain the process or algorithm of finding the greatest common factor.
One way is to simply divide two numbers by all the numbers less than the smaller number until the largest number that divides into both is found. This strategy will work However, there is a better way to reduce the number of total calculations, which increases overall efficiency
IMAGE ON top. The numbers 4 and 10 are on screen. Underneath $\mathbf{4}$ are the following circled. Underneath 10 are the following equations: $10 \div 4=2.5$ marked out, $10 \div 3$ $=3.333 \ldots$ marked out, and $10 \div 2=5$ with the 2 in the equation circled.

## Boxes underneath true:

is [num1] > [num3] ?
Branching into two: True on the left or False on the right Box underneath True: [num1] is the largest number Box underneath False: [num3 is the largest number Boxes underneath Fals
is [num2] > [num3] ?
Branching into two: True on the left or False on the right
Box underneath True: [num2] is the largest number
Box underneath False: [num3] is the largest number
Let's work through an example. Suppose num1 equals 6, num2 equals 10, and num3 equals 25 . Now use the algorithm above to determine the largest number. Is num question is is num2 to greater than num3? In other words, is 10 greater than 25 ? question is, is num 2 to greater than num3? In other words, is 10 greater than 25 ? Th IMAGE ON SCREEN-A graphic organizer is displayed.
The very top box: find the largest number num $=6$, num2 $=10$, num $3=25$ The next box branching down from the top box: is [num1] > [num2] ? $6>10$ ? Branching from the above box it splits into two boxes: on the left is true and on the right is false.
Boxes underneath true:
is [num1] > [num3] ?
Branching into two: True on the left or False on the right
Box underneath True: [num1] is the largest number
Box underneath False: [num3 is the largest number
Boxes underneath False:
is [num2] > [num3] ? $10>25$ ?
Branching into two: True on the left or False on the righ Box underneath True: [num2] is the largest number Box underneath False: [num3] is the largest number, $\mathbf{2 5}$ is the largest number

## TEXT ON SCREEN

Common Algorithms:...
...Finding primes-a prime number is a positive integer greater than 1 that can only be divided by itself and 1 . The numbers $2,3,5,7$, et cetera are prime numbers, as they do not have any other factors.
IMAGE ON SCREEN- A chart of prime numbers is displayed. The chart includes numbers:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 , 181, 191, 193, $197,199,211,232,272,233,239,241,251,257,263,259,271$, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,
277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379,

AR20124.4.31 PM
${ }^{383}, 389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479$, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, $601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701$, $709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823$, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 967, 971, 977, 983, 991, 997, 953

To test if a number is prime, check every number greater than 1 to see if the number divides the potential prime number.

One of the most widely used applications of prime numbers in computing is an encryption system. In 1978, Ron Rivest, Adi Shamir, and Leonhard Adleman combined some simple known facts about numbers to create RSA encryption, named after the inventors. The system they developed allows for the secure transmission of information, such as credit card numbers, online. The first ingredient required for the algorithm are two large prime numbers. The larger the numbers, the safer the encryption.

## TEXT ON SCREEN

Common Algorithms:..
...Making change-- when making a purchase with cash, the amount of change due is calculated using another common algorithm. Find the sum of all the purchases to store in a variable named totalcost. Input the cash paid in a different variable named amountPaid. Subtract total cost from amountPaid to find the change stored in a third variable named change. change equals amount paid minus totalCost.

## TEXT ON SCREEN

Common Algorithms:..
...Finding the average-- to find the arithmetic average or mean, add up a list of numbers. And then divide by the quantity of numbers summed up. Here is a set of eight numbers- $4,5,1,2,9,7,10,8$. The sum of the numbers is 4 plus 5 plus 1 plus 2 plus 9 plus 7 plus 10 plus 8 , which equals 46 . So the average is 46 divided by 8 , which comes to 5.75
2. Programming Concepts

TEXT ON SCREEN
Problem Solving with Algorithms
Probgramming Concepts
Part of learning how to program is learning what tools and functions can be leveraged to solve problems and write custom algorithms. When it comes to solving problems thed first step is to fully understand the problern at hand. Without proper understanding, it's


For example, if a contact form prompts a user to enter data into a database, the program must first ask the user for the data before it can be saved to the database. Oherwise, there is no data to save.
IMAGE ON SCREEN- A graphic of website. On the website Is the text Joln the mailing list and there is a place to enter an email address. Then there is a button to submit.
Conditional logic. Decision-making problems involve conditional statements or branching. Conditional statements are features of programming languages that tell the computer to execute certain actions provided certain user-defined conditions are met. IMAGE ON SCREEN- Conditional statement or branching graphic Begins at the word START
The IF stanen (condition) box
If false it branches the left or true on the right
If true it branches to a THEN (code) statement
Both else and then statements branch into the END statement
For example, a program used to enter student grades may ask a teacher to input grades until the entire class has a grade. Once that condition is met, the program will stop asking the teacher for grades.

Conditional statements are used through the various programming languages to instruct the computer on the decision to make when given some conditions. These decisions are made if and only if the pre-stated conditions are either true or false, depending on the functions the programmer has in mind.
IMAGE ON SCREEN- Conditional statement or branching graphic.
Begins at the word START
Branches to an IF (condition) box
The IF statement branches into false on the left or true on the right
If false it branches to an ELSE (code) statemen
If true It branches to a THEN (code) statement
Both else and then statements branch into the END statement
All programming languages have conditional expression syntax, although the syntax slightly differs from one programming language to the others.

Branching versus non-branching. When writing algorithms, it's often helpful to use a series of conditional statements to test complex criteria and execute appropriate to give precise instructions based on a variety of conditions and then output a relevant result. As opposed to branching, non-branching programming simply refers to

G220124, 4.31 PM
easy to make assumptions about problems and potential solutions without really getting a clear picture of what's going on
Once a problem has been identified, take time to consider a solution and focus on writing clear instructions one step at a time. Test the code to ensure it works as expected. Then continue to the next step.
Importance of order when using algorithms. Sequential algorithms follow a step-by-step process, and the order of those steps are crucial to ensuring the correctness of an algorithm.

Here's an algorithm for translating a word into Pig Latin.
TEXT ON SCREEN

One, append a hyphen
TEXT
PIG-

Two, append the first letter
TEXT ON SCREEN
PIG-P
Three, append $\mathrm{A}, \mathrm{Y}$.
TEXT ON SCREEN
PIG-PAY
Four, remove the first letter.
TEXT ON SCREEN
IG-PAY
If the steps are completed out of order, the result would be different and incorrect. TEXT ON SCREEN
PIG=IG-PAY in Pig Latin
Sequential algorithms must follow the same order of the steps to be effective TEXT ON SCREEN

TEX
1
2

G20224.431 PM
programs that don't use conditional statements a real world example would be furniture assembly instructions.

A program that doesn't use conditionals might resemble an input program that asks the user for data input to populate a database.
Think of an email sign-up form on a website. You enter your information and click Submit. There are not different paths or conditions that need to be accounted for. IMAGE ON SCREEN-A graphic of a website contact us page. There are four areas for a user to fill out: Name- Jonah Torres, Email- jonahpt@email.com,
Subject- Hours, and Message- What are your updated store hours? Subject- Hours, and Message- What are your updated store hours?

Examples of branching programming. Conditional statements have a simple job-check whether a condition has been met and return True if yes, and False if not. Then based on those outputs, programmers can automate other decisions or actions and so on.

Suppose a programmer is working on a program for teachers to enter student grades into a grade book. The programmer should consider how the data will be entered and saved into a database and create some conditional expressions to help make the teacher's job easier and minimize errors. To help avoid typos, the program could be written to check that values entered as grades are numeric or that the scores are no greater than a maximum value.

If a wrong number was entered, the program could display the grade in bright red or reject the input until an acceptable value is entered.

Then a variable could be created to capture whether or not all scores have been entered. It would initially be set to False. And then once all grades are entered, it would
IMAGE ON SCREEN- Numbers are counted from 1 to 100.
This type of variable is called a Boolean variable. These only have two states: True or False.
Iteration. Iteration is another way to say repetition. Programming that uses iteration will have some kind of loop that repeats a block of code. The repetition will terminate after a predetermined number of repetitions or when a certain condition is met. If there is a process needing to be run over and over again, its best to write the code so it can loop programming and makes the process more efficient Any program without a need to repeat a section of code could be considered non-lterative.

G202024, 4.31 PM
Using loops. Iteration is implemented using the loop in programming. The two most common types of loops are for-loop and the while-loop. The for-loop is used when a loop needs to be run a certain number of times. The other type of loop, the while-loop repeats until a specific condition is true. This is particularly useful when it's difficult or impossible to predict how many times the loop will execute.

Sequential search using loops. In computer science, linear search or sequential search is a method for finding a particular value in a list by checking each element in sequence until the desired element is found or the list is exhausted. The list doesn't have to be in order.

Here is an example. The process starts with setting up variables TEXT ON SCREEN
GOAL: find " 6 "
The first variable captures the search position and is initially set to a value of 0 . TEXT ON SCREEN
var position $=0$
The search position is the current position or current value being tested. TEXT ON SCREEN
var position $=0$
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
A second Boolean variable stores one of two possible values, True or False
TEXT ON SCREEN
var position = 0
var isFound =
array $[2,4,6,8]$
$\mathbf{2}$ is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
At the start, this should be set to False.
TEXT ON SCREEN
var position $=0$
var isFound = false
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3

## Aran24.4.31 PM


This means the code will now check the contents of the second position and repeat the process. The code terminates when found equals True or when position equals the total number of positions, which means the condition was never met and found equals False still.
TEXT ON SCREEN
var position = 2
var isFound = true
array $[2,4,6,8]$
array $[2,4,6,8]$
2 is in position 0,4 is in position 1, 6 is in position 2,8 is in position 3
is " 6 " equal to " 6 " ?
The power of iterative programming. Suppose a teacher wants to give their class 10 extra points on an exam. While the teacher could manually adjust each grade and do extra points on an exam. While the teacher could manually adjust each grade and do adding 10 to each grade is repeated.

This example demonstrates the calculation using Python but the logic for "for" and "while" loops is similar across languages.
"while" loops is similar across languages.
IMAGE ON SCREEN-Coding is shown on screen as follows:
IlstOfTwentyScores $=[85,90,70,75,83,82,81,45,78,90,56,77,45,67,80,90$,
$\mathbf{7 0}, 50,75,90]$ with listOfTwentyScores in light blue and all numbers in yellow newScores $=[$ ] with newScores in light blue
for score in listOffwentyScores: with for and in in dark blue and listOfIwentyScores in light blue
newScores.append( score + 10) with newScores in light blue and score, .append and 10 in yellow
print( newScores) with print( in yellow and newScores in light blue
\#Output: In green
$\#[95,100,80,85,93,92,91,55,88,100,66,87,55,77,90,100,80,60,85,100]$ in green
The code starts with a variable storing an array of the grades of the 20 students in the class separated with commas. This variable is called list of 20 scores.
MAGE ON SCREEN-Coding is shown on screen as 78 llows
56, 77, 45, 67, 80, 90 $\mathbf{7 0}, 50,75,90]$ with listOfTwentyScores in light blue and all numbers in yellow

A new variable is created to hold the final values. Right now, it's blank.

620024, 4.31 PM

Once the condition is met, the variable will be instead set to True, and the code will stop running since the desired output has been generated.
TEXT ON SCREE
var position $=2$
var isFound = true
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
The code works by looking at search position 0 and testing its condition.
TEXT ON SCREEN
var position $=0$
var isFound = false
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
If the condition is met, the second variable is changed from False to True and the process is over.
TEXT ON SCREEN
var position = 0
var isFound = false to true
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
is " 2 " equal to " 6 " ?
If the condition is not met, and the value of the position variable is less than the length of the list, the code is set up to increment the position variable by 1.
TEXT ON SCREEN
var position $=0+1$
var isFound $=$ false
$0<3=$ true
array $[2,4,6,8]$
2 is in position 0,4 is in position 1,6 is in position 2,8 is in position 3
is " 2 " equal to " 6 " ?
\$12
-
IMAGE ON SCREEN- Coding is shown on screen as follows:
listOflwentyScores $=[85,90,70,75,83,82,81,45,78,90,56,77,45,67,80,90$, $\mathbf{7 0 , 5 0 , 7 5 , 9 0 ]}$ with listOfTwentyScores in light blue and all numbers in yellow newScores = [ ] with newScores in light blue

Then for-loop starts. In plain language, this section accesses one score at a time within the list of 20 scores variable, adds 10 to it and appends it to the new score's variable Appending the new score allows the variable to hold multiple values and not get overwritten. This repeats until all 20 scores have been adjusted and stored in the new
scores variable. scores variable.
IMAGE ON SCREEN- Coding is shown on screen as follows:
listOfTwentyScores $=[85,90,70,75,83,82,81,45,78,90,56,77,45,67,80,90$, $70,50,75,90$ ] with listofTwenty 5 cores in light blue and all numbers in yellow newScores = [ ] with newScores in light blue
for score in IistOfTwentyScores: with for and in in dark blue and
listOfTwentyScores in light blue
newScores.append (score +10) with newScores in light blue and score, .append and 10 in yellow
print( newScores) with print( in yellow and newScores in light blue
\#Output: in green
\#[95, 100, 80, 85, 93, 92, 91, 55, 88, 100, 66, 87, 55, 77, 90, 100, 80, 60, 85, 100] in green

Knowing how to choose the best tool. Many problems in programming can be related back to one of the algorithms previously discussed. For example, an iterative looking program should be used if certain code can be reused, while a one-time calculation or action would use a non-iterative sequential algorithm.

Computer programmers constantly use algorithms, whether it's an existing algorithm for a common problem like sorting a list of values, or a completely new algorithm unique to the program. By understanding algorithms, programmers can make better decisions about which existing algorithms to use and learn how to make new algorithms that are correct and efficient.

## Problem Solving with Algorithims

Sequential Algorithm for Non-Branching Problems:
In computer programming and algorithm design, the term "non-branching" refers to a situation or code structure where there are no decision points or branches based on conditional statements.

- In a non-branching scenario, the code proceeds sequentially without any
alternative paths based on conditions
- Sequential algorithms for non-branching problems often involve iteration, calculation or manipulation of data without the need to make choices based on conditions
- Examples:
- summing an array
- finding the maximum element in a list
- reversing the order of elements in a sequence

Example: Sequential algorithm for calculating the sum of an array
Problem: Given an array of numbers, calculate the sum of all the elements
Algorithm:

1. Initialize a variable sum to 0 .
2. For each element in the array:
a. Add the element to the sum.
3. Display or return the sum.

## Sequential Algorithm for Non-lterative Problems:

Non-iterative problems refer to computational or algorithmic problems that do not require the use of iteration or repetitive structures to arrive at a solution.

- Iteration typically involves using loops or recursive functions to perform a set
of instructions repeatedly until a specific condition is met
- Examples:
- mathematical computations
- for example: calculating the square root of a number
- string manipulations
- for example: checking if a string is a palindrome
- direct conversions or computations that can be accomplished in a single pass through the data
- for example: calculating the average of a list of numbers

Example: Algorithm to convert Celsius to Fahrenheit
Problem: Convert a temperature from Celsius to Fahrenheit
Algorithm:

1. Accept a temperature in Celsius as input.

Unpredictable and are often used in various algorithms and applications
The following are examples of random numbers in different languages:
C++: 'rand()'
Python: 'random()'
JavaScript: 'Math.random()'

## Loops:

Structures that repeat a specific block of code until a certain condition is met
The following are examples of loops in different languages:

```
Python:
Problem: Print numbers from 1 to 5
Solution using a for loop
for i in range(1, 6):
print() # Move to the next line
Java:
public class LoopExample {
 public static void main(String[] args) {
 // Solution using a for loop
 for (int i=1; i<= 5;++i){
 }
 System.out.println(); // Move to the next line
 }
}
C++:
int main() {
 // Problem: Print numbers from 1 to 5
 // Solution using a for loop
```

2. Calculate the equivalent temperature in Fahrenheit using the
formula: Fahrenheit $=($ Celsius $* 9 / 5)+32$.
formula: Fahrenheit $=$ (Celsius $* 9 / 5)+32$.
3. Display or return the temperature in Fahrenheit.
Sequential Algorithm for Branching Control Statements:
Branching control statements, also known as conditional statements, are programming
constructs that enable the execution of different sets of instructions based on certain
constructs that enable the execution of different sets of instructions based on certai
different paths, depending on whether a specified condition is true to branch into
primary branching control statements are the "if" statement and the "switch" statement.
    - The "if" statement is a fundamental branching control statement that allows a
The "if" statement is a fundamental branching control st
program to make decisions based on a given condition
program to make decisions based on a given condition "en clause to
n alternative set of instructions to we apin an
an "wis
        - The "switch" statement is used when there are multiple possible conditions to
be checked against a single expression
The "switch" statement compares the expression against each case, and if
a match is found, the corresponding block of code is executed. The "break"
a match is found, the corresponding block
statement is used to exit the switch block
Example: Algorithm to determine if a number is even or odd
Problem: Determine if a given integer is even or odd
Problem: De
Algorithm:
Algorithm: Accept an integer as input.
4. Accept an integer as input.
5. If the input modulo 2 equals
a. Display "The number is even.
6. Else:
a. Display "The number is odd."
Including a switch:
7. Accept an integer as input.
8. Switch on the result of the input modulo 2
a. Case 0:
i. Display "The number is even."
ii. Break.
b. Case 1:
i. Display "The number is odd."
ii. Break.
c. Default:
i. Display "Invalid input." (optional, in case the input is not
an integer)
Random Numbers:
\}
std::cout << std::endl; // Move to the next line
return 0;
\}

Conditionals:
Allow the execution of different code blocks based on whether a specified condition
Allow the execution of diff
The following are examples of conditionals in different languages:

## Python:

```
Python:
Problem: Determine if a number is even or odd
Get user input
number = int(input("Enter an integer: "))
Use a conditional statement to check if the number is even or odd
if number % 2 == 0
 print(f"{number} is even.")
else:
Java:
Java:
public class ConditionalExample
 public static void main(String[] args) {
 // Problem: Determine if a number is even or odd
 // Get user input
 Scanner scanner = new Scanner(System,in);
 Scanner scanner = new Scanner(System.in);
 int number = scanner.nextInt();
 // Use a conditional statement to check if the number is even
or odd
 if (number % 2 == 0) {
 } else { & out.println(number + " is odd.");
```


## Update to Content Accepted by SRP

```
 // Close the scanner to avoid resource leaks
 scanner.close();
 }
C++:
#include<iostream>
int main()
 // Problem: Determine if a number is even or odd
 // Get user input
 int number;
 std::cout << "Enter an integer: ";
 std::cin >> number,
 // Use a conditional statement to check if the number is even or
 if (number % 2 == 0) /
 std::cout << number << " is even." << std::endl;
 } else
 }
 return 0;
 -CEV Copyight CEv Multmadia,UG
```

(SE)(Breakout(s)) and (Citation Type(s))
(4)(S)(ii), Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Project - Algorithms for Practical Problems, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21655/CEV81115 Project01

Description of the specific location and hyperlink to the exact location of the proposed new content Coding Challenge: Find Open Days at Time (Debug),
https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22043/CEV71806 SIM01
Access to the interactive coding environment can be located beneath the Interactive Assignments heading by clicking the link to the Coding Challenge. Once clicked, the link will take you to a page prompting you to click Start. Select Start to view the Coding Challenge in the interactive environment.

