Texas Essential Knowledge and Skills (TEKS) Breakouts

Subject	Chapter 111. Mathematics
Subchapter	Subchapter C. High School
Course	§111.41. Geometry, Adopted 2012 (One Credit).

(a) General requirements. Students shall be awarded one credit for successful completion of this course. Prerequisite: Algebra I.
(b) Introduction.
(1) The desire to achieve educational excellence is the driving force behind the Texas essential knowledge and skills for mathematics, guided by the college and career readiness standards. By embedding statistics, probability, and finance, while focusing on fluency and solid understanding, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century.
(2) The process standards describe ways in which students are expected to engage in the content. The placement of the process standards at the beginning of the knowledge and skills listed for each grade and course is intentional. The process standards weave the other knowledge and skills together so that students may be successful problem solvers and use mathematics efficiently and effectively in daily life. The process standards are integrated at every grade level and course. When possible, students will apply mathematics to problems arising in everyday life, society, and the workplace. Students will use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Students will select appropriate tools such as real objects, manipulatives, paper and pencil, and technology and techniques such as mental math, estimation, and number sense to solve problems. Students will effectively communicate mathematical ideas, reasoning, and their implications using multiple representations such as symbols, diagrams, graphs, and language. Students will use mathematical relationships to generate solutions and make connections and predictions. Students will analyze mathematical relationships to connect and communicate mathematical ideas. Students will display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
(3) In Geometry, students will build on the knowledge and skills for mathematics in Kindergarten-Grade 8 and Algebra I to strengthen their mathematical reasoning skills in geometric contexts. Within the course, students will begin to focus on more precise terminology, symbolic representations, and the development of proofs. Students will explore concepts covering coordinate and transformational geometry; logical argument and constructions; proof and congruence; similarity, proof, and trigonometry; two- and three-dimensional figures; circles; and probability. Students will connect previous knowledge from Algebra I to Geometry through the coordinate and transformational geometry strand. In the logical arguments and constructions strand, students are expected to create formal constructions using a straight edge and compass. Though this course is primarily Euclidean geometry, students should complete the course with an understanding that non-Euclidean geometries exist. In proof and congruence, students will use deductive reasoning to justify, prove and apply theorems about geometric figures. Throughout the standards, the term "prove" means a formal proof to be shown in a paragraph, a flow chart, or two-column formats. Proportionality is the unifying component of the similarity, proof, and trigonometry strand. Students will use their proportional reasoning skills to prove and apply theorems and solve problems in this strand. The two- and three-dimensional figure strand focuses on the application of formulas in multi-step situations since students have developed background knowledge in two- and three-dimensional figures. Using patterns to identify geometric properties, students will apply theorems about circles to determine relationships between special segments and angles in circles. Due to the emphasis of probability and statistics in the college and career readiness standards, standards dealing with probability have been added to the geometry curriculum to ensure students have proper exposure to these topics before pursuing their post-secondary education.
(4) These standards are meant to provide clarity and specificity in regards to the content covered in the high school geometry course. These standards are not meant to limit the methodologies used to convey this knowledge to students. Though the standards are written in a particular order, they are not necessarily meant to be taught in the given order. In the standards, the phrase "to solve problems" includes both contextual and non-contextual problems unless specifically stated.
(5) Statements that contain the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

(c) Knowledge and Skills.

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(A) apply mathematics to problems arising in everyday life, society, and the workplace	(i) apply mathematics to problems arising in everyday life
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(A) apply mathematics to problems arising in everyday life, society, and the workplace	(ii) apply mathematics to problems arising in society

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(A) apply mathematics to problems arising in everyday life, society, and the workplace	(iii) apply mathematics to problems arising in the workplace
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution	(i) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution	(ii) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the reasonableness of the solution
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	(i) select tools, including real objects as appropriate, to solve problems

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	(ii) select tools, including manipulatives as appropriate, to solve problems
mathematical process standards. The student uses	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	appropriate, to solve problems
mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:		
(iii) select tools, including paper and pencil as		

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	(iv) select tools, including technology as appropriate, to solve problems
mathematical process standards. The student uses	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	appropriate, to solve problems
mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:		