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

## Update to Content Accepted by SRP

```
You will develop an algorithm to solve a problem you face in everyday life and display it on a poster or
in a slideshow presentation
 Directions:
 1. Consider a challenge you face in everyday life. Examples may indude:
 - Spending too much time on your phone
 - Poor study habits
 - Low free throw percentage during basketball games
 2. Brainstorm possible solutions to overcoming the identified challenge.
 3. Develop an algorithm to help you solve the challenge. The algorithm must indude at least one
 decision and one instance of repettion.
 lol
 decision making and repetition occurs.
 lol}\mathrm{ 6. Create a poster or a side presentation to showcase the development of your algorthm.
 your Project. You can find a Rubric at the end of this Project.
 Upload your flle(s) here.
 | T 亩
 Rubric
 |
```



Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

## Update to Content Accepted by SRP


(SE)(Breakout(s)) and (Citation Type(s))
(4)(V)(i), Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Check for Understanding V - Random Numbers \#2-4, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21656/CEV81116 Assess05

Description of the specific location and hyperlink to the exact location of the proposed new content Problem Solving with Functions Activity-Generating and Using Random Numbers, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22280/CEV81116 V2 Activity05
This Activity is found in the Problem Solving with Functions lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

## Update to Content Accepted by SRP

```
Random Numbers Check for Understanding
Directions
Answer the following questions
1. Which of the following is a common use for random numbers?
A. Creating business websites
B. Encrypting passwords
C. Keeping a consistent color scheme on a webpage
D. Generating the same exact output with each click of a button
2. Which of the following is a function in Python which generates a random number between 0 and 1 , where 0 is included and 1 is not?
A. math.random()
B. random.randint()
C. random.random(
D. rand()
3. Which of the following could be used to simulate the rolling of a dice? A. random.random() \({ }^{*}\)
B. random.randint \((0,6\)
. .
Jackie wants to simulate the flipping of a coin by generating random numbers where zero represents heads and one represents tails. Which of the following could be used?
A. random.randint \((0,1)\)
B. random.random()
C. random.randint \((0,2)\)
5. Describe the possible values of the call int(random.random()**3) +2 A. Integers between 2 and 5 , inclusive
B. Integers between 2 and 4, inclusive
C. Integers between 0 and 5 , inclusive
D. Integers between 0 and 3 , inclusive
```

CEV Copynglet cev multreala, LL

## Screenshot of Proposed New Content

Insert a screenshot of your proposed new content.

(SE)(Breakout(s)) and (Citation Type(s))
(4)(V)(ii), Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Check for Understanding V - Random Numbers \#1, 5, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21656/CEV81116 Assess05

## Update to Content Accepted by SRP

Description of the specific location and hyperlink to the exact location of the proposed new content Problem Solving with Functions Activity-Generating and Using Random Numbers, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22280/CEV81116 V2 Activity05
This Activity is found in the Problem Solving with Functions lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

## Screenshot of Currently Adopted Content

 Insert a screenshot of your currently adopted content.
## Random Numbers Check for Understanding

Directions:
Answer the following questions.

1. Which of the following is a common use for random numbers?
A. Creating business websites
A. Creating business webs
B. Encrypting passwords
B. Encrypting passwords
C. Keeping a consistent color scheme on a webpage
D. Generating the same exact output with each click of a button
2. Which of the following is a function in Python which generates a random number between 0 and 1 , where 0 is included and 1 is not?
A. math.random()
B. random.randint()
C. random.random()
D. rand()
3. Which of the following could be used to simulate the rolling of a dice?
A. random.random( $){ }^{*} 6$
B. random.randint $(0,6)$
C. random.randint $(0,6)+1$
D. random.randint $(1,6)$
4. Jackie wants to simulate the flipping of a coin by generating randorn numbers where zero represents heads and one represents tails. Which of the following could be used?
A. random.randint $(0,1)$
B. random.random()
C. random.randint $(0,2)$
D. int(random.random())
5. Describe the possible values of the call int(random.random() $\left.)^{*} 3\right)+2$
A. Integers between 2 and 5 , inclusive
B. Integers between 2 and 4 , inclusive
. Integers between 0 and 5 , inclusive
D. Integers between 0 and 3 , inclusive


Re:

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

## Update to Content Accepted by SRP


(SE)(Breakout(s)) and (Citation Type(s)) (5)(A)(i), Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Activity-Beach Ball Game, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645/CEV71512 Activity01

Description of the specific location and hyperlink to the exact location of the proposed new content Intellectual Property and Software Development Activity-Beach Ball Game, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300/CEV71512 V2 Activity01 This Activity is found in the Intellectual Property \& Software Development lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.


Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Activity - Beach Ball Game
Intellectual Property \& Software Development

Actlvity Overview:
Students will participate in a beach ball game to discuss intellectual property, privacy, sharing of
information, copyright laws and software licensing agreements.

Directions:

1. Find a blank sheet of paper, then sit in a circle
2. A beach ball will be tossed around the circle. The beach ball will have the terms intellectual property, privacy, sharing of information, copyright laws and software licensing agreements. When you catch the ball, whichever term your right index finger touches or is closest to, provide the following:

- Definition of the term
- An example of the practice; for example, copyright laws prevent you from posting someone else's blog post as your own

3. If you land on a term which was already defined, give a different example of the practice and use the term in a sentence.
4. After catching the beach ball and providing information about the term, take notes on your paper of which term you landed on and your answers.
5. Using your notes, define the following terms on your sheet of paper:

- Intellectual property
- Privacy
- Sharing of information
- Copyright laws
- Software licensing agreements

6. Using your notes, definitions and knowledge gained from the discussion during the beach ball portion, participate in a class discussion. As a class, discuss and explain the terms mentioned in Step 5 . Write down anything you missed in the first discussion or felt was noteworthy.
7. Once complete, upload your notes and definitions in the space provided below, then submit your Activity.

## Update to Content Accepted by SRP

(5)(A)(ii), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Intellectual Property and Software Development (Slides 11-15), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645

Activity-Beach Ball Game, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645/CEV71512 Activity01

Description of the specific location and hyperlink to the exact location of the proposed new content Intellectual Property and Software Development (Slides 12-18), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300
In the Intellectual Property \& Software Development PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Activity-Beach Ball Game, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300/CEV71512 V2 Activity01
This Activity is found in the Intellectual Property \& Software Development lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.


17


## Update to Content Accepted by SRP

6/21/2024


## Update to Content Accepted by SRP

| Sharing of Information \& Privacy |
| :--- |
| - Includes policies or laws: |
| -used by apps, websites and other platforms to |
| disclose how personal information will be |
| collected and used |
| -require users to acknowledge and agree to |
| their data being used by the platform |



| Sharing of Information \& Privacy |
| :--- |
| - Includes the right to choose what data and <br> information a user shares with a software, <br> platform or company <br> -for example, when an individual visits a <br> website or platform they are usually prompted <br> to accept or decline the terms and conditions |
| CEV |
| 15 |

## 6/20/2024

6/20/2024

| Privacy |
| :--- |
| - In terms of intellectual property and |
| software development addresses the |
| proper storage, access, retention and |
| security of data |
| - Is typically associated with the proper |
| handling of personal data or identifiable |
| information |
| CEV |
| 18 |


| Sharing of Information \& Privacy |
| :--- |
| - Refers to the way users share personal |
| information and data, including: |
| -browser history |
| -passwords |
| - photos |
| - Describes the personal information |
| individuals are willing to share or are |
| knowledgeable of sharing |
| - Is regulated by IP, copyright and licensing |
| agreements |
| CEV |
| 14 |



18


Activity - Beach Ball Game Intellectual Property \& Software Development

# Update to Content Accepted by SRP 

```
Actlvity Overview:
Students will participate in a beach ball game to discuss intellectual property, privacy, sharing of
information, copyright laws and software licensing agreements.
Directions:
 1. Find a blank sheet of paper, then sit in a circle.
 2. A beach ball will be tossed around the circle. The beach ball will have the terms intellectual
 property, privacy, sharing of information, copyright laws and software licensing agreements.
 When you catch the ball, whichever term your right index finger touches or is closest to, provide
 the following:
 - Definition of the term
 - An example of the practice; for example, copyright laws prevent you from posting
 someone else's blog post as your own
 3. If you land on a term which was already defined, give a different example of the practice and use
 the term in a sentence.
 4. After catching the beach ball and providing information about the term, take notes on your paper
 of which term you landed on and your answers.
 5. Using your notes, define the following terms on your sheet of paper:
 - Privacy
 Sharing of information
 - Copyright laws
 - Software licensing agreements
 6. Using your notes, definitions and knowledge gained from the discussion during the beach ball
 portion, participate in a class discussion. As a class, discuss and explain the terms mentioned in
 Step 5. Write down anything you missed in the first discussion or felt was noteworthy.
 7. Once complete, upload your notes and definitions in the space provided below, then submit your
 Activity
```

(SE)(Breakout(s)) and (Citation Type(s))
(5)(A)(iii), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Intellectual Property and Software Development (Slides 11-15), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645

Activity-Beach Ball Game, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645/CEV71512 Activity01

Description of the specific location and hyperlink to the exact location of the proposed new content Intellectual Property and Software Development (Slides 12-18), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300
In the Intellectual Property \& Software Development PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Activity-Beach Ball Game, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300/CEV71512 V2 Activity01 This Activity is found in the Intellectual Property \& Software Development lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

## Update to Content Accepted by SRP

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

| Sharing of Information \& Privacy |
| :--- |
| - Refers to the way users share personal |
| information and data, including: |
| -browser history |
| - passwords |
| - photos |
| - Describes the personal information |
| individuals are willing to share or are |
| knowledgeable of sharing |
| - Is regulated by IP, copyright and licensing |
| agreements |
| CEE |
| 11 |




| Sharing of Information \& Privacy |
| :--- |
| - Are covered by the following laws: |
| - COPPA |
| - Children's Online Privacy Protection Rule |
| - protects online privacy of minors |
| - Gramm-Leach-Billey Act |
| - protects consumer privacy and applies to |
| financial institutions which collect or use |
| peoples' personal information |

## Update to Content Accepted by SRP



Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

## Update to Content Accepted by SRP

| Sharing of Information \& Privacy |
| :--- |
| - Includes policies or laws: |
| -used by apps, websites and other platforms to |
| disclose how personal information will be |
| collected and used |
| -require users to acknowledge and agree to |
| their data being used by the platform |



| Sharing of Information \& Privacy |
| :--- |
| - Includes the right to choose what data and <br> information a user shares with a software, <br> platform or company <br> -for example, when an individual visits a <br> website or platform they are usually prompted <br> to accept or decline the terms and conditions |
| CEV |
| 15 |

## 6/20/2024

6/20/2024


| Privacy |
| :--- |
| - In terms of intellectual property and |
| software development addresses the |
| proper storage, access, retention and |
| security of data |
| - Is typically associated with the proper |
| handling of personal data or identifiable |
| information |
| CEE |
| 18 |


| Sharing of Information \& Privacy |
| :--- |
| - Refers to the way users share personal |
| information and data, including: |
| -browser history |
| -passwords |
| - photos |
| - Describes the personal information |
| individuals are willing to share or are |
| knowledgeable of sharing |
| - Is regulated by IP, copyright and licensing |
| agreements |
| CEV |
| 14 |



# Update to Content Accepted by SRP 

```
Actlvity Overview:
Students will participate in a beach ball game to discuss intellectual property, privacy, sharing of
information, copyright laws and software licensing agreements.
Directions:
 1. Find a blank sheet of paper, then sit in a circle.
 2. A beach ball will be tossed around the circle. The beach ball will have the terms intellectual
 property, privacy, sharing of information, copyright laws and software licensing agreements.
 When you catch the ball, whichever term your right index finger touches or is closest to, provide
 the following:
 - Definition of the term
 An example of the practice; for example, copyright laws prevent you from posting
 someone else's blog post as your own
 3. If you land on a term which was already defined, give a different example of the practice and use
 the term in a sentence.
 4. After catching the beach ball and providing information about the term, take notes on your paper
 of which term you landed on and your answers.
 5. Using your notes, define the following terms on your sheet of paper.
 - Privacy
 Sharing of information
 - Copyright laws
 a Software licensing agreements
 6. Using your notes, definitions and knowledge gained from the discussion during the beach ball
 portion, participate in a class discussion. As a class, discuss and explain the terms mentioned in
 Step 5. Write down anything you missed in the first discussion or felt was noteworthy.
 7. Once complete, upload your notes and definitions in the space provided below, then submit your
 Activity
```

(SE)(Breakout(s)) and (Citation Type(s))
(5)(A)(iv), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Intellectual Property and Software Development (Slides 9-15), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645

Activity-Beach Ball Game, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645/CEV71512 Activity01

Description of the specific location and hyperlink to the exact location of the proposed new content Intellectual Property and Software Development (Slides 6-11), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300
In the Intellectual Property \& Software Development PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Activity-Beach Ball Game, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300/CEV71512 V2 Activity01 This Activity is found in the Intellectual Property \& Software Development lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

## Update to Content Accepted by SRP

| Copyright |
| :--- |
| - Is a legally binding type of IP which |
| protects original works of authorship |
| -authorship includes writing but also includes |
| - coding |
| - proging |
| - Was first definged by the Copyright Act of |
| 1790 |
| • Is usually owned by the creator of the IP |
| but might be sold to another party |
| CEEV |

Software Licensing Agreements

- Are legal contracts between a licensor and purchaser of a software
- Are necessary when using a copyrighted software
- Protects IP and copyrights by:
-preventing misuse of the software
-reducing the liability from the software
-securing ownership rights of the software
-guaranteeing correct timing provisions for use of the software
CEV
10

| Sharing of Information \& Privacy |
| :--- |
| - Refers to the way users share personal |
| information and data, including: |
| -browser history |
| - passwords |
| - photos |
| - Describes the personal information |
| individuals are willing to share or are |
| knowledgeable of sharing |
| - Is regulated by IP, copyright and licensing |
| agreements |
| CEE |
| 11 |




14

Activity - Beach Ball Game
Intellicctual Property \& Software Development
1of1 :


## Update to Content Accepted by SRP



Screenshot of Proposed New Content Insert a screenshot of your proposed new content.



## Update to Content Accepted by SRP

## 6/20/2024

| Copyright Laws |
| :--- |
| - Provide copyright owners with rights: |
| - protection of ideas, code and software |
| - ownership of computer programs |
| - license agreements |
| -safety from creation and distribution of |
| derivative works |
| -dictation of how copies are made either by |
| sale or other transfer of ownership such as: |
| - rental |
| - leasing |
| - lending |
| CEV |


| Copyright Laws Discussion |
| :--- | :--- |
| What impact do copyright laws have? |
|  |

SAVE PROGRESS
Activity - Beach Ball Game
Intellectual Property \& Software Development

## Activity Overview:

Students will participate in a beach ball game to discuss intellectual property, privacy, sharing of
information, copyright laws and software licensing agreements.

Directions:

1. Find a blank sheet of paper, then sit in a circle.
2. A beach ball will be tossed around the circle. The beach ball will have the terms intellectual property, privacy, sharing of information, copyright laws and software licensing agreements. When you catch the ball, whichever term your right Index finger touches or is closest to, provide the following:

- Definition of the term
- An example of the practice; for example, copyright laws prevent you from posting someone else's blog post as your own

3. If you land on a term which was already defined, give a different example of the practice and use the term in a sentence.
4. After catching the beach ball and providing information about the term, take notes on your paper of which term you landed on and your answers.
5. Using your notes, define the following terms on your sheet of paper:

- Intellectual property
- Privacy

Sharing of information

- Copyright laws

Software licensing agreements
6. Using your notes, definitions and knowledge gained from the discussion during the beach ball portion, participate in a class discussion. As a class, discuss and explain the terms mentioned in Step 5. Write down anything you missed in the first discussion or felt was noteworthy.
7. Once complete, upload your notes and definitions in the space provided below, then submit your Activity.

## Update to Content Accepted by SRP

Description of the specific location and hyperlink to the exact location of currently adopted content Intellectual Property and Software Development (Slide 10), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645

Activity-Beach Ball Game,
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645/CEV71512 Activity01
Description of the specific location and hyperlink to the exact location of the proposed new content Intellectual Property and Software Development (Slides 6-11), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300
In the Intellectual Property \& Software Development PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Activity-Beach Ball Game, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300/CEV71512 V2 Activity01 This Activity is found in the Intellectual Property \& Software Development lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

## Update to Content Accepted by SRP



Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

## Update to Content Accepted by SRP



| Copyright Laws |
| :--- |
| - Provide copyright owners with rights: |
| - protection of ideas, code and software |
| - ownership of computer programs |
| - license agreements |
| -safety from creation and distribution of |
| derivative works |
| - dictation of how copies are made either by |
| sale or other transfer of ownership such as: |
| - rental |
| - leasing |
| - lending |
| CEV |
| 10 |


| Copyright Laws Discussion |  |
| :--- | :--- |
| What impact do copyright laws have? |  |
|  |  |
|  |  |
|  |  |
| CEV |  |



# Update to Content Accepted by SRP 

```
Actlvity Overview:
Students will participate in a beach ball game to discuss intellectual property, privacy, sharing of
information, copyright laws and soflware licensing agreements.
Directions:
 1. Find a blank sheet of paper, then sit in a circle.
 2. A beach ball will be tossed around the circle. The beach ball will have the terms intellectual
 property, privacy, sharing of information, copyright laws and software licensing agreements.
 When you catch the ball, whichever term your right index finger touches or is closest to, provide
 the following:
 - Definition of the term
 An example of the practice; for example, copyright laws prevent you from posting
 someone else's blog post as your own
 3. If you land on a term which was already defined, give a different example of the practice and use
 the term in a sentence.
 4. After catching the beach ball and providing information about the term, take notes on your paper
 of which term you landed on and your answers.
 5. Using your notes, define the following terms on your sheet of paper:
 - Intellectual property
 - Privacy
 Sharing of information
 - Copyright laws
 - Software licensing agreements
 6. Using your notes, definitions and knowledge gained from the discussion during the beach ball
 portion, participate in a class discussion. As a class, discuss and explain the terms mentioned in
 Step 5. Write down anything you missed in the first discussion or felt was noteworthy.
 7. Once complete, upload your notes and definitions in the space provided below, then submit your
 Activity.
```

(SE)(Breakout(s)) and (Citation Type(s)) (5)(B)(i), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Intellectual Property and Software Development (Slides 16-17), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645

Description of the specific location and hyperlink to the exact location of the proposed new content Intellectual Property and Software Development (Slides 19-20), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300
In the Intellectual Property \& Software Development PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

# Update to Content Accepted by SRP 

| Ethical Acquisition of Intellectual <br> Property |
| :--- |
| - Might include: |
| - purchasing the rights to use a software, image |
| or song |
| - asking permission from the developer or artist |
| -using creative commons licensed work |
| -choosing materials from the public domain |
| - creative materials which are not protected by |
| intellectual property laws |
| -choosing materials protected under Fair Use |
| - using copyrighted materials for a limited |
| purpose |



Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.
6/20/2024

| Privacy |
| :--- |
| - Is generally composed of the following six |
| elements: |
| -legal framework |
| -policies |
| -practices |
| -third party associations |
| - data governance |
| -global requirements |
| CEEV |


(SE)(Breakout(s)) and (Citation Type(s))

## Update to Content Accepted by SRP

(5)(B)(ii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Intellectual Property and Software Development (Slides 16-17), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21645

Description of the specific location and hyperlink to the exact location of the proposed new content Intellectual Property and Software Development (Slides 19-20),
https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22300
In the Intellectual Property \& Software Development PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

| Ethical Acquisition of Intellectual <br> Property |
| :--- |
| - Might include: |
| - purchasing the rights to use a software, image |
| or song |
| - asking permission from the developer or artist |
| - using creative commons licensed work |
| -choosing materials from the public domain |
| - creative materials which are not protected by |
| intellectual property laws |
| -choosing materials protected under Fair Use |
| - using copyrighted materials for a limited |
| purpose |



Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

# Update to Content Accepted by SRP 


(SE)(Breakout(s)) and (Citation Type(s))
(5)(C)(i), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Digital Etiquette and Security (Slides 27-30), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21646

Activity-Acceptable Use Scenarios, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21646/CEV71513 Activity01

Description of the specific location and hyperlink to the exact location of the proposed new content Digital Etiquette and Security (Slides 27-31), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22302
In the Digital Etiquette \& Security PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Activity-Acceptable Use Scenarios, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22302/CEV71513 V2 Activity01 This Activity is found in the Digital Etiquette \& Security lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

## Update to Content Accepted by SRP




## Activity - Acceptable Use Scenarios

 Digital Eiguette \& Security1 of 1 思

## Actlvity Overview

You will match each scenario with the policy it aligns best with. You will then analyze an article that explores fair use.

1. Match the following scenarios to the policy they best align with.
2. Using the intermet, locate a news artice related to fair use and answer the questions listed below. 3. Once complete, submit your Activity.

NOIE:-
To complete this question without using the drag-and-drop feature, first click on a single answer choice from the answer choice box, then click in the response container you wish to answer. This will "drop" the answer choice into the response
container. container.

To complete this question while utilizing a screen reader, use the Tab key to navigate to an answer choice. Answer choices can be selected and inserted using the Enter key, Spacebar, leff mouse button or touchpad. Using any of these keys, select you answer choice. Use the up and down anrow keys to navigate to the response container you wish to place the selected answer into. Press the key again to "drop" the answer choice into the response container.

Matching


## Update to Content Accepted by SRP



In your opinion, should this work be considered fair use? Why or why not?
B $I \quad \underline{\mathrm{u}}: \vdots$
$0 / 10000$ Word Limit
4 国Review


Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

## Update to Content Accepted by SRP

| Digital Etiquette |
| :--- |
| - Refers to the way electronic |
| communications should be conducted |
| - Is the behavior rules for using technology |
| devices or interacting with others on the |
| internet |
| - Are not enforced laws, but rather widely |
| accepted social norms technology users |
| follow and abide by |
| 27 |


| Digital Etiquette |
| :--- |
| - Should be demonstrated by: |
| - using appropriate language |
| - respecting other's privacy |
| -avoiding inflammatory or offensive posts and |
| comments |
| -not spamming people |
| -staying on topic in discussion forums and |
| posts |
| -double-checking messages and posts |
| CEV |


| Digital Responsibility |
| :--- |
| - Is using technology in an appropriate and |
| constructive way |
| - Can involve a variety of ethical situations |
| related to privacy and transparency |
|  |
|  |
| 30 |



30

6/20/2024

## Update to Content Accepted by SRP

Activity - Acceptable Use Scenarios
Digitial Etiquette \& Security
1 of 1
:三•

## Actlvity Overview:

You will match each scenario with the policy it aligns best with. You will then analyze an article that
explores fair use.

Directions:

1. Match the following scenarios to the policy they best align with.
2. Using the internet, locate a news article related to fair use and answer the questions listed below.
3. Once complete, submit your Activity.

## NOTE:

To complete this question without using the drag-and-drop feature, first click on a single answer choice from the answer choice box, then click in the response container you wish to answer. This will "drop" the answer choice into the response container.

To complete this question while utilizing a screen reader, use the Tab key to navigate to an answer choice. Answer choices can be selected and inserted using the Enter key,
Spacebar, left mouse button or touchpad. Using any of these keys, select your answer choice. Use the up and down arrow keys to navigate to the response container you wish to place the selected answer into. Press the key again to "drop" the answer choice into the response container.

Matching

:: Copyright :: Fair Use :: Creative Commons : $:$ Open Source

## Update to Content Accepted by SRP

Choose one of the scenarios listed above and give an example of how someone could use it to violate
proper digital etiquette. Give an example of how you would demonstrate proper digital etiquette.

| B $\boldsymbol{I}$ | $\underline{\mathrm{u}}$ |  |
| :--- | :--- | :--- |
|  |  |  |
|  | $0 / 10000$ | Word Limit |

Choose one of the scenarios listed above and give an example of how to demonstrate responsible use of software.
B $\boldsymbol{I}$ ́ $:$ 经

## Fair Use Questions

What piece of work is being called into question for violating copyright?
B $\quad$ บ $\quad$ :
$0 / 10000$ Word Limit

What are the arguments that the work is not fair use?

In your opinion, should this work be considered fair use? Why or why not?

4

©2024-All Rights Reserved. (WNOMDWKOOODBR)
You last accessed this site 6/20/2024 at 5:11 PM UTC from IP 73.103.1.227.

## (SE)(Breakout(s)) and (Citation Type(s))

(5)(C)(ii), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Digital Etiquette and Security (Slides 27-30, 33),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21646

## Update to Content Accepted by SRP

Activity-Acceptable Use Scenarios, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21646/CEV71513 Activity01

## Description of the specific location and hyperlink to the exact location of the proposed new content

 Digital Etiquette and Security (Slides 27-34),https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22302
In the Digital Etiquette \& Security PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Activity-Acceptable Use Scenarios,
https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22302/CEV71513 V2 Activity01
This Activity is found in the Digital Etiquette \& Security lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.



## Update to Content Accepted by SRP



[^0] the answer choice into the response container.


## Update to Content Accepted by SRP



Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

| Digital Etiquette |
| :--- |
| - Refers to the way electronic |
| communications should be conducted |
| - Is the behavior rules for using technology |
| devices or interacting with others on the |
| internet |
| - Are not enforced laws, but rather widely |
| accepted social norms technology users |
| follow and abide by |
| (CEV |
| 27 |



| Digital Etiquette |
| :--- |
| - Should be demonstrated by: |
| - using appropriate language |
| -respecting other's privacy |
| - avoiding inflammatory or offensive posts and |
| comments |
| -not spamming people |
| -staying on topic in discussion forums and |
| posts |
| -double-checking messages and posts |
|  |
| CEEV |

## Update to Content Accepted by SRP



## Actlvity Overview:

You will match each scenario with the policy it aligns best with. You will then analyze an article that explores fair use.

Directions:

1. Match the following scenarios to the policy they best align with.
2. Using the internet, locate a news article related to fair use and answer the questions listed below.
3. Once complete, submit your Activity.

NOTE:
To complete this question without using the drag-and-drop feature, first click on a single answer choice from the answer choice box, then click in the response container you wish to answer. This will "drop" the answer choice into the response container.

To complete this question while utilizing a screen reader, use the Tab key to navigate to an answer choice. Answer choices can be selected and inserted using the Enter key, Spacebar, left mouse button or touchpad. Using any of these keys, select your answe choice. Use the up and down arrow keys to navigate to the response container you wish to place the selected answer into. Press the key again to "drop" the answer choice into the response container

## Update to Content Accepted by SRP



Digital Etiquette Questions:
Choose one of the scenarios listed above and give an example of how someone could use it to violate proper digital etiquette. Give an example of how you would demonstrate proper digital etiquette.

B $\boldsymbol{I} \quad \underline{\mathrm{u}}: \underline{\equiv}$
$0 / 10000$ Word Limit
Choose one of the scenarios listed above and give an example of how to demonstrate responsible use of software.

| B $\boldsymbol{I}$ | $\underline{\mathrm{u}}$ |  |
| :--- | :--- | :--- | :--- |
|  |  |  |
|  |  | $0 / 10000$ Word Limit |

Fair Use Questions
What piece of work is being called into question for violating copyright?

| B $\boldsymbol{I}$ | $\underline{1}$ |  |
| :--- | :--- | :--- |
|  |  |  |
|  | $0 / 10000$ Word Limit |  |

## Update to Content Accepted by SRP


What are the arguments that the work is not fair use?

In your opinion, should this work be considered fair use? Why or why not?


©2024-All Rights Reserved. (wnomDwkooober)
You last accessed this site 6/20/2024 at 5:11 PM UTC from IP 73.103.1.227.

## (SE)(Breakout(s)) and (Citation Type(s))

(5)(C)(iii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Digital Etiquette and Security (Slides 27-30, 39),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21646

Description of the specific location and hyperlink to the exact location of the proposed new content Digital Etiquette and Security (Slides 27-31, 40-41), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22302
In the Digital Etiquette \& Security PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

## Screenshot of Currently Adopted Content

Insert a screenshot of your currently adopted content.

## Update to Content Accepted by SRP



| Digital Etiquette |
| :--- |
| - Can include: |
| - use of appropriate language |
| -respect for other's privacy |
| -avoiding inflammatory or offensive posts and |
| comments |
| -not spamming people |
| -staying on topic in discussion forums and |
| posts |
| -double-checking messages and posts |
| CEEV |



| Digital Responsibility |
| :--- |
| - Includes understanding acceptable use of <br> digital materials <br> - checking the license of work can help to avoid <br> issues of copright infringement <br> -understanding copyright can help when <br> developing your own work to be shared with <br> others |
| 39 |

## Update to Content Accepted by SRP



| Digital Etiquette |
| :--- |
| - Refers to the way electronic |
| communications should be conducted |
| - Is the behavior rules for using technology |
| devices or interacting with others on the |
| internet |
| - Are not enforced laws, but rather widely |
| accepted social norms technology users |
| follow and abide by |
| 27 |


| Digital Etiquette |
| :--- |
| - Should be demonstrated by: |
| -using appropriate language |
| -respecting other's privacy |
| - avoiding inflammatory or offensive posts and |
| romnents |
| -not spamming people |
| -staying on topic in discussion forums and |
| posts |
| -double-checking messages and posts |
| CEV |



| Digital Responsibility |
| :--- |
| - Can include: |
| - obeying intellectual property laws |
| - following rules of conduct for every internet |
| site |
| -reporting inappropriate or harmful content |
| -following acceptable use policies |
| -adhering to community guidelines |
| CEEV |
| 11 |

(SE)(Breakout(s)) and (Citation Type(s)) (5)(D)(iv), Activity

## Update to Content Accepted by SRP

Description of the specific location and hyperlink to the exact location of currently adopted content Project-Create a Social Media Post, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21646/CEV71513 Project01

Description of the specific location and hyperlink to the exact location of the proposed new content Digital Etiquette and Security Project-Create a Social Media Post, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22302/CEV71513 V2 Project01 This Project is found in the Digital Etiquette \& Security lesson beneath the Interactive Assignments heading. After clicking the link to the Project, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Project.

## Screenshot of Currently Adopted Content

 Insert a screenshot of your currently adopted content.```
Project - Create a Social Media Post
Bigital Eliquette & Security
10f1 浔
Project Overview:
You will create a social media post. You may use the social media platform of your choice
but are required to format your content to fit the expectations of the site or application.
    Cirections:}\mathrm{ 1. Select one of the following prompts and choose a social media plattorm to create a posi
        educating users about digital security. The post should include:
        Detecting scams
            - Virus protection
            - Mult-factor authenticatio
    2. Using all avallable resources, conduct any additlonal research which may be necessary to gather
        the following post requirements:
        - Basic information on the topic
        - Why the topicic is important for digital securit
        - A call to action
    3. In the space provided below, write a paragraph explaining how you will design your post and why
        In Ine space provided below, write a paragraph explaining how you will design your post and
        plattorm and the format expectations your post will be required to meet. Keep in mind digita
        etiquette and responsible use as you work on your post.
    4. Create your post. Make sure to review and make any edits or revislons necessary to share the
    information efficiently and effectively on your selected platform.
    5. Once complete, upload a document which contains a link to your post in the space provided
        below, then submit your Project.You can find a Rubric at the end of this Project.
Wite your paragraph here.
    B I w := i=


\section*{Rubric}
\begin{tabular}{|c|c|}
\hline Description & Possible Points \\
\hline \begin{tabular}{l}
Research \& Organization: \\
- The social media post was organized effectively and efficiently \\
- All required topics were researched thoroughly \\
- Information was presented in a logical organized manner
\end{tabular} & 35 \\
\hline \begin{tabular}{l}
Concept \& Understanding: \\
- Student clearly understands how to detect scams, virus protection, creating secure passwords, and multifactor authentication \\
- Student created a social media post which effectively portrayed the content
\end{tabular} & 45 \\
\hline \begin{tabular}{l}
Creativity/Craftmanship: \\
- Social media post contains creativity in the way it is written \\
- Social media post contains relative imagery (if included)
\end{tabular} & 10 \\
\hline \begin{tabular}{l}
Production/Effort: \\
- Class time provided for the project was used efficiently \\
- Time and effort are evident in the execution of the end product
\end{tabular} & 10 \\
\hline Total Points & 100 \\
\hline
\end{tabular}

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

Project - Create a Social Media Post Digital Etiquette \& Security

1 of 1

\section*{Project Overview:}

You will create a social media post. You may use the social media platform of your choice but are required to format your content to fit the expectations of the site or application.

Directions:
1. Select one of the following prompts and choose a social media platform to create a post educating users about digital security. The post should include:
- Detecting scams

Privacy and security measures, including virus protection and detection
- Virus protection
- Secure passwords
- Multi-factor authentication
2. Using all available resources, conduct any additional research which may be necessary to gather the following post requirements:
- Basic information on the topic
- Why the topic is important for digital security
- A call to action
3. In the space provided below, write a paragraph explaining how you will design your post and why it will be an effective way to present digital security strategies. Remember to consider your platform and the format expectations your post will be required to meet. Keep in mind digital etiquette and responsible use as you work on your post.
4. Create your post. Make sure to review and make any edits or revisions necessary to share the information efficiently and effectively on your selected platform.
5. Once complete, upload a document which contains a link to your post in the space provided below, then submit your Project. You can find a Rubric at the end of this Project.

\section*{Update to Content Accepted by SRP}

(SE)(Breakout(s)) and (Citation Type(s))
(6)(B)(ii), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Defining Programming Languages (Slides 4-16),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21648
Student Handout-History of Programming,
https://files.icevonline.com/html/CEV71515 TXP24/CEV71515 TXP24 Student Handout -
History of Programming.htm
Activity-KWL Chart Bell Ringer/Exit Ticket,
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21648/CEV71515 Activity01?resume=
False
Activity-Programming Languages,
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21648/CEV71515 Activity02

\section*{Update to Content Accepted by SRP}

Description of the specific location and hyperlink to the exact location of the proposed new content Defining Programming Languages (Slides 4-17), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22304
In the Defining Programming Languages PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.

Student Handout-History of Programming, https://files.icevonline.com/html/CEV71515 V2 HTML/CEV71515 V2 HTML Student Handout History of Programming.htm
This Student Handout is found in the Defining Programming Languages lesson beneath the Instructional Materials heading.

Activity-Programming Languages, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22304/CEV71515 V2 Activity02 This Activity is found in the Defining Programming Languages lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

Activity-KWL Chart Bell Ringer, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22304/CEV71515 V2 Activity01?resu me=False
This Activity is found in the Defining Programming Languages lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

\section*{Screenshot of Currently Adopted Content \\ Insert a screenshot of your currently adopted content.}
\begin{tabular}{|c|}
\hline Programming Languages \\
\hline - Have evolved in complexity and \\
functionality over time \\
-for example, in the \(20^{\text {th }}\) century, punch code \\
was a common mechanism used for machines \\
to read and interpret data as holes were \\
punched in specific locations to signify \\
characters or data \\
-this method and many others have advanced \\
programming and data processing
\end{tabular}



6/21/2024

\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Compiled Languages } \\
\hline - Convert the entire source code into \\
machine code, saves it as an executable \\
file, then runs it independently of the \\
source code \\
- Are efficient and suitable for larger, more \\
complex projects or for applications \\
needing to run on more than one platform \\
- Include C, C++ and Java \\
CEV \\
\hline 10
\end{tabular}

\footnotetext{
Interpreted Languages
- Read and execute the source code line-byline, as it is encountered
-require the interpreter be present on the
computer where the program is being run Are easier to write and debug because the Are earce code is being executed directly and errors can be identified right away
- Are suitable for small, relatively simple projects
- Include Python, Ruby and JavaScript

CEV
}

\section*{Update to Content Accepted by SRP}
\begin{tabular}{|l|}
\hline \begin{tabular}{c} 
Popular Programming \\
Languages
\end{tabular} \\
- Are often multi-purpose and used in more \\
than one area of computer science \\
- Include: \\
- Python \\
- Java \\
- JavaScript \\
-C++ \\
- Are used to create the software and \\
applications used every day \\
CEV \\
12
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Python } \\
- Is one of the most popular multi-purpose \\
languages used today \\
- Is considered strong, dynamically typed \\
- Is used in the following areas of computer \\
science: \\
-cybersecurity \\
-data science \\
-game development \\
-cloud computing \\
-application and software development \\
CEV
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Java } \\
- Is considered a statically typed language \\
- Is used in the following areas of computer \\
science: \\
-game development \\
-cloud computing \\
-application and software development \\
CEV \\
\hline 14
\end{tabular}



6/21/2024

\section*{Update to Content Accepted by SRP}


8/212124, B:5s AM


(araver

\section*{Screenshot of Proposed New Content}

Insert a screenshot of your proposed new content.
\begin{tabular}{|l|}
\hline Programming Languages \\
\hline - Have evolved in complexity and \\
functionality over time \\
-for example, in the 20th century, punch code \\
was a common mechanism used for machines \\
to read and interpret data as holes were \\
punched in specific locations to signify \\
characters or data \\
-this method and many others have advanced \\
programming and data processing
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Low-Level Programming \\
Languages
\end{tabular}} \\
\hline - Are closer to machine code, or binary \\
- Are harder to learn and understand \\
- Are machine-dependent \\
- Need an assembler for translation \\
- Include assembly language and machine \\
language \\
\hline 6 \\
\hline
\end{tabular}


Programming Language
- Is written in English so humans can write and understand it when coding
-humans write in programming language, then
it is translated into machine language
for example,
machine language for the text "Hello World" is 01001000011001010110110001101100
01101111001000000101011101101111

Is considered high-level language
CEV

\section*{Update to Content Accepted by SRP}
\begin{tabular}{|l|}
\hline \begin{tabular}{c} 
High-Level Programming \\
Languages
\end{tabular} \\
\hline • Use English words and mathematical \\
symbols \\
- Include C\#, C++, Java and Python \\
- Are easy to learn, maintain and debug \\
- Can generally run on any platform but need \\
a compiler or interpreter for translation \\
\hline CEV \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Compiling \& Interpreting \\
\hline - Are required to translate high-level source \\
code into machine code \\
- Are determined by the programming \\
language used, the type of application and \\
the target platform \\
- May be done by the same programming \\
language, depending on the job at hand \\
\\
\hline CEV \\
\hline
\end{tabular}

\section*{6/20/2024}
\begin{tabular}{|l|}
\hline Interpreted Languages \\
- Read and execute the source code line-by- \\
line, as it is encountered \\
-require the interpreter be present on the \\
computer where the program is being run \\
- Are easier to write and debug because the \\
source code is being executed directly and \\
errors can be identified right away \\
- Are suitable for small, relatively simple \\
projects \\
- Include Python, Ruby and JavaScript \\
CEV \\
11
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Compiled Languages } \\
\hline - Convert the entire source code into \\
machine code, saves it as an executable \\
file, then runs it independently of the \\
source code \\
- Are efficient and suitable for larger, more \\
complex projects or for applications \\
needing to run on more than one platform \\
- Include C, C++ and Java \\
CEV \\
10
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Python } \\
\hline - Is one of the most popular languages used \\
today \\
- Provides a general programming language \\
which emphasizes code readability and \\
simplicity, while still being powerful enough \\
to develop advanced programming \\
CEV \\
13
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Popular Programming \\
Languages
\end{tabular}} \\
\hline - Are often multi-purpose and used in more \\
than one area of computer science \\
- Include: \\
- Python \\
- Java \\
- JavaScript \\
-C++ \\
- Are used to create the software and \\
applications used every day \\
CEV \\
12
\end{tabular}

\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Java } \\
\hline - Is considered a statically typed language \\
- Provides a language which is versatile, \\
portable and has a wide variety of \\
applications in many different scales of \\
development \\
- Is used in the following areas of computer \\
science: \\
-game development \\
-cloud computing \\
-application and software development \\
CEV \\
15
\end{tabular}

\section*{Update to Content Accepted by SRP}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ JavaScript } \\
- Is an untyped language \\
- Is generally used in web development to \\
enhance web pages to make them more \\
dynamic and responsive \\
- Is used in the following area of computer \\
science: \\
-web-based applications \\
CEE \\
16
\end{tabular}
\begin{tabular}{|l|}
\hline C++ \\
\hline - Is an untyped language \\
- Is generally used as a powerful \\
programming development tool in graphics, \\
software and operating systems that is \\
capable of high-level and low-level system \\
application \\
- Is used in the following areas of computer \\
science: \\
-application and software development, \\
especially with a large number of graphics \\
CEV \\
17
\end{tabular}


SE)(Breakout(s)) and (Citation Type(s)) (6)(B)(iv), Activity

\section*{Update to Content Accepted by SRP}

Description of the specific location and hyperlink to the exact location of currently adopted content Activity-KWL Chart Bell Ringer/Exit Ticket, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21648/CEV71515 Activity01?resume= False
Activity-Programming Languages, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21648/CEV71515 Activity02

Description of the specific location and hyperlink to the exact location of the proposed new content Coding Challenge: Town Population Growth, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22048/CEV71811 SIM01
Access to the interactive coding environment can be located beneath the Interactive Assignments heading by clicking the link to the Coding Challenge. Once clicked, the link will take you to a page prompting you to click Start. Select Start to view the Coding Challenge in the interactive environment.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.