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	(vi) select techniques including estimation as appropriate, to solve problems
mathematical process standards. The student uses	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	appropriate, to solve problems
mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:		
(vii) select techniques, including number sense as		

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(i) communicate mathematical ideas using multiple representations, including symbols as appropriate
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(ii) communicate mathematical ideas using multiple representations, including diagrams as appropriate
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(iii) communicate mathematical ideas using multiple representations, including graphs as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(iv) communicate mathematical ideas using multiple
reprentations, including language as appropriate		

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(vi) communicate mathematical reasoning using multiple representations, including diagrams as appropriate
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(vii) communicate mathematical reasoning using multiple representations, including graphs as appropriate
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(viii) communicate mathematical reasoning using multiple representations, including language as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(ix) communicate [mathematical ideas'] implications using multiple representations, including symbols as appropriate
	(er	
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(x) communicate [mathematical ideas'] implications using multiple representations, including diagrams as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(xi) communicate [mathematical ideas'] implications using multiple representations, including graphs as appropriate
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(xii) communicate [mathematical ideas'] implications using multiple representations, including language as appropriate
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(xiii) communicate [mathematical reasoning's] implications using multiple representations, including symbols as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(xiv) communicate [mathematical reasoning's] implications using multiple representations, including diagrams as appropriate
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(xv) communicate [mathematical reasoning's] implications using multiple representations, including graphs as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(xvi) communicate [mathematical reasoning's] implications using multiple representations, including language as appropriate
(1) Mathematical process standards. The student uses	(E) create and use representations to organize,	(i) create representations to organize mathematical
record, and communicate mathematical ideas		
ideas		

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication	(i) display mathematical ideas using precise mathematical language in written or oral communication
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication	(ii) display mathematical arguments using precise mathematical language in written or oral communication
(1) Mathematical process standards. The student uses		(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication
mathematical processes to acquire and demonstrate		
mathematical understanding. The student is expected to:		
(iii) explain mathematical ideas using precise		
mathematical language in written or oral		
communication		

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication	(iv) explain mathematical arguments using precise mathematical language in written or oral communication
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication	(v) justify mathematical ideas using precise
mathematical language in written or oral		
communication		

Knowledge and Skills Statement	Student Expectation	Breakout
(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two- dimensional coordinate systems to verify geometric conjectures. The student is expected to:	(A) determine the coordinates of a point that is a given fractional distance less than one from one end of a line segment to the other in one- and two- dimensional coordinate systems, including finding the midpoint	(i) determine the coordinates of a point that is a given fractional distance less than one from one end coordinate systems, including finding the midpoint

Knowledge and Skills Statement	Student Expectation	Breakout
(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two- dimensional coordinate systems to verify geometric conjectures. The student is expected to:	(B) derive and use the distance, slope, and midpoint formulas to verify geometric relationships, including congruence of segments and parallelism or perpendicularity of pairs of lines	(iv) derive the slope formula

Knowledge and Skills Statement	Student Expectation	Breakout
(3) Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and non- rigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity).	(A) describe and perform transformations of figures in a plane using coordinate notation The student is expected to:	(i) describe transformations of figures in a plane using coordinate notation
(3) Coordinate and transformational geometry. The student	(A) describe and perform transformations of figures in a plane using coordinate notation	(ii) perform transformations of figures in a plane
uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and non- rigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity).		
The student is expected to:		

Knowledge and Skills Statement	Student Expectation	Breakout
(3) Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and non- rigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity). The student is expected to:	(B) determine the image or pre-image of a given two dimensional figure under a composition of rigid transformations, a composition of non-rigid transformations, and a composition of both, including dilations where the center can be any point in the plane	(i) determine the image or pre-image of a given two- dimensional figure under a composition of rigid transformations including dilations where the center can be any point in the plane

Knowledge and Skills Statement	Student Expectation	Breakout
(3) Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and non- rigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity). The student is expected to:	(B) determine the image or pre-image of a given two- dimensional figure under a composition of rigid transformations, a composition of non-rigid transformations, and a composition of both, including dilations where the center can be any point in the plane	(iii) determine the image or pre-image of a given two- dimensional figure under a composition of both, including dilations where the center can be any point in the plane

Knowledge and Skills Statement	Student Expectation	Breakout
(3) Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and non- rigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity).	(C) identify the sequence of transformations that will carry a given pre-image onto an image on and off the coordinate plane	(ii) identify the sequence of transformations that will carry a given pre-image onto an image off the coordinate plane
The student is expected to:		
(3) Coordinate and transformational geometry. The student	(D) identify and distinguish between reflectional and rotational symmetry in a plane figure	(i) identify reflectional symmetry in a plane figure
uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and non- rigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity).		
The student is expected to:		

Knowledge and Skills Statement	Student Expectation	Breakout
(3) Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and nonrigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity). The student is expected to:	(D) identify and distinguish between reflectional and rotational symmetry in a plane figure	(iii) distinguish between reflectional and rotational symmetry in a plane figure
(4) Logical argument and constructions. The student uses the process skills with deductive reasoning to understand geometric relationships. The student is expected to:	(A) distinguish between undefined terms, definitions, postulates, conjectures, and theorems	(i) distinguish between undefined terms, definitions, postulates, conjectures, and theorems
(4) Logical argument and constructions. The student uses the process skills with deductive reasoning to understand geometric relationships. The student is expected to:	(B) identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse	(i) identify the validity of the converse of a conditional statement

Knowledge and Skills Statement	Student Expectation	Breakout
		(B) identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse
(4) Logical argument and constructions. The student uses the process skills with deductive reasoning to understand geometric relationships. The student is expected to:	(ii) identify the validity of the inverse of a conditional statement	
(B) identify and determine the validity of the		
(4) Logical argument and constructions. The student uses the	(iii) identify the validity of the contrapositive of a process skills with deductive reasoning to understand geometric relationships. The student is expected to: conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse	

Knowledge and Skills Statement	Student Expectation	Breakout
(4) Logical argument and constructions. The student uses the process skills with deductive reasoning to understand geometric relationships. The student is expected to:	(B) identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse	(iv) determine the validity of the converse of a conditional statement
(4) Logical argument and constructions. The student uses the	(B) identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse	(v) determine the validity of the inverse of a conditional statement geometric relationships. The student is expected to:

Knowledge and Skills Statement	Student Expectation	Breakout
(4) Logical argument and constructions. The student uses the process skills with deductive reasoning to understand geometric relationships. The student is expected to:	(B) identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse	(vi) determine the validity of the contrapositive of a conditional statement
(B) identify and determine the validity of the		

Knowledge and Skills Statement	Student Expectation	Breakout
(4) Logical argument and constructions. The student uses the process skills with deductive reasoning to understand geometric relationships. The student is expected to:	(D) compare geometric relationships between Euclidean and spherical geometries, including parallel lines and the sum of the angles in a triangle	(i) compare geometric relationships between parallel lines
(4) Logical argument and constructions. The student uses the	(D) compare geometric relationships between Euclidean and spherical geometries, including parallel lines and the sum of the angles in a triangle	(ii) compare geometric relationships between Erocess skills with deductive reasoning to understand geometric relationships. The student is expected to:

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:	(A) investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools	(i) investigate patterns to make conjectures about georallel lines relationships, including angles formed by a transversal

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:	(A) investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools	(v) investigate patterns to make conjectures about geomens relationships, including interior angles of polygons

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:	(A) investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools	(vi) investigate patterns to make conjectures about geometric relationships, including exterior angles of polygons

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:	(A) investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools	(viii) investigate patterns to make conjectures about angles of circles choosing from a variety of tools
(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:	(B) construct congruent segments, congruent angles, a segment bisector, an angle bisector, perpendicular lines, the perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a straightedge	(i) construct congruent segments using a compass and a straightedge