\section*{Update to Content Accepted by SRP}

Highlight any text to hear text-to-voice speech
\(\frac{\text { Select Language }}{\text { Ponered by Goople Translate }}\)

\section*{Programming Languages}

Activity Overview:
You will identify programming languages which can be used in different scenarios
Directions:
1. Read each scenario
2. Using the lesson content and any outside research, decide which programming language you would use and why for each scenario. Then, provide an example of a similar application with which you are familiar
3. Turn in your completed activity according to your instructor's directions.

Scenario \#1:
You are developing the newest mobile app for storing and sorting music for users Language/program choice and reasoning:

Example:
Scenario \#2:
Your program requires statically typed variables and will be used for an app for connecting users with services in the area.
Language/program choice and reasoning

Example:
Scenario \#3:
You are developing a web-based application that does not necessarily need to follow any typing discipline
Language/program choice and reasoning

Example:
Scenario \#4:
You are aspiring to develop the next suite of desktop programs and they will use many graphics.
Language/program choice and reasoning

Example:

\section*{Screenshot of Proposed New Content}

Insert a screenshot of your proposed new content.

(SE)(Breakout(s)) and (Citation Type(s))
(6)(H)(iii), Narrative

\section*{Update to Content Accepted by SRP}

Description of the specific location and hyperlink to the exact location of currently adopted content Subroutines and Data (Slides 3-6, 24-28),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21650

Description of the specific location and hyperlink to the exact location of the proposed new content Subroutines and Data Student Handout-Subroutines, https://files.icevonline.com/html/CEV71517 V2 HTML/CEV71517 V2 HTML Student Handout Subroutines.htm

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.


\section*{Update to Content Accepted by SRP}




\section*{Update to Content Accepted by SRP}
\begin{tabular}{|c|}
\hline Subroutines \\
\hline Subroutines are a way for a user to organize their code by breaking the code down into smaller pieces. The pieces of code are written once and then can be called mutiple times from various parts of a program. Subroutines enhance a code's readability, maintainability and reusability. \\
\hline Parameters are the variables defined in the function function has a parameter "numbers". Arguments are function when it is called. For example, parameter, any numbers or arguments. \\
\hline ```
def sum(*numbers):
    total = 0
    for n in numbers:
        total += n
    return total
``` \\
\hline \begin{tabular}{l}
\# We can call the function with any number print(sum(1, 2, 3, 4)) \# Output: 10 \\
print(sum(10)) \# Output: 10 (sum \\
print(sum(2, 4, 6, 8)) \# Output: 28
\end{tabular} \\
\hline Return Typed Values Without the Use of Argume Subroutines can be created to return typed values can be referred to as parameterless functions. Para parameters, but they do perform a task and then re function can be a data type. \\
\hline The following is an example of a subroutine created use of an argument. In this example, the generate have an argument but will return a random number import random \\
\hline \begin{tabular}{l}
def generate_random_number(): \\
return random.randint(1, 50)
\end{tabular} \\
\hline \# Call the function and get the result random_number \(=\) generate_random_number() print("Random Number:", random_number) \\
\hline Return Typed Values With the Use of Arguments \\
\hline
\end{tabular}

Subroutines can be created to return typed values with the use of arguments. This is often referred to as methods or functions in programming languages. The function wil accept an input parameter and perform the operation based on the input. Then, after the operation is performed, a specific result will occur.
The following is an example of a subroutine created to return a typed value with the use of an argument. In this example, the subtract_numbers function takes the two arguments x and y , subtracts them, and then returns the result.
def subtract_numbers \((x, y)\)
return \(x-y\)
\# Call the function with arguments and get the result
result \(=\) subtract_numbers \((\mathbf{3}, \mathbf{8})\)
result = subtract_numbers

Return Typed Values Without the Use of Parameters
Subroutines can be created to return typed values without the use of parameters. These subroutines are functions or methods that do not take input arguments but will produce a result.
The following is an example of a subroutine created to return a typed value without the use of a parameter. In this example, the get_current_year function does not have an argument but still returns the year with the datetime module.
import datetime
def get_current_year():
return datetime, datetime. now().year
\# Call the function and get the result
current_year \(=\) get_current_year()
print("Current Year:", current year)
Return Typed Values With the Use of Parameters
Subroutines can be created to return typed values with the use of parameters. These can be referred to as methods or functions in programming languages. These functions or methods accept an input parameter and perform the operation based on the input. Then, after the operation is performed, a specific result will occur.

The following is an example of a subroutine created to return a typed value with the use of a parameter. In this example, the add_numbers function takes the two arguments x and y , adds them, and then returns the result.
def add_numbers \((x, y)\) :
return \(x+y\)
```


# Call the function with arguments and get the result

result = add_numbers(7, 9)
print("Result:", result)

```
\(\qquad\)
(SE)(Breakout(s)) and (Citation Type(s)) (6)(H)(iv), Narrative

\section*{Update to Content Accepted by SRP}

Subroutines and Data (Slides 3-6, 24-28), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21650

Description of the specific location and hyperlink to the exact location of the proposed new content Subroutines and Data Student Handout-Subroutines, https://files.icevonline.com/html/CEV71517 V2 HTML/CEV71517 V2 HTML Student Handout Subroutines.htm

Screenshot of Currently Adopted Content Insert a screenshot of your currently adopted content.

\section*{Update to Content Accepted by SRP}

6/21/2024

\section*{Update to Content Accepted by SRP}
Subroutines
Subroutines are a way for a user to organize their code by breaking the code down into
smaller pieces. The pieces of code are written once and then can be called mutiple
times from various parts of a program. Subroutines enhance a code's readability,
maintainability and reusability.
Parameters are the variables defined in the function definition. For example, the 'sum()'
function has a parameter "numbers". Arguments are the values passed into the
function when it called. For example, parameter, "numbers", means it can accept
any numbers or arguments.
def sum(*numbers):
total = \(\theta\)
for \(n\) in numbers:
total \(+=n\)
return total
\# We can call the function with any number of arguments
print(sum(1, 2, 3, 4)) \# Output: 10
print(sum(10))
print(sum(2, 4, 6, 8)) \# Output: 10 (sum of a single number) 20

Return Typed Values Without the Use of Arguments
Subroutines can be created to return typed values without the use of arguments. This can be referred to as parameterless functions. Parameterless functions do not take any parameters, but they do perform a task and then return a result. The result of this function can be a data type.

The following is an example of a subroutine created to return a typed value without the use of an argument. In this example, the generate_random_number function does not have an argument but will return a random number between 1 and 50 .
import random
def generate_random_number()
return random.randint(1, 50
\# Call the function and get the result
random_number \(=\) generate_random_number()
print("Random Number:", random_number)
Return Typed Values With the Use of Arguments

Subroutines can be created to return typed values with the use of arguments. This is often referred to as methods or functions in programming languages. The function wil accept an input parameter and perform the operation based on the input. Then, after the operation is performed, a specific result will occur.
The following is an example of a subroutine created to return a typed value with the use of an argument. In this example, the subtract_numbers function takes the two arguments \(x\) and \(y\), subtracts them, and then returns the result.
f subtract_numbers \((x, y)\)
return \(x\) - y
\# Call the function with arguments and get the result
result \(=\) subtract_numbers \((\mathbf{3}, \mathbf{8})\)
print("Result:", result)

Return Typed Values Without the Use of Parameters
Subroutines can be created to return typed values without the use of parameters. These subroutines are functions or methods that do not take input arguments but will produce a result.
The following is an example of a subroutine created to return a typed value without the use of a parameter. In this example, the get_current_year function does not have an argument but still returns the year with the datetime module.
import datetime
def get_current year()
return datetime, datetime.now().year
\# Call the function and get the result
current_year = get_current_year()

Return Typed Values With the Use of Parameters
Subroutines can be created to return typed values with the use of parameters. These can be referred to as methods or functions in programming languages. These functions or methods accept an input parameter and perform the operation based on the input. Then, after the operation is performed, a specific result will occur.

The following is an example of a subroutine created to return a typed value with the use of a parameter. In this example, the add_numbers function takes the two arguments x and y , adds them, and then returns the result.
def add_numbers \((x, y)\) :
return \(x+y\)
```


# Call the function with arguments and get the result

result = add_numbers(7, 9)

```
print("Result:", result)

(SE)(Breakout(s)) and (Citation Type(s))
(6)(K)(iii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Numeric and Nonnumeric Data (Slides 4-10), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652

Student Handout-ASCII Conversion Chart, https://files.icevonline.com/html/CEV71519 TXP24/CEV71519 TXP24 Student Handout ASCII Conversion Chart.htm

Description of the specific location and hyperlink to the exact location of the proposed new content Numeric and Nonnumeric Data Student Handout-ASCII Translation and Binary Conversions, https://files.icevonline.com/html/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout ASCII Translation and Binary Conversions.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

\section*{Update to Content Accepted by SRP}

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Numeric Data } \\
\hline - Is comprised of data points which are \\
quantifiable, meaning mathematical \\
calculations can be performed \\
- Is numerical (quantitative) \\
- discrete which are only particular numbers \\
- continuous which are any numeric value \\
- May include: \\
-age \\
- height \\
-weight \\
-test scores \\
CEEV
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Numeric Data } \\
\hline - Is based on meanings derived from \\
numbers \\
- Is a result of collection, numerical and \\
standardized data available \\
- Is an analysis of data conducted through \\
mathematical operations, statistics and \\
visualization diagrams
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Nonnumeric Data } \\
\hline - Is data which cannot be manipulated using \\
basic mathematical operations, but rather \\
making use of symbols and letters \\
- Is categorical (qualitative) \\
-nominal, which are named categories \\
- ordinal, which are categories with an implied \\
order \\
- May include: \\
-name \\
-degree type \\
-type of pet \\
CEV
\end{tabular}
\begin{tabular}{|l|}
\hline Nonnumeric Data \\
\hline - Is based on meanings expressed through \\
words \\
- Is a result of collection, non-standardized \\
data which must be classified into \\
categories \\
- Includes analysis which is conducted \\
through the use of conceptualization \\
CEV \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Unicode \\
\hline \begin{tabular}{l}
- Is an extension of ASCII \\
-allows programmers to include a multitude of symbols and characters in all languages \\
- Requires 16 bits for each character -enables Unicode to provide codes for 65,000 characters \\
- Uses hexadecimal (hex) rather than binar in order to produce many combinations
\end{tabular} \\
\hline \begin{tabular}{l}
Data Details: The word "Hello" has a Unicode of \(\mathrm{U}+0048 \mathrm{U}+0065 \mathrm{U}+006 \mathrm{CU}+006 \mathrm{CU}+0065\). \\
CEV
\end{tabular} \\
\hline
\end{tabular}

2
\begin{tabular}{|l|}
\hline ASCII \\
\hline - Stands for the "American Standard Code \\
for Information Interchange" \\
- Is used to represent character data \\
- Requires seven bits for each character \\
- extended ASCII is a superset of ASCII and \\
requires eight bits for each character \\
- provides codes for 256 characters, double of \\
ASCII
\end{tabular}

\section*{Unicode}
-allows programmers to include a multitude of
anacters in all languages
enables Unicode to provide codes for 65,000
in order to produce many combinations

9

6/21/2024
\begin{tabular}{|l|}
\hline Representing Numeric Data \\
\hline - Stores numbers in memory by finding a \\
way to represent the character sequence \\
- Bases strategy used to store numbers on \\
type of numerical data (decimal and binary) \\
- Encounters problems due to limited \\
memory capabilities including: \\
-overflow \\
- magnitude of a number exceeds the range \\
allowed by the size \\
-numeric value precision \\
• number of digits in a number
\end{tabular}

6/21/2024

10

\section*{Update to Content Accepted by SRP}

\section*{Screenshot of Proposed New Content} Insert a screenshot of your proposed new content.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{ASCII Translation \& Binary Conversions} & \multicolumn{2}{|l|}{The binary representation of the nonnumeric character 'A' in ASCII is 01000001.} \\
\hline \multicolumn{2}{|l|}{ASCII (American Standard Code for Information Interchange) and Unicode are character encoding standards used to represent text in computers. They assign numeric values to characters, allowing computers to store and communicate text in a standardized way.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Unicode: \\
Unicode can use various bit lengths, considering a common representation with 16 bits. Using the Unicode code point for ' A ': \\
- Unicode code point for ' A ' is 65.
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Here is a basic explanation of how binary representation can be converted to ASCII and Unicode:} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Numeric Converslons: \\
Numeric data is typically represented in binary using ASCII or Unicode by encoding the individual digits.
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
ASCII: \\
Each digit has a unique ASCII code. For instance: \\
- ASCII code for ' 0 ' is 48 (in decimal), which is 00110000 in binary. \\
- ASCII code for ' 1 ' is 49 (in decimal), which is 00110001 in binary.
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{The binary representation of the numeric digit ' 0 ' in ASCII is 00110000 , and for ' 1 ', its 00110001, and so on.} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Unicode: \\
Unicode represents numeric characters using code points. For example: \\
- Unicode code point for ' 0 ' is 48 (decimal), which is 0000000000110000 in binary. \\
- Unicode code point for ' 1 ' is 49 (decimal), which is 0000000000110001 in binary.
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{The binary representation of the numeric digit ' \(O\) ' in Unicode is 0000000000110000 , and for ' 1 ', it's 0000000000110001.} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Nonnumeric Conversions: \\
ASCII: \\
ASCII represents characters using 7 or 8 bits. This is an example of using the ASCII representation of the letter ' \(A\) ':
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
- ASCII code for 'A' is 65. \\
- In binary, 65 is represented as 01000001 (8 bits).
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} \\
\hline Binary Code & Character Represented & 1000000 & (1) \\
\hline 100000 & Space & 1000001 & A \\
\hline 100001 & 1 & 1000010 & B \\
\hline 100010 & " & 1000011 & C \\
\hline 100011 & \# & 1000100 & D \\
\hline 100100 & \$ & 1000101 & E \\
\hline 100101 & \% & 1000110 & F \\
\hline 100110 & \& & 1000111 & G \\
\hline 100111 & , & 1001000 & H \\
\hline 101000 & \((\) & 1001001 & I \\
\hline 101001 &) & 1001010 & J \\
\hline 101010 & * & 1001011 & K \\
\hline 101011 & + & 1001100 & L \\
\hline 101100 & , & 1001101 & M \\
\hline 101101 & - & 1001110 & N \\
\hline 101110 & . & 1001111 & O \\
\hline 101111 & 1 & 1010000 & P \\
\hline 110000 & 0 & 1010001 & Q \\
\hline 110001 & 1 & 1010010 & R \\
\hline 110010 & 2 & 1010011 & S \\
\hline 110011 & 3 & 1010100 & T \\
\hline 110100 & 4 & 1010101 & U \\
\hline 110101 & 5 & 1010110 & V \\
\hline 110110 & 6 & 1010111 & W \\
\hline 110111 & 7 & 1011000 & X \\
\hline 111000 & 8 & 1011001 & Y \\
\hline 111001 & 9 & 1011010 & Z \\
\hline 111010 & : & 1011011 & [\\
\hline 111011 & ; & 1011100 & 1 \\
\hline 111100 & < & 1011101 &] \\
\hline 111101 & \(=\) & 1011110 & \(\wedge\) \\
\hline 111110 & > & 1011111 & - \\
\hline 111111 & ? & 1100000 & - \\
\hline
\end{tabular}

\section*{Update to Content Accepted by SRP}

(SE)(Breakout(s)) and (Citation Type(s)) (6)(K)(iv), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content Numeric and Nonnumeric Data (Slides 4-10), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652

Student Handout-ASCII Conversion Chart, https://files.icevonline.com/html/CEV71519 TXP24/CEV71519 TXP24 Student Handout ASCII Conversion Chart.htm

Description of the specific location and hyperlink to the exact location of the proposed new content Numeric and Nonnumeric Data Student Handout-ASCII Translation and Binary Conversions, https://files.icevonline.com/html/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout ASCII Translation and Binary Conversions.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

\section*{Update to Content Accepted by SRP}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Numeric Data } \\
\hline - Is comprised of data points which are \\
quantifiable, meaning mathematical \\
calculations can be performed \\
- Is numerical (quantitative) \\
- discrete which are only particular numbers \\
- continuous which are any numeric value \\
- May include: \\
-age \\
-height \\
-weight \\
-test scores \\
CEV \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Nonnumeric Data } \\
\hline - Is data which cannot be manipulated using \\
basic mathematical operations, but rather \\
making use of symbols and letters \\
- Is categorical (qualitative) \\
-nominal, which are named categories \\
-ordinal, which are categories with an implied \\
order \\
- May include: \\
-name \\
-degree type \\
-type of pet \\
CEV \\
6
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Nonnumeric Data } \\
\hline - Is based on meanings expressed through \\
words \\
- Is a result of collection, non-standardized \\
data which must be classified into \\
categories \\
- Includes analysis which is conducted \\
through the use of conceptualization \\
CEV \\
7
\end{tabular}
\begin{tabular}{|c|}
\hline Representing Numeric Data \\
\hline - Stores numbers in memory by finding a \\
way to represent the character sequence \\
- Bases strategy used to store numbers on \\
type of numerical data (decimal and binary) \\
- Encounters problems due to limited \\
memory capabilities including: \\
-overflow \\
- magnitude of a number exceeds the range \\
allowed by the size \\
-numeric value precision \\
• number of digits in a number \\
CEV
\end{tabular}

\section*{ASCII Translation \& Binary Conversions}

ASCII (American Standard Code for Information Interchange) and Unicode are character encoding standards used to represent text in computers. They assign numeric values to characters, allowing computers to store and communicate text in a standardized way.

In ASCII, each character is represented by a 7 -bit or 8 -bit binary number. Unicod extends this concept by providing a unique numeric code for every character,
regardless of the platform, program or language. Unicode typically uses 16 bits (or more) for each character.

Here is a basic explanation of how binary representation can be converted to ASCII and Unicode:

Numeric Converslons:
Numeric data is typically represented in binary using ASCII or Unicode by encoding the individual digits.

\section*{ASCII:}

Each digit has a unique ASCII code. For instance:
- ASCII code for ' 0 ' is 48 (in decimal), which is 00110000 in binary
- ASCII code for ' 1 ' is 49 (in decimal), which is 00110001 in binary

The binary representation of the numeric digit ' 0 ' in ASCII is 00110000, and for ' 1 ', its 00110001 , and so on.

\section*{Unicode}

Unicode represents numeric characters using code points. For example:
- Unicode code point for ' 0 ' is 48 (decimal), which is 0000000000110000 in binary.
- Unicode code point for ' 1 ' is 49 (decimal), which is 0000000000110001 in binary

The binary representation of the numeric digit ' \(O\) ' in Unicode is 0000000000110000 , and for ' 1 ', it's 0000000000110001.

\section*{Nonnumeric Conversions:}

ASCII:
ASCII represents characters using 7 or 8 bits. This is an example of using the ASCI representation of the letter ' \(A\) ':
- ASCII code for ' A ' is 65 .
- In binary, 65 is represented as 01000001 (8 bits).

\begin{tabular}{|c|c|}
\hline Binary Code & Character Represented \\
\hline 100000 & Space \\
\hline 100001 & \(!\) \\
\hline 100010 & " \\
\hline 100011 & \# \\
\hline 100100 & \$ \\
\hline 100101 & \% \\
\hline 100110 & \& \\
\hline 100111 & ' \\
\hline 101000 & \((\) \\
\hline 101001 &) \\
\hline 101010 & * \\
\hline 101011 & + \\
\hline 101100 & , \\
\hline 101101 & - \\
\hline 101110 & . \\
\hline 101111 & I \\
\hline 110000 & 0 \\
\hline 110001 & 1 \\
\hline 110010 & 2 \\
\hline 110011 & 3 \\
\hline 110100 & 4 \\
\hline 110101 & 5 \\
\hline 110110 & 6 \\
\hline 110111 & 7 \\
\hline 111000 & 8 \\
\hline 111001 & 9 \\
\hline 111010 & : \\
\hline 111011 & ; \\
\hline 111100 & < \\
\hline 111101 & = \\
\hline 111110 & > \\
\hline 111111 & ? \\
\hline
\end{tabular}

The binary representation of the nonnumeric character ' A ' in ASCII is 01000001

\section*{Unicode:}

Unicode can use various bit lengths, considering a common representation with 16 bits. Using the Unicode code point for ' A
- Unicode code point for ' \(A\) ' is 65
- In binary, 65 (in 16 bits) is represented as 0000000001000001

The binary representation of the nonnumeric character ' A ' in Unicode (using 16 bits) is 0000000001000001.

820024, 3:09 PM
\begin{tabular}{|c|c|}
\hline 1000000 & @ \\
\hline 1000001 & A \\
\hline 1000010 & B \\
\hline 1000011 & C \\
\hline 1000100 & D \\
\hline 1000101 & E \\
\hline 1000110 & F \\
\hline 1000111 & G \\
\hline 1001000 & H \\
\hline 1001001 & I \\
\hline 1001010 & J \\
\hline 1001011 & K \\
\hline 1001100 & L \\
\hline 1001101 & N \\
\hline 1001110 & O \\
\hline 1001111 & Q \\
\hline 1010000 & R \\
\hline 1010001 & S \\
\hline 1010010 & T \\
\hline 1010011 & U \\
\hline 1010100 & V \\
\hline 1010101 & W \\
\hline 1010110 & X \\
\hline 1010111 & Y \\
\hline 1011000 & Z \\
\hline 1011001 & I \\
\hline 1011010 & \\
\hline 1011011 & \\
\hline 1011100 & 1011101
\end{tabular}

\section*{Update to Content Accepted by SRP}

\section*{(SE)(Breakout(s)) and (Citation Type(s)) (6)(M)(ii), Activity}

Description of the specific location and hyperlink to the exact location of currently adopted content Activity-ASCII Translation and Binary Conversion, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652/CEV71519 Activity01

Description of the specific location and hyperlink to the exact location of the proposed new content Activity-ASCII Translation and Binary Conversion, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22312/CEV71519 V2 Activity01 This Activity is found in the Numeric \& Nonnumeric Data lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content.

\section*{Update to Content Accepted by SRP}

\section*{Update to Content Accepted by SRP}

22024-All Rights Reseved. (MN1MDWK0000sC)

6/21/2024

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

\section*{Update to Content Accepted by SRP}

\section*{ASCII Translation \& Binary Conversions}

Activity Overview:
You will use the ASCII Translation \& Binary Conversions Student Handout to translate words and characters into their binary counterparts, then convert a variety of numbers from binary to decimal form and decimal numbers back to their binary form.

\section*{Directions:}
1. In the first section, using the ASCII Table, translate the following characters and words to binary.
2. In the second section, convert each binary number to its decimal form.
3. In the third section, convert each decimal number to its binary form.
4. In the fourth section, fill in the chart with the correct binary numbers in order from 0 to 15 .
5. Turn in your activity according to your instructor's directions.

Section 1:
Translate the characters and words to binary.
1. Q
2. q
3. R
4. S
5. a
6. To
7. In

\(\qquad\)
(SE)(Breakout(s)) and (Citation Type(s)) (6)(N)(vii), Narrative
8. ASCII
9. Binary

Section 2:
Convert the binary number to decimal form.
1. 10101
2. 110110
3. 1011001
4. 10100101

Section 3:
Convert the decimal number to binary form
1. 17
2. 45
3. 112
4. 191

Section 4:
Fill in the chart with the correct binary numbers in order from 0 to 15

Description of the specific location and hyperlink to the exact location of currently adopted content

\section*{Update to Content Accepted by SRP}

Numeric and Nonnumeric Data (Slides 21-22),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652

Description of the specific location and hyperlink to the exact location of the proposed new content Numeric and Nonnumeric Data Student Handout-Data Types and Structures, https://files.icevonline.com/html/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout Data Types and Structures.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

\section*{Update to Content Accepted by SRP}

\section*{Data Types \& Structures}

Choosing Data Types for Integer Data:
When writing program solutions, it is important to choose the appropriate data types for integer data based on the requirements of the program and the range of values one needs to represent. Common integer data types include
- short int
- int
- long int or long
- fixed-width integer types like intX_t and uintX_t (from <stdint.h>), where \(X\) represents the number of bits

Choosing Data Types for Real Data:
When working with real data (floating-point numbers) run in program solutions, it is crucial to choose the appropriate data types based on the precision and range required for the application. Common real data types include:
- float (32-bit)
- long double (extended precision, typically 80 or 128 bits)

Choosing Data Types for Boolean Data:
When working with Boolean data in program solutions, the appropriate data type is typically a Boolean type or its equivalent in the programming language being used. Common Boolean types include:
- bool
- Boolean(java)
- bool(C\#):
- int(C):

The choice between these types depends on factors such as memory usage, precision needs, and the specific requirements of the calculations. Always ensure the chosen data types can accurately represent the values the program manages without causing overflow, loss of precision, or other issues.

Using One-Dimensional Arrays to Traverse Data:
One-dimensional arrays are a structured data type that allows storage and access to a collection of elements of the same data type. One can traverse the elements of a onedimensional array using loops, typically a 'for' or 'while' loop.

\section*{Example:}
\# Define a one-dimensional array (list)
numbers \(=[1,2,3,4,5]\)
return -1 \# Return -1 if not found
\# Example usage
target_value \(=4\)
result \(=\) search_data (data_array, target_value)
if result \(\mid=-\mathbf{1}\) :
print(f"Value \{target_value\} found at index \{result\}.")
else:
print(f"Value \{target_value\} not found in the array.")
Using One-Dimensional Arrays to Modify Data:
Modifying data in programming is a common and essential operation. Some reasons include updating values and correcting errors.

\section*{Example:}
\# Creating a one-dimensional array (list in Python)
my array \(=[1,2,3,4,5]\)
\# Accessing and modifying elements
print("Original array:", my array)
\# Modify the element at index 2
my_array[2] = 10
\# Add a new element to the end of the array
my_array . append (6)
print("Modified array:", my_array)

\section*{Identifying and choosing data structures and functions in program problem} solution:
Following a checklist when identifying which data structures or functions you should use will help narrow down the choices. Your checklist may include:
- the nature of the data
- what operations will be performed
- problems/solutions
- precision requirements
- insertion and deletion efficiency
- search and sorting requirements
- etc.

Example:
\# Traverse the array using a for loop
print ("Traversing the array using a for loop:")
for num in numbers:
print(num)
\# Alternatively, traverse the array using a while loop
print("\nTraversing the array using a while loop:")
index \(=8\)
while index < len(numbers):
print(numbers[index])
In this example, there is a one-dimensional array named numbers containing integers.
In this example, there is a one-dimensional array named numbers
The array is then traversed using both a for loop and a while loop.
The output would be:
Traversing the array using a for loop:
Travers
1
2
\(\square\)
Traversing the array using a while loop:
1
2
3
4
5
Using One-Dimensional Arrays to Search Data:
One-dimensional arrays are commonly used for searching data because they provide a structured and efficient way to organize and access elements.

\section*{Example:}
\# Sample data in an array
data array \(=[10,20,30,40,50,60,70,80,90]\)
\# Function to search for a value in the array
def search_data(array, target):
for index, value in enumerate(array):
if value == target:
return index \# Return the index if found

Problem: Keeping Track of Students and Grades
student1 = \{"name": "John Doe", "student_id": 1, "grades": [90, 85,
92] \(\}\)
student2 \(=\) \{"name": "Jane Smith", "student_id": 2, "grades": [88, 95 89]\}
students \(=\) [
\{"name": "John Doe", "student_id": 1, "grades": [90, 85, 92]\},
\{"name": "Jane Smith", "student_id": 2, "grades": [88, 95, 89]\}
grades_john \(=[90,85,92]\)
grades_jane \(=[88,95,89]\)
average_grade_john \(=5\) sum(grades john) \(/\) len(grades_john)
average_grade_jane =
student_ids \(=\{1,2\}\)
This example demonstrates the use of dictionaries, lists, sets, and basic arithmetic operations to represent and manage data related to students and their grades in a class. The choice of data types and structures depends on the specific requirements of your program and the operations you need to perform.
(SE)(Breakout(s)) and (Citation Type(s)) (6)(N)(viii), Narrative

Description of the specific location and hyperlink to the exact location of currently adopted content

\section*{Update to Content Accepted by SRP}

Numeric and Nonnumeric Data (Slides 21-22),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652

Description of the specific location and hyperlink to the exact location of the proposed new content Numeric and Nonnumeric Data Student Handout-Data Types and Structures, https://files.icevonline.com/html/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout Data Types and Structures.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

\section*{Update to Content Accepted by SRP}

\section*{Data Types \& Structures}

Choosing Data Types for Integer Data:
When writing program solutions, it is important to choose the appropriate data types for integer data based on the requirements of the program and the range of values one needs to represent. Common integer data types include
- short int
- long int or long
- fixed-width integer types like intX_t and uintX_t (from <stdint.h>), where \(X\) represents the number of bits

Choosing Data Types for Real Data:
When working with real data (floating-point numbers) run in program solutions, it is
crucial to choose the appropriate data types based on the precision and range required for the application. Common real data types include:
- float (32-bit)
- long double (extended precision, typically 80 or 128 bits)

\section*{Choosing Data Types for Boolean Data:}

When working with Boolean data in program solutions, the appropriate data type is typically a Boolean type or its equivalent in the programming language being used. ommon Boolean types include:
- bool
- Boolean(java)
- bool(C\#)
- int(C):

The choice between these types depends on factors such as memory usage, precision needs, and the specific requirements of the calculations. Always ensure the chosen data types can accurately represent the values the program manages without causing overflow, loss of precision, or other issues.

Using One-Dimensional Arrays to Traverse Data:
One-dimensional arrays are a structured data type that allows storage and access to a collection of elements of the same data type. One can traverse the elements of a onedimensional array using loops, typically a 'for' or 'while' loop.

\section*{Example:}
\# Define a one-dimensional array (list)
numbers \(=[1,2,3,4,5]\)
return -1 \# Return -1 if not found
```


# Example usage

target_value = 40
result = search_data(data_array, target_value)
if result I= -1:
print(f"Value {target_value} found at index {result}.")
else:
print(f"Value {target_value} not found in the array.")

```
Using One-Dimensional Arrays to Modify Data:
Modifying data in programming is a common and essential operation. Some reasons
include updating values and correcting errors.

\section*{Example:}
\# Creating a one-dimensional array (list in Python)
my_array \(=[1,2,3,4,5]\)
\# Accessing and modifying elements
print("Original array:", my_array)
\# Modify the element at index 2
my_array[2] = 10
\# Add a new element to the end of the array
my_array.append(6)
print("Modified array:", my_array)

\section*{Identifying and choosing data structures and functions in program problem}
solution:
Following a checklist when identifying which data structures or functions you should use will help narrow down the choices. Your checklist may include:
- the nature of the data
- what operations will be performed
- problems/solutions
- precision requirements
- insertion and deletion efficiency
- search and sorting requirements
- etc.

Example:
\# Traverse the array using a for loop
print("Traversing the array using a for loop:")
for num in numbers:
print(num)
\# Alternatively, traverse the array using a while loop
print("
index \(=8\)
while index < len(numbers):
print(numbers[index])
In this example, there is a one-dimensional array named numbers containing integers.
In this example, there is a one-dimensional array named numbers
The array is then traversed using both a for loop and a while loop.
The output would be:
The output would be:
1
2
\(\square\)
Traversing the array using a while loop.
1
2 4
5

Using One-Dimensional Arrays to Search Data:
One-dimensional arrays are commonly used for searching data because they provide a structured and efficient way to organize and access elements.

\section*{Example:}
\# Sample data in an array
data array \(=[10,20,30,40,50,60,70,80,90]\)
\# Function to search for a value in the array
def search_data(array, target):
for index, value in enumerate(array):
f value == target:
return index \# Return the index if found

Problem: Keeping Track of Students and Grades
student1 = \{"name": "John Doe", "student_id": 1, "grades": [90, 85,
92] \(\}\)
student2 \(=\) \{"name": "Jane Smith", "student_id": 2, "grades": [88, 95 89]\}
students \(=\) [
\{"name": "John Doe", "student_id": 1, "grades": [90, 85, 92]\},
\(\{"\) name": "Jane Smith", "student_id": 2, "grades" : [88, 95, 89]\}
grades_john \(=[90,85,92]\)
grades_jane \(=[88,95,89]\)
average_grade_john \(=\operatorname{sum}(\) grades john \() /\) len(grades_john)
average_grade_jane =
student_ids \(=\{1,2\}\)
This example demonstrates the use of dictionaries, lists, sets, and basic arithmetic operations to represent and manage data related to students and their grades in a class. The choice of data types and structures depends on the specific requirements of your program and the operations you need to perform.

\section*{Update to Content Accepted by SRP}

Description of the specific location and hyperlink to the exact location of currently adopted content Numeric and Nonnumeric Data (Slides 21-22),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652
Description of the specific location and hyperlink to the exact location of the proposed new content Numeric and Nonnumeric Data Student Handout-Data Types and Structures, https://files.icevonline.com/html/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout Data Types and Structures.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

\section*{Update to Content Accepted by SRP}

\section*{Data Types \& Structures}

Choosing Data Types for Integer Data:
When writing program solutions, it is important to choose the appropriate data types for integer data based on the requirements of the program and the range of values one needs to represent. Common integer data types include
- short int
- int
- long int or long
- fixed-width integer types like intX_t and uintX_t (from <stdint.h>), where \(X\) represents the number of bits

Choosing Data Types for Real Data:
When working with real data (floating-point numbers) run in program solutions, it is crucial to choose the appropriate data types based on the precision and range required for the application. Common real data types include:
- float (32-bit)
- long double (extended precision, typically 80 or 128 bits)

\section*{Choosing Data Types for Boolean Data:}

When working with Boolean data in program solutions, the appropriate data type is typically a Boolean type or its equivalent in the programming language being used. ommon Boolean types include:
- bool
- Boolean(java)
- bool(C\#)
- int(C):

The choice between these types depends on factors such as memory usage, precision needs, and the specific requirements of the calculations. Always ensure the chosen data types can accurately represent the values the program manages without causing overflow, loss of precision, or other issues.

Using One-Dimensional Arrays to Traverse Data:
One-dimensional arrays are a structured data type that allows storage and access to a collection of elements of the same data type. One can traverse the elements of a onedimensional array using loops, typically a 'for' or 'while' loop.

\section*{Example:}
\# Define a one-dimensional array (list)
numbers \(=[1,2,3,4,5]\)
return -1 \# Return -1 if not found
```


# Example usage

target_value = 40
result = search_data(data_array, target_value)
if result I= -1:
print(f"Value {target_value} found at index {result}.")
else:
print(f"Value {target_value} not found in the array.")

```
Using One-Dimensional Arrays to Modify Data:
Modifying data in programming is a common and essential operation. Some reasons
include updating values and correcting errors.

\section*{Example:}
\# Creating a one-dimensional array (list in Python)
my_array \(=[1,2,3,4,5]\)
\# Accessing and modifying elements
print("Original array:", my_array)
\# Modify the element at index 2
my_array[2] = 10
\# Add a new element to the end of the array
my_array.append(6)
print("Modified array:", my_array)

\section*{Identifying and choosing data structures and functions in program problem}

\section*{solution :}
solution:
Following a checklist when identifying which data structures or functions you should use will help narrow down the choices. Your checklist may include:
- the nature of the data
- what operations will be performed
- problems/solutions
- precision requirements
- insertion and deletion efficiency
- search and sorting requirements
- etc.

Example:
\# Traverse the array using a for loop
print("Traversing the array using a for loop:")
for num in numbers:
print(num)
\# Alternatively, traverse the array using a while loop
print("\nTraversing the array using a while loop:")
index \(=0\)
while index < len(numbers):
print(numbers[index])
In this example, there is a one-dimensional array named numbers containing integers.
In this example, there is a one-dimensional array named numbers
The array is then traversed using both a for loop and a while loop.
The output would be:
Traversing the array using a for loop:
1
2
\(\square\)
Traversing the array using a while loop. 4
5

Using One-Dimensional Arrays to Search Data:
One-dimensional arrays are commonly used for searching data because they provide a structured and efficient way to organize and access elements.

\section*{Example:}
\# Sample data in an array
data array \(=[10,20,30,40,50,60,70,80,90]\)
\# Function to search for a value in the array
def search_data(array, target):
for index, value in enumerate(array):
f value == target:
return index \# Return the index if found
```