$\left.\begin{array}{|l|l|l|}\hline \text { Knowledge and Skills Statement } & \text { Student Expectation } & \text { Breakout } \\ \hline \begin{array}{l}\text { (5) Logical argument and constructions. The student uses } \\ \text { constructions to validate conjectures about geometric figures. } \\ \text { The student is expected to: }\end{array} & \begin{array}{l}\text { (B) construct congruent segments, congruent } \\ \text { angles, a segment bisector, an angle bisector, } \\ \text { perpendicular lines, the perpendicular bisector of a } \\ \text { line segment, and a line parallel to a given line } \\ \text { through a point not on a line using a compass and a } \\ \text { straightedge }\end{array} & \text { (ii) construct congruent angles using a compass and } \\ \text { a straightedge }\end{array}\right]$

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:	(B) construct congruent segments, congruent angles, a segment bisector, an angle bisector, perpendicular lines, the perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a straightedge	(iv) construct an angle bisector using a compass and a straightedge
(5) Logical argument and constructions. The student uses	(B) construct congruent segments, congruent angles, a segment bisector, an angle bisector, perpendicular lines, the perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a straightedge	
The student is expected to:		

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:	(B) construct congruent segments, congruent angles, a segment bisector, an angle bisector, perpendicular lines, the perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a straightedge	(vi) construct the perpendicular bisector of a line segment using a compass and a straightedge
(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:	(B) construct congruent segments, congruent angles, a segment bisector, an angle bisector, perpendicular lines, the perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a straightedge	(vii) construct a line parallel to a given line through a point not on a line using a compass and a straightedge

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:	(C) use the constructions of congruent segments, congruent angles, angle bisectors, and perpendicular bisectors to make conjectures about geometric relationships	(i) use the constructions of congruent segments to make conjectures about geometric relationships
(5) Logical argument and constructions. The student uses	(C) use the constructions of congruent segments, congruent angles, angle bisectors, and perpendicular bisectors to make conjectures about The student is expected to:	(ii) use the constructions of congruent angles to
matric relationships conjectures about geometric relationships		

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two- column, paragraph, and flow chart. The student is expected to:	(A) verify theorems about angles formed by the intersection of lines and line segments, including vertical angles, and angles formed by parallel lines cut by a transversal and prove equidistance between the endpoints of a segment and points on its perpendicular bisector and apply these relationships to solve problems	(i) verify theorems about angles formed by the intersection of lines including vertical angles

$\left.\begin{array}{|l|l|l|}\hline \text { Knowledge and Skills Statement } & \text { Student Expectation } & \text { Breakout } \\ \hline \begin{array}{l}\text { (6) Proof and congruence. The student uses the process } \\ \text { skills with deductive reasoning to prove and apply theorems } \\ \text { by using a variety of methods such as coordinate, } \\ \text { transformational, and axiomatic and formats such as two- } \\ \text { column, paragraph, and flow chart. The student is expected to: }\end{array} & \begin{array}{l}\text { (A) verify theorems about angles formed by the } \\ \text { intersection of lines and line segments, including } \\ \text { vertical angles, and angles formed by parallel lines } \\ \text { cut by a transversal and prove equidistance between } \\ \text { the endpoints of a segment and points on its } \\ \text { perpendicular bisector and apply these relationships } \\ \text { to solve problems }\end{array} & \text { (iii) verify theorems about angles formed by parallel } \\ \text { lines cut by a transversal }\end{array}\right\}$

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two- column, paragraph, and flow chart. The student is expected to:	(A) verify theorems about angles formed by the intersection of lines and line segments, including vertical angles, and angles formed by parallel lines cut by a transversal and prove equidistance between the endpoints of a segment and points on its perpendicular bisector and apply these relationships to solve problems	(v) apply these relationships to solve problems

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two- column, paragraph, and flow chart. The student is expected to:	(B) prove two triangles are congruent by applying the Side-Angle-Side, Angle-Side-Angle, Side-Side- Side, Angle-Angle-Side, and Hypotenuse-Leg congruence conditions	(ii) prove two triangles are congruent by applying the Angle-Side-Angle congruence condition
(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two- column, paragraph, and flow chart. The student is expected to:	(B) prove two triangles are congruent by applying the Side-Angle-Side, Angle-Side-Angle, Side-Side- congruence conditions	(iii) prove two triangles are congruent by applying
the-Angle-Side, and Hypotenuse-Leg		