Problem: Keeping Track of Students and Grades
student1 = {"name": "John Doe", "student_id": 1, "grades": [90, 85,
student2 = {"name": "Jane Smith", "student_id": 2, "grades": [88, 95,
89]}
students =
{"name": "John Doe", "5tudent_id": 1, "grades": [90, 85, 92]},
{"name": "Jane Smith", "student_id": 2, "grades": [88, 95, 89]}
grades_john =[90, 85, 92]
grades jane =[$$
\begin{array}{lll}{88,}&{95,}&{89}\end{array}
$$]
average_grade_john = sum(grades_john) / len(grades_john)
average grade jane =sum(grades jane)// len(grades jane)
student_ids ={1, 2}
This example demonstrates the use of dictionaries, lists, sets, and basic arithmetic operations to represent and manage data related to students and their grades in a class. The choice of data types and structures depends on the specific requirements of your program and the operations you need to perform.

```

\section*{Update to Content Accepted by SRP}

\title{
Description of the specific location and hyperlink to the exact location of currently adopted content Objects and Variables (Slides 21-22, 28-29), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21649
}

Project-Objects and Scope, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21649/CEV71516 Project01

Description of the specific location and hyperlink to the exact location of the proposed new content Objects and Variables (Slides 21-22, 28-29), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22306
In the Objects \& Variables PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.
Student Handout-Coding Examples, https://files.icevonline.com/html/CEV71516 V2 HTML/CEV71516 V2 HTML Student Handout Coding Examples.htm
This Student Handout is found in the Objects \& Variables lesson beneath the Instructional Materials heading.

Activity-Primitives and Objects,
https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22306/CEV71516 V2 Activity02
This Activity is found in the Objects \& Variables lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

\section*{Update to Content Accepted by SRP}

2

\section*{Project - Objects \& Scope \\ Objects \& Variables}

1 of 1
ミー

Project Overview:
You will wnite a
global scope.

Directions:
1. Plan a program using object-oriented design. You will use at least two classes, and one class must be the base for another class. You may have more than two dasses if you wish. Consider
mole hat you would like to organize.
3. Write the deffition of your two classes. Remember, one class must use another class as it base.
4. Write the main program which creates at least one instance of the class which has a base class. 5. Make sure your program has an example of both local and global scope. Add a comment to the
line to identify a local variable and global variable. You only need to do this once for each type of line to identify a local variable and global variable. You only need to do this once for each type of
6. In three
or both.
7. Run your program and fix any errors, if necesssary.
. Once complete, upload a document which contains your program in the space provided below, then submity your Project. You can find a Rubric at the end of this Prolect

Witte your paragraph here.
B \(I \quad \underline{y}: \underline{\equiv}\)

\section*{Update to Content Accepted by SRP}

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

\section*{Update to Content Accepted by SRP}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Variables } \\
\hline - Are named locations in memory used to \\
store a value \\
- Can be used to store any type of data, \\
such as numbers, strings, lists and more \\
- Are assigned using the " \(=\) " operator, and \\
their value can be accessed by referencing \\
their name \\
CEEV \\
21
\end{tabular}

 print(f"\{self.make\} \{self.model\} honks!")

Object Examples:
Object Exa
class Ca
def _init__(self, make, model, year):
self.make = make
self.model \(=\) model
self. year \(=\) year
def description (self)
return f"\{self.year\} \{self.make\} \{self.model\}"
\# Create an object of the Car class
my_car = Car("Tesla", "Model S", 2022)
\#Access the attributes of the object
print(my_car.make) \# Tesla
print(my_car.model) \# Model S
print(my_car, year) \# 2022
\# Call the method of the object
print(my_car.description()) \# 2022 Tesla Model S

\section*{Object-Oriented Design Example 1:}
class Car
def __init__(self, make, model, year):
self.make = make
self.model = model
self.year = year
self.speed \(=0\)
def accelerate(self, rate):
self.speed \(+=\) rate
def brake(self, rate): self.speed -= rate
def honk(self):
\(\qquad\)

class ElectricCar(Car):

self.battery_level = 100
def honk(self):
print(f"\{self.make\} \{self.model\} beeps!")
my_car = Car("Toyota", "Camry", 2020)
my_car.accelerate(10)
my_car.honk() \# Output: Toyota Camry honks!
my_electric_car = ElectricCar("Tesla", "Model S", 2021)
my_electric_car.honk() \# Output: Tesla Model S beeps!
Object-Oriented Design Example 2:
class Shape:
def _init__(self, name):
def area(self): pass
def perimeter(self): pass

Class Square(Shape):
def __init__(self, length);
super().-init ("Square") self.length \(=\) length
def area(self):
return self.length ** 2
def perimeter(self): return 4 * self.length

\section*{Update to Content Accepted by SRP}
class Circle(Shape)
class Circle(Shape)
 def __init__(self, radius):
 def __init__(self, radius):
 super().__init__("Circle")
 super().__init__("Circle")
 self.radius = radius
 self.radius = radius
 def area(self):
 def area(self):
 return 3.14 * self.radius ** 2
 return 3.14 * self.radius ** 2
 def perimeter(self):
 def perimeter(self):
 return 2*3.14 * self,radius
 return 2*3.14 * self,radius
shapes = [Square(5), Circle(3), Square(7), Circle(2)]
shapes = [Square(5), Circle(3), Square(7), Circle(2)]
for shape in shapes:
for shape in shapes:
 print(f"The area of {shape.name} is {shape.area()}")
 print(f"The area of {shape.name} is {shape.area()}")
 print(f"The perimeter of {shape.name} is
 print(f"The perimeter of {shape.name} is
{shape.perimeter()}")
{shape.perimeter()}")
Primitive and Object Examples:
Primitive and Object Examples:
class Rectangle:
class Rectangle:
 def _init__(self, length, width):
 def _init__(self, length, width):
 self.1ength = length
 self.1ength = length
 def calculate_area(self):
 def calculate_area(self):
 return self.length * self.width
 return self.length * self.width
Create instances of the Rectangle class
Create instances of the Rectangle class
rectangle1 = Rectangle(5, 10)
rectangle1 = Rectangle(5, 10)
rectangle2 = Rectangle(8, 6)
rectangle2 = Rectangle(8, 6)
Calculate and display the area of each rectangle
Calculate and display the area of each rectangle
area1 = rectangle1.calculate_area()
area1 = rectangle1.calculate_area()
area2 = rectangle2.calculate_area()
area2 = rectangle2.calculate_area()
print(f"The area of the first rectangle is {area1} square units.")
print(f"The area of the first rectangle is {area1} square units.")
print(f"The area of the second rectangle is {area2} square units.")
print(f"The area of the second rectangle is {area2} square units.")
Program Example:
Program Example:
class Item:
class Item:
 def __init__(self, name, quantity, unit_price):
 def __init__(self, name, quantity, unit_price):
Activity - Primitives \& Objects
 Objects \& Variables
 1 of 1 決
 Diractions:
1. In Python, you should define your class using primitives and
 1. In Python, you should define your class using primitives and
objects. Inolude at least three identifiers, one of each type, both
 objects. Include at least three identifiers,
primitive and object. Examples include:
 primitive and o
- Name
 - Name
- Age
 \(\therefore\) Age
 \(\circ\)
\(\circ\)
\(\circ\)
- Eye Eye color
 2. Create instances of your class using your selected identifiers. For
 example:
 student1 \(=\) Student ("Alice \({ }^{n}, 18\), "brown" \(^{n}\))
 3. Display studentent information. For example:
 4. Use primitity types for additional information. For example:
 primitve types for additional information. For example:
 average_age \(=\) (student1.age + student2.age + student3.a
 5. Display additional information. For example:
 - Total number of students in the class
 6. Run the program.
 7. After running the program, write a four-sentence narrative
 Identtfying where you applied primitves and objects in your code.
Analyze the concept of primitives and objects and their role in
 8. Once con
 Write your nerrative here
 B \(I \quad \underline{y} \quad \equiv \quad\) I三
 \(0 / 10000\) Word Limit
 图Review
（SE）（Breakout（s））and（Citation Type（s）） （6）（O）（ii），Narrative \＆Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Objects and Variables（Slides 21－22，28－29），

\section*{Update to Content Accepted by SRP}
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21649
Project-Objects and Scope,
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21649/CEV71516 Project01
Description of the specific location and hyperlink to the exact location of the proposed new content Objects and Variables (Slides 21-22, 28-29), https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22306
In the Objects \& Variables PowerPoint, go to the slides suggested in the Page Number(s). When the PowerPoint opens, if a menu appears asking "Would you like to resume the presentation from the last slide viewed?" select No.
Student Handout-Coding Examples,
https://files.icevonline.com/html/CEV71516 V2 HTML/CEV71516 V2 HTML Student Handout Coding Examples.htm
This Student Handout is found in the Objects \& Variables lesson beneath the Instructional Materials heading.

Activity-Primitives and Objects, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22306/CEV71516 V2 Activity02
This Activity is found in the Objects \& Variables lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

\section*{Update to Content Accepted by SRP}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Project - Objects \& Scope objects \& Variables} \\
\hline \multicolumn{3}{|l|}{1 of 1} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Project Overview: \\
You will write a program which uses at least two classes and examples of both local and global scope.
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{Directions:} \\
\hline \multicolumn{3}{|r|}{1. Plan a program using object-oriented design. You will use at least two classes, and one class must be the base for another class. You may have more than two classes if you wish. Consider what you would like to organize.} \\
\hline \multicolumn{3}{|c|}{2. Open a Python interpreter. Write a comment outine of your program.} \\
\hline \multicolumn{3}{|c|}{3. Write the definition of your two classes. Remember, one class must use another class as its base.} \\
\hline \multicolumn{3}{|r|}{4. Write the main program which creates at least one instance of the class which has a base class.} \\
\hline \multicolumn{3}{|r|}{5. Make sure your program has an example of both local and global scope. Add a comment to the line to identify a local variable and global variable. You only need to do this once for each type of scope.} \\
\hline \multicolumn{3}{|r|}{6. In three to five sentences, explain if the variables used in the program contain primitives, object or both.} \\
\hline \multicolumn{3}{|r|}{7. Run your program and fix any errors, if necessary.} \\
\hline \multicolumn{3}{|r|}{8. Once complete, upload a document which contains your program in the space provided below, then submilt your Project. You can find a Rubric at the end of this Project.} \\
\hline \multicolumn{3}{|l|}{Witte your paragraph here.} \\
\hline \multicolumn{3}{|c|}{B \(\boldsymbol{I} \underline{\underline{y}} \mathbf{\vdots}\) :} \\
\hline \multicolumn{3}{|r|}{0 / 10000 Word Limit} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Description & Possible Points \\
\hline \begin{tabular}{l}
Code Style Standards: \\
- Proper code standards were followed, such as meaningful variable names
\end{tabular} & 35 \\
\hline \begin{tabular}{l}
Concept \& Understanding: \\
- Two classes were used: one was the base for the other \\
- A local and global scope was used \\
- Effective strategies were used to achieve the end product \\
- Paragraph effectively explains primitive versus object variables \\
- Logical thinking was utilized to arrive at the conclusion
\end{tabular} & 40 \\
\hline \begin{tabular}{l}
Academic Honesty/Craftmanship: \\
- End product is unique and reffects the student's or group's indviicuality \\
- Program created was created uniquely
\end{tabular} & 15 \\
\hline \begin{tabular}{l}
Production/Effort: \\
- Class time provided for the project was used efficiently \\
- Time and eflurt ate evidenl in the execulivi of the end procuct
\end{tabular} & 10 \\
\hline Total Points & 100 \\
\hline
\end{tabular}

4 目Review

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

\section*{Update to Content Accepted by SRP}

 print(f"\{self.make\} \{self.model\} honks!")
class ElectricCar(Car):
def _init_(self, make, model, year): self,battery_level \(=100\)
def honk(self):
print(f"\{self.make\} \{self.model\} beeps!")
my_car = Car("Toyota", "Camry", 2020)
my_car.accelerate(10)
my_car.honk() \# Output: Toyota Camry honks!
my_electric_car = ElectricCar("Tesla", "Model S", 2021)
my_electric_car.honk() \# Output: Tesla Model S beeps!
Object-Oriented Design Example 2:
class Shape:
def _init_(self, name):
\[
\overline{s e l f} . \text { name }=\text { name }
\]
def area(self): pass
def perimeter(self): pass
class Square(Shape):
def __init__(self, length); super()._init _("Square") self. length \(=\) length
def area(self): return self.length ** 2
def perimeter(self): return 4 * self.length

\section*{Update to Content Accepted by SRP}
class Circle(Shape):
class Circle(Shape):
 def __init__(self, radius):
 def __init__(self, radius):
 super().__init__("Circle")
 super().__init__("Circle")
 self.radius = radius
 self.radius = radius
 def area(self):
 def area(self):
 return 3.14 * self.radius ** 2
 return 3.14 * self.radius ** 2
 def perimeter(self):
 def perimeter(self):
 return 2 * 3.14 * self,radius
 return 2 * 3.14 * self,radius
shapes = [Square(5), Circle(3), Square(7), Circle(2)]
shapes = [Square(5), Circle(3), Square(7), Circle(2)]
for shape in shapes:
for shape in shapes:
 print(f"The area of {shape.name} is {shape.area()}")
 print(f"The area of {shape.name} is {shape.area()}")
 print(f"The perimeter of {shape.name} is
 print(f"The perimeter of {shape.name} is
{shape.perimeter()}")
{shape.perimeter()}")
Primitive and Object Examples:
Primitive and Object Examples:
class Rectangle:
class Rectangle:
 def _init__(self, length, width):
 def _init__(self, length, width):
 self.width = width
 self.width = width
 calculate area(self);
 calculate area(self);
 return self.length * self.width
 return self.length * self.width
Create instances of the Rectangle class
Create instances of the Rectangle class
rectangle1 = Rectangle(5, 10)
rectangle1 = Rectangle(5, 10)
rectangle2 = Rectangle(8, 6)
rectangle2 = Rectangle(8, 6)
Calculate and display the area of each rectangle
Calculate and display the area of each rectangle
area1 = rectangle1.calculate_area()
area1 = rectangle1.calculate_area()
area2 = rectangle2.calculate_area()
area2 = rectangle2.calculate_area()
print(f"The area of the first rectangle is {area1} square units.")
print(f"The area of the first rectangle is {area1} square units.")
print(f"The area of the second rectangle is {area2} square units.")
print(f"The area of the second rectangle is {area2} square units.")
Program Example:
Program Example:
class Item:
class Item:
 def __init__(self, name, quantity, unit_price):
 def __init__(self, name, quantity, unit_price):
Activity - Primitives \& Objects
Objects \& Variables
 Objects \& Variables
 1 of 1 方
 Diractions:
 1. In Python, you should define your class using primitives and
 objects. Inolude at least three identifiers, one of each type, both
 primitive and object. Examples include:
 primitive and
- Name
 \(\circ\) Age
\(\therefore\) - Height
 - Heigh
 2. Create instances of your class using your selected identifiers. Fo
 example:
 student1 = Student ("Alice", 18, "brown")
 3. Display studentent information. For example:
 4. Use primitity types for additional information. For example:
 primitive types for additional information. For example:
 total_students \(=3\)
 average_age \(=\) (student1.age + student 2. age + student 3.a
 5. Display additional information. For example:
o Total number of students in the class
 - Total number of students in the class
- Average age of students in the class
 6. Run the program.
 6. Run the program.
7. After running the program, write a four-sentence narrative
 Identtfying where you applied primituves and objects in your code.
 Analyze the concept of primitives and objects and their role in
 coding.
 8. Once complete, submilt your Actuvity.
 Write your nerrative here.
 B \(I \quad \underline{y} \quad \equiv \quad \equiv\)
 \(0 / 10000\) Word Limit
 图Review
(SE)(Breakout(s)) and (Citation Type(s)) (6)(P)(i), Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Project-Data Types and Structures Handbook,

\section*{Update to Content Accepted by SRP}
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652/CEV71519 Project01

Description of the specific location and hyperlink to the exact location of the proposed new content Coding Challenge: Calculate String Rotation, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22045/CEV71808 SIM01
Access to the interactive coding environment can be located beneath the Interactive Assignments heading by clicking the link to the Coding Challenge. Once clicked, the link will take you to a page prompting you to click Start. Select Start to view the Coding Challenge in the interactive environment.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.
 :

Project Overview:
ook on how to choose, identify and use the appropriate data type

Directions:
1. Use the intermet and other available rescurces to research each of the following data types or nctures used in program problem solutions. - Integer
\(\circ\)
\(\circ\)
Real/floa
- Boolean
- Character (Char)
- Array (String)
- char charat(int index)
- Strolean containg(ChariSequence s)
- One-dimensional arrays
- search
. Summarize your findings for each of the data types or structures. The summary should indude how to choose, identify and use each data type or structure. Each data type or structure should 3. Your handbook should ind
the following sections:
- Headings
- Page numbers
- Cited sources

Once complete., upload your handbook in the space provided below, then submit your Project.

Upioad your file(s) here.

Screenshot of Proposed New Content Insert a screenshot of your proposed new content．

My Courses／Computer Science I－UPDATED／Coding Challenge：Calculate String Rotation－NEW ITEM／Coding Challenge：Calculate String Rotation
Highlight any text to hear text－to－voice speech．
G Select Language｜ \(\mathbf{V}\)

Coding Challenge：Calculate String Rotation

（SE）（Breakout（s））and（Citation Type（s））
（6）（P）（ii），Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Project－Data Types and Structures Handbook， https：／／login．icevonline．com／mycourses／ADOCOMPU001／lesson／21652／CEV71519 Project01

\section*{Update to Content Accepted by SRP}

Description of the specific location and hyperlink to the exact location of the proposed new content Coding Challenge：Capitalize Words， https：／／login．icevonline．com／mycourses／ADOCOMPU002／lesson／22050／CEV71813 SIM01
Access to the interactive coding environment can be located beneath the Interactive Assignments heading by clicking the link to the Coding Challenge．Once clicked，the link will take you to a page prompting you to click Start．Select Start to view the Coding Challenge in the interactive environment．

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content． structures used in program problem solutions．
 - Boolean
 - Character (Ch
 - Array (String)
 - String concatenation
 - String substring(int beginlndex)
 - boolean contains(Charsequence s)
 - One-dimensional arrays
 4. traverse
". search
i. modify
 2. Summarize your findings for each of the data types or structures. The summary should include
 how to choose, identify and use each data type or structure. Each data type or structure should
 be at least half of a page.
 3. Your handbook should include the following sections:
 \(\therefore\) Tite page
 - Table of contents
- Headings
 - Headings
 - Page numbers
 4. Once complete, upload your handbook in the space provided below, then submit your Project.
 You can find a Rubric at the end of this Projecl.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{（ \(T\) 谏} \\
\hline \multicolumn{4}{|c|}{金 Upload files} \\
\hline \multicolumn{4}{|r|}{Supported file fommats：PDF，JPG，GIF，PNG，TXT，ZZP，Word，Excel，Powerpoint，Publisher，Open} \\
\hline \multicolumn{4}{|r|}{\(0 / 12\) Fill Limit} \\
\hline
\end{tabular}

Rubric

e2024-All Rights Reneseved. (wnimdmwhemonh)

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.
```

My Courses / Computer Science I-UPDATED / Coding Challenge: Capitalize Words - NEW ITEM / Coding Challenge: Capitalize Words
Highlight any text to hear text-to-voice speech.
G Select Language |
SAVE PROGRESS
Coding Challenge: Capitalize Words

```


(SE)(Breakout(s)) and (Citation Type(s))
(6)(P)(iii), Activity

\section*{Update to Content Accepted by SRP}

Description of the specific location and hyperlink to the exact location of currently adopted content Project－Data Types and Structures Handbook， https：／／login．icevonline．com／mycourses／ADOCOMPU001／lesson／21652／CEV71519 Project01

Description of the specific location and hyperlink to the exact location of the proposed new content Coding Challenge：Calculate String Rotation， https：／／login．icevonline．com／mycourses／ADOCOMPU002／lesson／22045／CEV71808 SIM01 Access to the interactive coding environment can be located beneath the Interactive Assignments heading by clicking the link to the Coding Challenge．Once clicked，the link will take you to a page prompting you to click Start．Select Start to view the Coding Challenge in the interactive environment．

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content．

SAVE PRogress
Project－Data Types \＆Structures Handbook Numeric \＆Nonnumeric Data
1 of 1 沫

Project Overvlew：
You will create a handbook on how to choose，identify and use the appropriate data type
or structure in a program problem solution

Directions：
1．Use the intermet and other available rescources to research each of the following data types or structures used in program problem solutions． －Integer
－Real／float
－Real／Foating point（fioat）
- Boolean
0
－Character（C
－Array（String）
－Sting concatenation
－String substring（int beginlndex）
－boolean contains（CharSequence s）
onsional arrays
－travers
－modity
2．Summarize your findings for each of the data types or structures．The summary should include how to choose，identify and use each data type or structure．Each data type or structure should be at least half of a page．
3．Your handbook should include the following sections：
－Tite page
－Headings
－Page numbers
－Cited sources
4．Once completete upload your handbook in the space provided below，then submit your Project．
You can find a Rubric at the end of this Proiect．
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{（ \(T\) 面} \\
\hline \multicolumn{4}{|c|}{宣 Upload filies} \\
\hline \multicolumn{4}{|r|}{Supported file formats：PDF，JPG，GIF，PNG，TXT，ZPP，Word，Excel，Powerpoint，Publisher，Open
Offlco} \\
\hline \multicolumn{4}{|r|}{0 ／ 12 Fille Limit} \\
\hline
\end{tabular}

\section*{Screenshot of Proposed New Content}

Insert a screenshot of your proposed new content.

(SE)(Breakout(s)) and (Citation Type(s))
(6)(P)(iv), Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Project-Data Types and Structures Handbook,
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652/CEV71519 Project01

\section*{Update to Content Accepted by SRP}

Description of the specific location and hyperlink to the exact location of the proposed new content Coding Challenge：Capitalize Words， https：／／login．icevonline．com／mycourses／ADOCOMPU002／lesson／22050／CEV71813 SIM01
Access to the interactive coding environment can be located beneath the Interactive Assignments heading by clicking the link to the Coding Challenge．Once clicked，the link will take you to a page prompting you to click Start．Select Start to view the Coding Challenge in the interactive environment．

Screenshot of Currently Adopted Content
Insert a screenshot of your currently adopted content． structures used in program problem solutions．
 - Boolean
 - Character (Ch
 - Array (String)
 - String concatenation
 - String substring(int beginlndex)
 - boolean contains(Charsequence s)
 - One-dimensional arrays
 4. traverse
". search
i. modify
 2. Summarize your findings for each of the data types or structures. The summary should include
 how to choose, identify and use each data type or structure. Each data type or structure should
 be at least half of a page.
 3. Your handbook should include the following sections:
 \(\therefore\) Tite page
 - Table of contents
- Headings
 - Headings
 - Page numbers
 4. Once complete, upload your handbook in the space provided below, then submit your Project.
 You can find a Rubric at the end of this Projecl.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{（ \(T\) 谏} \\
\hline \multicolumn{4}{|c|}{金 Upload files} \\
\hline \multicolumn{4}{|r|}{Supported file fommats：PDF，JPG，GIF，PNG，TXT，ZZP，Word，Excel，Powerpoint，Publisher，Open} \\
\hline \multicolumn{4}{|r|}{\(0 / 12\) Fill Limit} \\
\hline
\end{tabular}

\section*{Screenshot of Proposed New Content}

Insert a screenshot of your proposed new content.
```