$\left.\begin{array}{|l|l|l|}\hline \text { Knowledge and Skills Statement } & \text { Student Expectation } & \text { Breakout } \\ \hline & & \\ \hline \begin{array}{l}\text { (6) Proof and congruence. The student uses the process } \\ \text { skills with deductive reasoning to prove and apply theorems } \\ \text { by using a variety of methods such as coordinate, } \\ \text { transformational, and axiomatic and formats such as two- } \\ \text { column, paragraph, and flow chart. The student is expected to: }\end{array} & \begin{array}{l}\text { (B) prove two triangles are congruent by applying } \\ \text { the Side-Angle-Side, Angle-Side-Angle, Side-Side- } \\ \text { Side, Angle-Angle-Side, and Hypotenuse-Leg } \\ \text { congruence conditions }\end{array} & \text { (v) prove two triangles are congruent by applying the } \\ \text { Hypotenuse-Leg congruence condition }\end{array}\right]$

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two- column, paragraph, and flow chart. The student is expected to:	(D) verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base angles of isosceles triangles, midsegments, and medians, and apply these relationships to solve problems	(ii) verify theorems about the relationships in triangles, including the sum of interior angles

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two- column, paragraph, and flow chart. The student is expected to:	(D) verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base angles of isosceles triangles, midsegments, and medians, and apply these relationships to solve problems	(iv) verify theorems about the relationships in triangles, including of the midsegments

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two- column, paragraph, and flow chart. The student is expected to:	(D) verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base angles of isosceles triangles, midsegments, and medians, and apply these relationships to solve problems	(vi) apply these relationships to solve problems

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Similarity, proof, and trigonometry. The student uses the process skills in applying similarity to solve problems. The student is expected to:	(A) apply the definition of similarity in terms of a dilation to identify similar figures and their proportional sides and the congruent corresponding angles	(i) apply the definition of similarity in terms of a dilation to identify similar figures
(7) Similarity, proof, and trigonometry. The student uses the process skills in applying similarity to solve problems. The student is expected to:	(A) apply the definition of similarity in terms of a dilation to identify similar figures and their proportional sides and the congruent corresponding angles	(ii) apply the definition of similarity in terms of a dilation to identify their proportional sides

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Similarity, proof, and trigonometry. The student uses the process skills in applying similarity to solve problems. The student is expected to:	(A) apply the definition of similarity in terms of a dilation to identify similar figures and their proportional sides and the congruent corresponding angles	(iii) apply the definition of similarity in terms of a dilation to identify the congruent corresponding angles
(7) Similarity, proof, and trigonometry. The student uses the	(B) apply the Angle-Angle criterion to verify similar triangles and apply the proportionality of the corresponding sides to solve problems	(i) apply the Angle-Angle criterion to verify similar
process skills in applying similarity to solve problems. The student is expected to:		
triangles		

$\left.\begin{array}{|l|l|l|l|}\hline \text { Knowledge and Skills Statement } & \text { Student Expectation } & \text { Breakout } \\ \hline \begin{array}{l}\text { (8) Similarity, proof, and trigonometry. The student uses the } \\ \text { process skills with deductive reasoning to prove and apply } \\ \text { theorems by using a variety of methods such as coordinate, } \\ \text { transformational, and axiomatic and formats such as two- } \\ \text { column, paragraph, and flow chart. The student is expected to: }\end{array} & \begin{array}{l}\text { (A) prove theorems about similar triangles, including } \\ \text { the Triangle Proportionality theorem, and apply } \\ \text { these theorems to solve problems }\end{array} & \text { (i) prove theorems about similar triangles, including } \\ \text { the Triangle Proportionality theorem }\end{array}\right]$