Highlight any text to hear text-to-voice speech.
G Select Language $\mathbf{v}$

```

Coding Challenge: Capitalize Words

(SE)(Breakout(s)) and (Citation Type(s))
(6)(Q)(iv), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content

\section*{Update to Content Accepted by SRP}

Numeric and Nonnumeric Data (Slides 26-27), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652

Project-Data Types and Structures Handbook, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652/CEV71519 Project01?resume=F alse

Description of the specific location and hyperlink to the exact location of the proposed new content Numeric and Nonnumeric Data Student Handout-Data Types and Structures, https://files.icevonline.com/html/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout Data Types and Structures.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

Activity-Using Structured Data Types, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22312/CEV71519 V2 Activity04 This Activity is found in the Numeric \& Nonnumeric lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

\section*{Update to Content Accepted by SRP}

\section*{Project - Data Types \& Structures Handbook \\ Numeric \& Nonnumerio Data}

1 of 1
ミー

Project Overvlew:
You will create a handbook on how to choose, identify and use the appropriate data type or structure in a program problem solution.

Directions:
1. Use the intermet and other available rescurces to research each of the following data types or
structures used in program problem solutions.
- Integer
- Real/Floating point (float)
- Boolean
- Character (Cha)
- Array (String)
- char charAAt(nint index)
- String substring(int beginlndex)
- boolean contains(CharSequence s)
- One-dimensional arrays
" traverse
- search
2. Summarize your findings for each of the data types or structures. The summary should indude
how to choose, identify and use each data type or structure. Each data type or structure should bo at least half of a page.
3. Your handbook should include the following sections:
- Tite page
- Table of contion
- Table of content
- Headings
- Page number
- Cited sources
4. Once complete, upload your handbook in the space provided below, then submit your Project.
You can find a Rubric at the end of this Project.

You can find a Rubric at the end of this Project.

\section*{Update to Content Accepted by SRP}

\section*{Screenshot of Proposed New Content Insert a screenshot of your proposed new content.}

\section*{Data Types \& Structures}

\section*{Choosing Data Types for Integer Data:}

When writing program solutions, it is important to choose the appropriate data types for integer data based on the requirements of the program and the range of values one needs to represent. Common integer data types include
- short int
- int
- long int or long
- fixed-width integer types like intX_t and uintX_t (from <stdint.h>), where X represents the number of bits

\section*{Choosing Data Types for Real Data:}

When working with real data (floating-point numbers) run in program solutions, it is crucial to choose the appropriate data types based on the precision and range required for the application. Common real data types include:
- float (32-bit)
- double (64-bit)
- long double (extended precision, typically 80 or 128 bits)

\section*{Choosing Data Types for Boolean Data:}

When working with Boolean data in program solutions, the appropriate data type is typically a Boolean type or its equivalent in the programming language being used. Common Boolean types include:
- bool
- Boolean(java)
- bool(C\#)
int(C)
The choice between these types depends on factors such as memory usage, precision needs, and the specific requirements of the calculations. Always ensure the chosen data types can accurately represent the values the program manages without causing overlow, loss of precision, or other issues.
Using One-Dimensional Arrays to Traverse Data:
One-dimensional arrays are a structured data type that allows storage and access to a
collection of elements of the same data type. One can traverse the elements of a onedimensional array using loops, typically a 'for' or 'while' loop.

\section*{Example:}
\# Define a one-dimensional array (list)
numbers \(=[1,2,3,4,5]\)

\section*{return -1 \# Return -1 if not found}
\# Example usage
target_value = 40
result \({ }^{-}=\)search_data(data_array, target_value)
if result \(1=-\mathbf{1}\).
print(f"Value \{target_value\} found at index \{result\}.")
else:
print(f"Value \{target_value\} not found in the array.")
Using One-Dimensional Arrays to Modify Data:
Modifying data in programming is a common and essential operation. Some reasons include updating values and correcting errors.

\section*{Example:}
\# Creating a one-dimensional array (list in Python)
my_array \(=[1,2,3,4,5]\)
\# Accessing and modifying elements
print("Original array:", my_array)
\# Modify the element at index 2
my_array[2] = 10
\# Add a new element to the end of the array
my_array.append (6)
print("Modified array:", my_array)

\section*{Identifying and choosing data structures and functions in program problem}

\section*{olution :}

Following a checklist when identifying which data structures or functions you should use will help narrow down the choices. Your checklist may include:
- the nature of the data
- what operations will be performed
- problems/solutions
- precision requirements
- insertion and deletion efficiency
- search and sorting requirements
- etc.

Example:
```


# Traverse the array using a for loop

print("Traversing the array using a for loop:")
for num in numbers:
print(num)

# Alternatively, traverse the array using a while loop

# Alternatively, traverse the array using a while lo

print("\nTraversing the array using a while loop:")
index = 0
while index < len(numbers):
print(numbers[index])

```
In this example, there is a one-dimensional array named numbers containing integers.
The array is then traversed using both a for loop and a while loop.
The output would be.
Traversing the array using a for loop:
1
Traversing the array using a while loop:
1
2
4
5

Using One-Dimensional Arrays to Search Data:
One-dimensional arrays are commonly used for searching data because they provide a structured and efficient way to organize and access elements.

\section*{Example:}
\# Sample data in an array
data_array \(=[10,20,30,40,50,60,70,80,90]\)
\# Function to search for a value in the array
def search_data(array, target)
for index, value in enumerate(array):
return index \# Return the index if found
```

Problem: Keeping Track of Students and Grades
student1 = {"name": "John Doe", "student_id": 1, "grades": [90, 85,
92]}}\mathrm{ student2 = {"name": "Jane Smith", "student_id": 2, "grades": [88, 95,
89]}
{"name": "John Doe", "student_id": 1, "grades": [90, 85, 92]},
{"name": "Jane Smith", "student_id": 2, "grades": [88, 95, 89]}
grades_john = [90, 85, 92]
grades jane = [$$
\begin{array}{llc}{88, 95, 89}\end{array}
$$]
average_grade_john = sum(grades_john) / len(grades_john)
average_grade_jane =
This example demonstrates the use of dictionaries, lists, sets, and basic arithmetic operations to represent and manage data related to students and their grades in a class. The choice of data types and structures depends on the specific requirements of your program and the operations you need to perform.

```

\section*{Update to Content Accepted by SRP}

(SE)(Breakout(s)) and (Citation Type(s))
(6)(Q)(v), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Numeric and Nonnumeric Data (Slides 26-27),
https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652
Project-Data Types and Structures Handbook, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652/CEV71519 Project01?resume=F alse

Description of the specific location and hyperlink to the exact location of the proposed new content Numeric and Nonnumeric Data Student Handout-Data Types and Structures, https://files.icevonline.com/html/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout Data Types and Structures.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

Activity-Using Structured Data Types, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22312/CEV71519 V2 Activity04 This Activity is found in the Numeric \& Nonnumeric lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

\section*{Update to Content Accepted by SRP}

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

6/21/2024

SAVE PRogress
Project - Data Types \& Structures Handbook
Numeric \& Nonnumerlo Data
1 of 1 汽

\section*{Project Overview:}

You will create a handbook on how to choose, identify and use the appropriate data type or structure in a program problem solution.

Directions:
1. Use the intermet and other available rescurces to research each of the following data types or structures used in program problem solutions.
\(\therefore\) Intager
- Real/Foating point (fioa
- Boolean
- Array (String)
- Array (String)
- char charAt(int index)
- String substring(int begirlindex)
- boolean contains(CharSequence s
- One-dimensional arrays
- traverse - modily
2. Summarize your findings for each of the data types or structures. The summary should include how to choose, identify and use each data type or structure. Each data type or structure should be at least half of a page.
3. Your handbook should include the following sections:
- Tite page
- Headings
- Page number
- Cited sources
4. Once complete, uploed your handbook in the space provided below, then submit your Project You can find a Rubric at the end of this Project.

\section*{Update to Content Accepted by SRP}

Screenshot of Proposed New Content Insert a screenshot of your proposed new content.

\section*{Data Types \& Structures}

Whoosing Data Types for Integer Data: integer data based on the requirements of the program and the range of values one needs to represent. Common integer data types include:
- short int
- int
- long int or long
- fixed-width integer types like intX_t and uintX_t (from <stdint.h>), where \(X\) represents the number of bits

Choosing Data Types for Real Data:
When working with real data (floating-point numbers) run in program solutions, it is
crucial to choose the appropriate data types based on the precision and range required for the application. Common real data types include:
- float (32-bit)
- long double (extended precision, typically 80 or 128 bits)

\section*{Choosing Data Types for Boolean Data:}

When working with Boolean data in program solutions, the appropriate data type is typically a Boolean type or its equivalent in the programming language being used. ommon Boolean types include.
- bool
- Boolean(java)
- bool(C\#)
- int(C):

The choice between these types depends on factors such as memory usage, precision needs, and the specific requirements of the calculations. Always ensure the chosen data types can accurately represent the values the program manages without causing overflow, loss of precision, or other issues.

Using One-Dimensional Arrays to Traverse Data:
One-dimensional arrays are a structured data type that allows storage and access to a collection of elements of the same data type. One can traverse the elements of a onedimensional array using loops, typically a 'for' or 'while' loop.

\section*{Example:}
\# Define a one-dimensional array (list)
numbers \(=[1,2,3,4,5]\)
return -1 \# Return -1 if not found
```


# Example usage

target_value = 40
result = search_data(data_array, target_value)
if result I= -1:
print(f"Value {target_value} found at index {result}.")
else:
print(f"Value {target_value} not found in the array.")

```
Using One-Dimensional Arrays to Modify Data:
Modifying data in programming is a common and essential operation. Some reasons
include updating values and correcting errors.

\section*{Example:}
\# Creating a one-dimensional array (list in Python)
my array \(=[1,2,3,4,5\)
\# Accessing and modifying elements
print("Original array:", my_array)
\# Modify the element at index 2
my_array[2] = 10
\# Add a new element to the end of the array
my_array.append (6)
print("Modified array:", my_array)

\section*{Identifying and choosing data structures and functions in program problem}
solution:
Following a checklist when identifying which data structures or functions you should use will help narrow down the choices. Your checklist may include:
- the nature of the data
- what operations will be performed
- problems/solutions
- precision requirements
- insertion and deletion efficiency
- search and sorting requirements
- etc.

Example:
\# Traverse the array using a for loop
print ("Traversing the array using a for loop:")
for num in numbers:
print(num)
\# Alternatively, traverse the array using a while loop
print("\nTraversing the array using a while loop:") index \(=8\)
while index < len(numbers):
print(numbers[index])
In this example, there is a one-dimensional array named numbers containing integers.
In this example, there is a one-dimensional array named numbers
The array is then traversed using both a for loop and a while loop.
The output would be:
Traversing the array using a for loop:
1
\(\square\)
Traversing the array using a while loop:
1
2

Using One-Dimensional Arrays to Search Data:
One-dimensional arrays are commonly used for searching data because they provide a structured and efficient way to organize and access elements.

\section*{Example:}
\# Sample data in an array
data array \(=[10,20,30,40,50,60,70,80,90]\)
\# Function to search for a value in the array
def search_data(array, target):
for index, value in enumerate(array):
if value == target:
return index \# Return the index if found
```

Problem: Keeping Track of Students and Grades
student1 = {"name": "John Doe", "student_id": 1, "grades": [90, 85,
student2 = {"name": "Jane Smith", "student_id": 2, "grades": [88, 95,
89]}
students =
{"name": "John Doe", "5tudent_id": 1, "grades": [90, 85, 92]},
{"name": "Jane Smith", "student_id": 2, "grades": [88, 95, 89]}
]
grades_john =[90,85,92
grades_jane =[ [88, 95, 89
average_grade_john = sum(grades_john) / len(grades_john)
average_grade_jane =sum(grades_jane) / len(grades_jane)
student_ids = {1, 2}
This example demonstrates the use of dictionaries, lists, sets, and basic arithmetic operations to represent and manage data related to students and their grades in a class. The choice of data types and structures depends on the specific requirements of your program and the operations you need to perform.

```

\section*{Update to Content Accepted by SRP}

(SE)(Breakout(s)) and (Citation Type(s))
(6)(Q)(vi), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Numeric and Nonnumeric Data (Slides 26-27), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652

Project-Data Types and Structures Handbook, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652/CEV71519 Project01?resume=F alse

Description of the specific location and hyperlink to the exact location of the proposed new content Numeric and Nonnumeric Data Student Handout-Data Types and Structures, https://files.icevonline.com/html/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout Data Types and Structures.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

Activity-Using Structured Data Types, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22312/CEV71519 V2 Activity04
This Activity is found in the Numeric \& Nonnumeric lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off

\section*{Update to Content Accepted by SRP}
or start over, select Start Over to view the Activity.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

SAVE PROGRESS
Project - Data Types \& Structures Handbook Numeric \& Nonnumeric Data
1 of 1 罍

\section*{Project Overview:}

You will create a handbook on how to choose, identify and use the appropriate data type
or structure in a program problem solution.

Directions:
1. Use the intermet and other available resources to research each of the following data types or
structures used in program problem solutions.
- Intege
- Real/Foating point (fioat)
- Boolean
- Array (String)
- String concatenation
- char charAAt(int index)
- String substring(int beginlindex)
- boolean contains(CharSequence s)
- traverse
- travers
- search
.
modity
-. modify
2. Summarize your findings for each of the data types or structures. The summary should include how to choose, identify and use each data type or structure. Each data type or structure should be at least half of a page.
ur hancobook should indude the following sections:
- Tite page
- Table of con
- Headings
- Page number
- Cited sources

Once complete, upload your handbook in the space provided below, then submit your Project You can find a Rubric at the end of this Proiect.

\section*{Update to Content Accepted by SRP}

4 Review

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

\section*{Data Types \& Structures}

Whoosing Data Types for Integer Data: integer data based on the requirements of the program and the range of values one needs to represent. Common integer data types include:
- short int
- int
- long int or long
- fixed-width integer types like intX_t and uintX_t (from <stdint.h>), where \(X\) represents the number of bits

Choosing Data Types for Real Data:
When working with real data (floating-point numbers) run in program solutions, it is
crucial to choose the appropriate data types based on the precision and range required for the application. Common real data types include:
- float (32-bit)
- long double (extended precision, typically 80 or 128 bits)

\section*{Choosing Data Types for Boolean Data:}

When working with Boolean data in program solutions, the appropriate data type is typically a Boolean type or its equivalent in the programming language being used. ommon Boolean types include.
- bool
- Boolean(java)
- bool(C\#)
- int(C):

The choice between these types depends on factors such as memory usage, precision needs, and the specific requirements of the calculations. Always ensure the chosen data types can accurately represent the values the program manages without causing overflow, loss of precision, or other issues.

Using One-Dimensional Arrays to Traverse Data:
One-dimensional arrays are a structured data type that allows storage and access to a collection of elements of the same data type. One can traverse the elements of a onedimensional array using loops, typically a 'for' or 'while' loop.

\section*{Example:}
\# Define a one-dimensional array (list)
numbers \(=[1,2,3,4,5]\)
return -1 \# Return -1 if not found
```


# Example usage

target_value = 40
result = search_data(data_array, target_value)
if result l= -1:
else:
else:
print(f"Value {target_value} not found in the array.")

```
Using One-Dimensional Arrays to Modify Data:
Modifying data in programming is a common and essential operation. Some reasons
include updating values and correcting errors.

\section*{Example:}
\# Creating a one-dimensional array (list in Python)
my array \(=[1,2,3,4,5\)
\# Accessing and modifying elements
print("Original array:", my_array)
\# Modify the element at index 2
my_array[2] = 10
\# Add a new element to the end of the array
my_array.append (6)
print("Modified array:", my_array)

\section*{Identifying and choosing data structures and functions in program problem}

\section*{solution :}

Following a checklist when identifying which data structures or functions you should
use will help narrow down the choices. Your checklist may include:
- the nature of the data
- what operations will be performed
- problems/solutions
- precision requirements
- insertion and deletion efficiency
- search and sorting requirements
- etc.

Example:
\# Traverse the array using a for loo
print ("Traversing the array using a for loop:")
for num in numbers:
print(num)
\# Alternatively, traverse the array using a while loop
print(" n Traversing the array using a while loop:")
index \(=8\)
while index < len(numbers):
print(numbers[index])
In this example, there is a one-dimensional array named numbers containing integers.
In this example, there is a one-dimensional array named numbers
The array is then traversed using both a for loop and a while loop.
The output would be:
The output would be:
1
\(\square\)
Traversing the array using a while loop:
1
2

Using One-Dimensional Arrays to Search Data:
One-dimensional arrays are commonly used for searching data because they provide a structured and efficient way to organize and access elements.

\section*{Example:}
\# Sample data in an array
data array \(=[10,20,30,40,50,60,70,80,90]\)
\# Function to search for a value in the array
def search_data(array, target):
for index, value in enumerate(array):
if value == target:
return index \# Return the index if found
```

Problem: Keeping Track of Students and Grades
student1 = {"name": "John Doe", "student_id": 1, "grades": [90, 85,
student2 = {"name": "Jane Smith", "student_id": 2, "grades": [88, 95,
89]}
students = [" "John Doe", "student_id": 1, "grades": [90, 85, 92]},
{"name": "Jane Smith", "student_id": 2, "grades":[88, 95, 89]}
]
grades_john =[90, 85, 92]
grades jane =[$$
\begin{array}{lll}{88,}&{95,}&{89}\end{array}
$$]
average_grade_john = sum(grades_john) / len(grades_john)
average_grade_jane =sum(grades_jane)// len(grades jane)
student_ids ={1, 2}
This example demonstrates the use of dictionaries, lists, sets, and basic arithmetic operations to represent and manage data related to students and their grades in a class. The choice of data types and structures depends on the specific requirements of your program and the operations you need to perform.

```

Activity - Using Structured Data Types
Numeric \& Nonnumeric Data
1 of 1 :

\section*{Update to Content Accepted by SRP}
```

    \iractions:
        Integers. For example:
        O data_array =[34,12,56,78,43,90,23,67,89,54]
    2. Write a function that takes the array and a target value as a
        Maramerter and searches for the target value in the array.
        found or-1 if the value is not in the array
    3. Test the search function.
    4. Report the results of your search. If the target value is found, print a
        message indicating the value and its index. It the target value is not
        l
    5. Modify the
    5. Modify the values in the array based on criteria of your cholce. For
        example:
        \circ Increasing all values by }1
    6. Traverse the data.
    7. Your instructor will assign you a partner. With them discuse
        - Your code and discuss your approach
            - Different strategies for searching in arrays and the efficiency
            of them
    8. Once complete, upload your code in the space provided below,
    then submit your Activity.
    Upload your fle(s) here.
| T II
知Upload files
Supported flle formats: PDF, JPG, GIF, PNG, TXT, ZIP, Word,
Excel, Powerpoint, Publisher, Open Office
$0 / 12$ File Limit

```
(SE)(Breakout(s)) and (Citation Type(s)) (6)(R)(i), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content Numeric and Nonnumeric Data (Slides 21-27), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652

Project-Data Types and Structures Handbook, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652/CEV71519 Project01?resume=F alse

Description of the specific location and hyperlink to the exact location of the proposed new content Numeric and Nonnumeric Data Student Handout-Data Types and Structures, https://files.icevonline.com/html/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout Data Types and Structures.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

Activity-Data Representation and Selection, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22312/CEV71519 V2 Activity03
This Activity is found in the Numeric \& Nonnumeric lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

\section*{Update to Content Accepted by SRP}

\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ String Data } \\
\hline -Is an array of characters \\
- Examples include: \\
-"Hello World!" \\
-"How are you?" \\
-"Yes" \\
-define a variable called strSample that \\
represents the string "Hello World!" \\
- String stSample \(=\) "Hello World!" \\
- "/representation of string
\end{tabular}

2

6/21/2024

6/21/2024

Project - Data Types \& Structures Handbook Numeric \& Nonnumerlic Data

SAVE PROGRESS ミー

\section*{Update to Content Accepted by SRP}
Project Overview:
You will create a handbook on how to choose, identify and use the appropriate data type
or structure in a program problem solution.
Directions:
1. Use the intermet and other available rescurces to research each of the following data types or structures used in program problem solutions.
- Integer
- Real/foating point (float)
- Boolean
- Character (Char)
- Array (String)
- char charAt(int index)
- String substring(int beginlndex)
- boolean contains (CharSequence s)
- One-dimensional arrays
: traverse
Summarize your findings for each of the data types or structures. The summary should include
how to choose, identify and use each data type or structure. Each data type or structure should
Your handthatf of a page.
Your handbook sho
\(\circ\) Titte page
- Table of contents
- Headings
- Page number
4. Once complete, upload your handbook in the space provided below, then submit your Project.
You can find a Rubric at the end of this Project.
You can find a Rubric at the end of this Project.

Rubric
\begin{tabular}{|c|c|}
\hline Description & Possible Points \\
\hline \begin{tabular}{l}
Research 8 Organization: \\
- Froper research was concucted \\
- Sources were cited appropriately \\
- Information was presented in a logical organized manner \\
- All data types and structures were researched
\end{tabular} & 30 \\
\hline \begin{tabular}{l}
Concept \& Understanding: \\
- Understanding of the concept is clearly evident \\
- Effective strategies were used to achieve the end product \\
- Student completed all requirements of the assignment including. \\
- titte page \\
table of contents headings \\
paye numbers \\
- cited sources
\end{tabular} & 40 \\
\hline \begin{tabular}{l}
Creativity/Craftmanshlp: \\
- End product is unique and reflects the student's or group's individuality \\
- End product is cleariy high quality
\end{tabular} & 15 \\
\hline \begin{tabular}{l}
Production/Effort: \\
- Class time provided for the project was used efficiently \\
- I Ime and effor are evident in the execution of the end product
\end{tabular} & 15 \\
\hline Total Points & 100 \\
\hline
\end{tabular}

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

\section*{Data Types \& Structures}

Whoosing Data Types for Integer Data: integer data based on the requirements of the program and the range of values one needs to represent. Common integer data types include:
- short int
- int
- long int or long
- fixed-width integer types like intX_t and uintX_t (from <stdint.h>), where \(X\) represents the number of bits

Choosing Data Types for Real Data:
When working with real data (floating-point numbers) run in program solutions, it is
crucial to choose the appropriate data types based on the precision and range required for the application. Common real data types include:
- float (32-bit)
- long double (extended precision, typically 80 or 128 bits)

\section*{Choosing Data Types for Boolean Data}

When working with Boolean data in program solutions, the appropriate data type is typically a Boolean type or its equivalent in the programming language being used. ommon Boolean types include:
- bool
- Boolean(java)
- bool(C\#)
- int(C):

The choice between these types depends on factors such as memory usage, precision needs, and the specific requirements of the calculations. Always ensure the chosen data types can accurately represent the values the program manages without causing overflow, loss of precision, or other issues.

Using One-Dimensional Arrays to Traverse Data:
One-dimensional arrays are a structured data type that allows storage and access to a collection of elements of the same data type. One can traverse the elements of a onedimensional array using loops, typically a 'for' or 'while' loop.

\section*{Example:}
\# Define a one-dimensional array (list
numbers \(=[1,2,3,4,5]\)
return -1 \# Return -1 if not found
```


# Example usage

target_value = 40
result = search_data(data_array, target_value)
if result I= -1:
print(f"Value {target_value} found at index {result}.")
else:
print(f"Value {target_value} not found in the array.")

```
Using One-Dimensional Arrays to Modify Data:
Modifying data in programming is a common and essential operation. Some reasons
include updating values and correcting errors.

\section*{Example:}
\# Creating a one-dimensional array (list in Python)
my array \(=[1,2,3,4,5]\)
\# Accessing and modifying elements
print("Original array:", my_array)
\# Modify the element at index 2
my_array[2] = 10
\# Add a new element to the end of the array
my_array.append (6)
print("Modified array:", my_array)

\section*{Identifying and choosing data structures and functions in program problem}
solution:
Following a checklist when identifying which data structures or functions you should use will help narrow down the choices. Your checklist may include:
- the nature of the data
- what operations will be performed
- problems/solutions
- precision requirements
- insertion and deletion efficiency
- search and sorting requirements
- etc.

Example:
\# Traverse the array using a for loop
print ("Traversing the array using a for loop:")
for num in numbers:
print(num)
\# Alternatively, traverse the array using a while loop
print("\nTraversing the array using a while loop:") index \(=8\)
while index < len(numbers):
print(numbers[index])
In this example, there is a one-dimensional array named numbers containing integers.
In this example, there is a one-dimensional array named numbers
The array is then traversed using both a for loop and a while loop.
The output would be:
Traversing the array using a for loop:
1
\(\square\)
Traversing the array using a while loop:
1
2

Using One-Dimensional Arrays to Search Data:
One-dimensional arrays are commonly used for searching data because they provide a structured and efficient way to organize and access elements.

\section*{Example:}
\# Sample data in an array
data array \(=[10,20,30,40,50,60,70,80,90]\)
\# Function to search for a value in the array
def search_data(array, target):
for index, value in enumerate(array):
if value == target:
return index \# Return the index if found
```

Problem: Keeping Track of Students and Grades
student1 = {"name": "John Doe", "student_id": 1, "grades": [90, 85,
student2 = {"name": "Jane Smith", "student_id": 2, "grades": [88, 95,
89]}
students = [ " "John Doe", "student_id": 1, "grades": [90, 85, 92]},
{"name": "Jane Smith", "student_id": 2, "grades": [88, 95, 89]}
]
grades_john =[90, 85, 92
grades jane =[[$$
\begin{array}{lll}{88,}&{95,}&{89}\end{array}
$$]
average_grade_john = sum(grades_john) / len(grades_john)
average_grade_jane =sum(grades_jane)// len(grades jane)
student_ids ={1, 2}
This example demonstrates the use of dictionaries, lists, sets, and basic arithmetic operations to represent and manage data related to students and their grades in a class. The choice of data types and structures depends on the specific requirements of your program and the operations you need to perform.

```

\section*{Update to Content Accepted by SRP}

(SE)(Breakout(s)) and (Citation Type(s)) (6)(R)(ii), Narrative \& Activity

Description of the specific location and hyperlink to the exact location of currently adopted content

\section*{Update to Content Accepted by SRP}

Numeric and Nonnumeric Data (Slides 21-27), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652

Project-Data Types and Structures Handbook, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652/CEV71519 Project01?resume=F alse

Description of the specific location and hyperlink to the exact location of the proposed new content Numeric and Nonnumeric Data Student Handout-Data Types and Structures, https://files.icevonline.com/html/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout Data Types and Structures.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

Activity-Data Representation and Selection, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22312/CEV71519 V2 Activity03
This Activity is found in the Numeric \& Nonnumeric lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

\section*{Update to Content Accepted by SRP}

SAVE PRogress
Project - Data Types \& Structures Handbook
Numeric \& Nonnumeric Data

Project Overview:
You will create a handbook on how to choose, identify and use the appropriate data type
or structure in a program problem solution.

Directions:
1. Use the intermet and other available rescurces to research each of the following data types or Use the internet and other avalable resources
structures used in program problem solutions.
- Integer
- Real/Float
- Boolean
- Character (Cr
- Array (String)
- String concatenation
- String substring(int beginlndex)
- boolean contains(CharSequence s)
- One-dimensional arrays
- traverse
- search
2. Summarize your findings for each of the data types or structures. The summary should include how to choose, identify and use each data type or structure. Each data type or structure should
3. Your handbook should include the following sections:
- Tite page
- Table of contents
- Headings
- Cited sources
. Once complete, upload your handbook in the space provided below, then submit your Project
You can find a Rubric at the end of this Project.

\section*{Update to Content Accepted by SRP}

4 Review

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

\section*{Data Types \& Structures}

Whoosing Data Types for Integer Data: integer data based on the requirements of the program and the range of values one needs to represent. Common integer data types include:
- short int
- int
- long int or long
- fixed-width integer types like intX_t and uintX_t (from <stdint.h>), where \(X\) represents the number of bits

Choosing Data Types for Real Data:
When working with real data (floating-point numbers) run in program solutions, it is
crucial to choose the appropriate data types based on the precision and range required for the application. Common real data types include:
- float (32-bit)
- long double (extended precision, typically 80 or 128 bits)

\section*{Choosing Data Types for Boolean Data:}

When working with Boolean data in program solutions, the appropriate data type is typically a Boolean type or its equivalent in the programming language being used. ommon Boolean types include.
- bool
- Boolean(java)
- bool(C\#)
- int(C):

The choice between these types depends on factors such as memory usage, precision needs, and the specific requirements of the calculations. Always ensure the chosen data types can accurately represent the values the program manages without causing overflow, loss of precision, or other issues.

Using One-Dimensional Arrays to Traverse Data:
One-dimensional arrays are a structured data type that allows storage and access to a collection of elements of the same data type. One can traverse the elements of a onedimensional array using loops, typically a 'for' or 'while' loop.

\section*{Example:}
\# Define a one-dimensional array (list)
numbers \(=[1,2,3,4,5]\)
return -1 \# Return -1 if not found
```


# Example usage

target_value = 40
result = search_data(data_array, target_value)
if result I= -1:
print(f"Value {target_value} found at index {result}.")
else:
print(f"Value {target_value} not found in the array.")

```
Using One-Dimensional Arrays to Modify Data:
Modifying data in programming is a common and essential operation. Some reasons
include updating values and correcting errors.

\section*{Example:}
\# Creating a one-dimensional array (list in Python)
my array \(=[1,2,3,4,5\)
\# Accessing and modifying elements
print("Original array:", my_array)
\# Modify the element at index 2
my_array[2] = 10
\# Add a new element to the end of the array
my_array.append (6)
print("Modified array:", my_array)

\section*{Identifying and choosing data structures and functions in program problem}
solution:
Following a checklist when identifying which data structures or functions you should use will help narrow down the choices. Your checklist may include:
- the nature of the data
- what operations will be performed
- problems/solutions
- precision requirements
- insertion and deletion efficiency
- search and sorting requirements
- etc.

Example:
\# Traverse the array using a for loop
print ("Traversing the array using a for loop:")
for num in numbers:
print(num)
\# Alternatively, traverse the array using a while loop
print("\nTraversing the array using a while loop:") index \(=8\)
while index < len(numbers):
print(numbers[index])
In this example, there is a one-dimensional array named numbers containing integers.
In this example, there is a one-dimensional array named numbers
The array is then traversed using both a for loop and a while loop.
The output would be:
Traversing the array using a for 100 :
1
\(\square\)
Traversing the array using a while loop:
1
2

Using One-Dimensional Arrays to Search Data:
One-dimensional arrays are commonly used for searching data because they provide a structured and efficient way to organize and access elements.

\section*{Example:}
\# Sample data in an array
data array \(=[10,20,30,40,50,60,70,80,90]\)
\# Function to search for a value in the array
def search_data(array, target):
for index, value in enumerate(array):
if value == target:
return index \# Return the index if found
```

Problem: Keeping Track of Students and Grades
student1 = {"name": "John Doe", "student_id": 1, "grades": [90, 85,
student2 = {"name": "Jane Smith", "student_id": 2, "grades": [88, 95,
89]}
students = [ " "John Doe", "student_id": 1, "grades": [90, 85, 92]},
{"name": "Jane Smith", "student_id": 2, "grades": [88, 95, 89]}
]
grades_john =[90, 85, 92
grades jane =[[$$
\begin{array}{lll}{88,}&{95,}&{89}\end{array}
$$]
average_grade_john = sum(grades_john) / len(grades_john)
average_grade_jane =sum(grades_jane)// len(grades jane)
student_ids ={1, 2}
This example demonstrates the use of dictionaries, lists, sets, and basic arithmetic operations to represent and manage data related to students and their grades in a class. The choice of data types and structures depends on the specific requirements of your program and the operations you need to perform.

```

\section*{Update to Content Accepted by SRP}

(SE)(Breakout(s)) and (Citation Type(s)) (6)(R)(iii), Narrative \& Activity

\section*{Update to Content Accepted by SRP}

Description of the specific location and hyperlink to the exact location of currently adopted content Numeric and Nonnumeric Data (Slides 21-27), https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652

Project-Data Types and Structures Handbook, https://login.icevonline.com/mycourses/ADOCOMPU001/lesson/21652/CEV71519 Project01?resume=F alse

\section*{Description of the specific location and hyperlink to the exact location of the proposed new content} Numeric and Nonnumeric Data Student Handout-Data Types and Structures, https://files.icevonline.com/htmI/CEV71519 V2 HTML/CEV71519 V2 HTML Student Handout Data Types and Structures.htm
This Student Handout is found in the Numeric \& Nonnumeric Data lesson beneath the Instructional Materials heading.

Activity-Data Representation and Selection, https://login.icevonline.com/mycourses/ADOCOMPU002/lesson/22312/CEV71519 V2 Activity03
This Activity is found in the Numeric \& Nonnumeric lesson beneath the Interactive Assignments heading. After clicking the link to the Activity, if a page appears asking if you want to continue where you left off or start over, select Start Over to view the Activity.

\section*{Screenshot of Currently Adopted Content}

Insert a screenshot of your currently adopted content.

\section*{Update to Content Accepted by SRP}

SAVE PRogress
Project - Data Types \& Structures Handbook
Numeric \& Nonnumeric Data

Project Overview:
You will create a handbook on how to choose, identify and use the appropriate data type
or structure in a program problem solution.

Directions:
1. Use the intermet and other available rescurces to research each of the following data types or Use the internet and other avalable resources
structures used in program problem solutions.

\section*{- Intager}
- Boolean
- Character (C
- Array (String)
- String concatenation
- String substring(int beginlndex)
- boolean contains(CharSequence s)
- One-dimensional arrays
- traverse
- search
2. Summarize your findings for each of the data types or structures. The summary should include how to choose, identify and use each data type or structure. Each data type or structure should
3. Your handbook should include the following sections:
- Tite page
- Table of contents
- Headings
- Cited sources
4. Once complete, upload your handbook in the space provided below, then submit your Project

You can find a Rubric at the end of this Project.

\section*{Update to Content Accepted by SRP}

4 Review

Screenshot of Proposed New Content
Insert a screenshot of your proposed new content.

\section*{Data Types \& Structures}

Whoosing Data Types for Integer Data: integer data based on the requirements of the program and the range of values one needs to represent. Common integer data types include:
- short int
- int
- long int or long
- fixed-width integer types like intX_t and uintX_t (from <stdint.h>), where \(X\) represents the number of bits

Choosing Data Types for Real Data:
When working with real data (floating-point numbers) run in program solutions, it is
crucial to choose the appropriate data types based on the precision and range required for the application. Common real data types include:
- float (32-bit)
- long double (extended precision, typically 80 or 128 bits)

\section*{Choosing Data Types for Boolean Data:}

When working with Boolean data in program solutions, the appropriate data type is typically a Boolean type or its equivalent in the programming language being used. ommon Boolean types include.
- bool
- Boolean(java)
- bool(C\#)
- int(C):

The choice between these types depends on factors such as memory usage, precision needs, and the specific requirements of the calculations. Always ensure the chosen data types can accurately represent the values the program manages without causing overflow, loss of precision, or other issues.

Using One-Dimensional Arrays to Traverse Data:
One-dimensional arrays are a structured data type that allows storage and access to a collection of elements of the same data type. One can traverse the elements of a onedimensional array using loops, typically a 'for' or 'while' loop.

\section*{Example:}
\# Define a one-dimensional array (list)
numbers \(=[1,2,3,4,5]\)
return -1 \# Return -1 if not found
```


# Example usage

target_value = 40
result = search_data(data_array, target_value)
if result I= -1:
print(f"Value {target_value} found at index {result}.")
else:
print(f"Value {target_value} not found in the array.")

```
Using One-Dimensional Arrays to Modify Data:
Modifying data in programming is a common and essential operation. Some reasons
include updating values and correcting errors.

\section*{Example:}
\# Creating a one-dimensional array (list in Python)
my array \(=[1,2,3,4,5\)
\# Accessing and modifying elements
print("Original array:", my_array)
\# Modify the element at index 2
my_array[2] = 10
\# Add a new element to the end of the array
my_array.append (6)
print("Modified array:", my_array)

\section*{Identifying and choosing data structures and functions in program problem}
solution:
Following a checklist when identifying which data structures or functions you should use will help narrow down the choices. Your checklist may include:
- the nature of the data
- what operations will be performed
- problems/solutions
- precision requirements
- insertion and deletion efficiency
- search and sorting requirements
- etc.

Example:
\# Traverse the array using a for loop
print ("Traversing the array using a for loop:")
for num in numbers:
print(num)
\# Alternatively, traverse the array using a while loop
print("\nTraversing the array using a while loop:") index \(=8\)
while index < len(numbers):
print(numbers[index])
In this example, there is a one-dimensional array named numbers containing integers.
In this example, there is a one-dimensional array named numbers
The array is then traversed using both a for loop and a while loop.
The output would be:
Traversing the array using a for 100 :
1
\(\square\)
Traversing the array using a while loop:
1
2

Using One-Dimensional Arrays to Search Data:
One-dimensional arrays are commonly used for searching data because they provide a structured and efficient way to organize and access elements.

\section*{Example:}
\# Sample data in an array
data array \(=[10,20,30,40,50,60,70,80,90]\)
\# Function to search for a value in the array
def search_data(array, target):
for index, value in enumerate(array):
if value == target:
return index \# Return the index if found
```

Problem: Keeping Track of Students and Grades
student1 = {"name": "John Doe", "student_id": 1, "grades": [90, 85,
student2 = {"name": "Jane Smith", "student_id": 2, "grades": [88, 95,
89]}
students = [ " "John Doe", "student_id": 1, "grades": [90, 85, 92]},
{"name": "Jane Smith", "student_id": 2, "grades": [88, 95, 89]}
]
grades_john =[90, 85, 92
grades jane =[[$$
\begin{array}{lll}{88,}&{95,}&{89}\end{array}
$$]
average_grade_john = sum(grades_john) / len(grades_john)
average_grade_jane =sum(grades_jane)// len(grades jane)
student_ids ={1, 2}
This example demonstrates the use of dictionaries, lists, sets, and basic arithmetic operations to represent and manage data related to students and their grades in a class. The choice of data types and structures depends on the specific requirements of your program and the operations you need to perform.

```

\section*{Update to Content Accepted by SRP}

Activity－Data Representation \＆Selection Numeric \＆Nonnumeric Data

10f 1 引ミー

Activity Overview：
You will build a program to manage a student database to practice choosing appropriate data types or stuctures for different types of data in
a program．

Directions：
1．Complete the following sections about data types and structures． 2．Write a program structure，function for data manipulation，string operation and Boolean login using the instuctions listed below， 3．Respond to the reflection section．
4．Once complete，submit your Activity

620024，1486 PM

 Reflect on the importance of selecting appropriate data ty
structures for program eficiency，readability and ease of structures for program efficiency，readability and ease of
manipulation by witing down your thoughts．Discuss how making thoughtul choicess can lead to morere effective and maintainable code．

\(0 / 10000\) Word Limit

\section*{Update to Content Accepted by SRP}

\section*{Assurances}

These assurances apply to all material submitted to update content in state-adopted instructional materials.

Publisher acknowledges that:
- There will be no additional cost to the state;
- The new material meets the applicable Texas Essential Knowledge and Skills (TEKS), English Language Proficiency Standards (EIPS), or Texas Prekindergarten Guidelines (TPG) and is free from factual errors; and
- The updates in the new edition do not affect the product's coverage of Texas Education Code (TEC), §28.002(h), as it relates to that specific subject and grade level or course(s), understanding the importance of patriotism and functioning productively in a free-enterprise society with appreciation for the basic democratic values of our state and national heritage.

Signature: By entering your name below, you are confirming the above assurances, and signing this document electronically. You agree that your electronic signature is the equivalent of your manual signature.

\section*{Clayton Franklin}

\section*{Date Submitted: 6/21/2024}```

[^0]: Directions:

 1. Match the following scenarios to the policy they best align with.
 2. Using the internet, locate a news article related to fair use and answer the questions listed below.
 3. Once complete, submit your Activity.

 NOTE:
 To complete this question without using the drag-and-drop feature, first click on a single answer choice from the answer choice box, then click in the response single answer choice from the answer choice box, then click in the response
 container you wish to answer. This will "drop" the answer choice into the response
 container. To complete this question while utilizing a screen reader, use the Tab key to navigate
 to an answer choice. Answer choices can be selected and inserted using the Enter key, Spacebar, left mouse button or touchpad. Using any of these keys, select you answer choice. Use the up and down arrow keys to navigate to the response container you wish to place the selected answer into. Press the key again to "drop"