Knowledge and Skills Statement	Student Expectation	Breakout
(9) Similarity, proof, and trigonometry. The student uses the process skills to understand and apply relationships in right triangles. The student is expected to:	(A) determine the lengths of sides and measures of angles in a right triangle by applying the trigonometric ratios sine, cosine, and tangent to solve problems	(iii) determine the lengths of sides in a right triangle by applying the trigonometric ratio cosine to solve problems
(9) Similarity, proof, and trigonometry. The student uses the process skills to understand and apply relationships in right triangles. The student is expected to:	(A) determine the lengths of sides and measures of angles in a right triangle by applying the trigonometric ratios sine, cosine, and tangent to solve problems	(iv) determine the measures of angles in a right triangle by applying the trigonometric ratio cosine to solve problems
(9) Similarity, proof, and trigonometry. The student uses the process skills to understand and apply relationships in right triangles. The student is expected to:	(A) determine the lengths of sides and measures of angles in a right triangle by applying the trigonometric ratios sine, cosine, and tangent to solve problems	(v) determine the lengths of sides in a right triangle by applying the trigonometric ratio tangent to solve problems

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Knowledge and Skills Statement } & \text { Student Expectation } & \text { Breakout } \\
\hline & & \\
\hline \begin{array}{l}\text { (10) Two-dimensional and three-dimensional figures. The } \\
\text { student uses the process skills to recognize characteristics } \\
\text { and dimensional changes of two- and three-dimensional } \\
\text { figures. The student is expected to: }\end{array} & \begin{array}{l}\text { (A) identify the shapes of two-dimensional cross- } \\
\text { sections of prisms, pyramids, cylinders, cones, and } \\
\text { spheres and identify three-dimensional objects } \\
\text { generated by rotations of two-dimensional shapes }\end{array}
$$ \& (iii) identify the shapes of two-dimensional cross-

sections of cylinders\end{array}\right]\)| (A) identify the shapes of two-dimensional cross- |
| :--- |
| (iv) identify the shapes of two-dimensional cross- |
| sections of cones |
| (10) Two-dimensional and three-dimensional figures. The
 student uses the process skills to recognize characteristics
 and dimensional changes of two- and three-dimensional
 figures. The student is expected to: |

Knowledge and Skills Statement	Student Expectation	Breakout
(10) Two-dimensional and three-dimensional figures. The student uses the process skills to recognize characteristics and dimensional changes of two- and three-dimensional figures. The student is expected to:	(A) identify the shapes of two-dimensional crosssections of prisms, pyramids, cylinders, cones, and spheres and identify three-dimensional objects generated by rotations of two-dimensional shapes	(v) identify the shapes of two-dimensional crosssections of spheres
(10) Two-dimensional and three-dimensional figures. The student uses the process skills to recognize characteristics and dimensional changes of two- and three-dimensional figures. The student is expected to:	(A) identify the shapes of two-dimensional crosssections of prisms, pyramids, cylinders, cones, and spheres and identify three-dimensional objects generated by rotations of two-dimensional shapes	(vi) identify three-dimensional objects generated by rotations of two-dimensional shapes
(10) Two-dimensional and three-dimensional figures. The student uses the process skills to recognize characteristics and dimensional changes of two- and three-dimensional figures. The student is expected to:	(B) determine and describe how changes in the linear dimensions of a shape affect its perimeter, area, surface area, or volume, including proportional and non-proportional dimensional change	(i) determine how changes in the linear dimensions of a shape affect its perimeter, area, surface area, or volume, including proportional dimensional change

Knowledge and Skills Statement	Student Expectation	Breakout
(10) Two-dimensional and three-dimensional figures. The student uses the process skills to recognize characteristics and dimensional changes of two- and three-dimensional figures. The student is expected to:	(B) determine and describe how changes in the linear dimensions of a shape affect its perimeter, area, surface area, or volume, including proportional and non-proportional dimensional change	(ii) determine how changes in the linear dimensions or vape affect its perimeter, area, surface area, change
chaluding non-proportional dimensional		

Knowledge and Skills Statement	Student Expectation	Breakout

Knowledge and Skills Statement	Student Expectation	Breakout
(11) Two-dimensional and three-dimensional figures. The student uses the process skills in the application of formulas to determine measures of two- and three-dimensional figures. The student is expected to:	(C) apply the formulas for the total and lateral surface area of three-dimensional figures, including prisms, pyramids, cones, cylinders, spheres, and composite figures, to solve problems using appropriate units of measure	(i) apply the formulas for the total surface area of three-dimensional figures, including prisms, to solve problems using appropriate units of measure
(11) Two-dimensional and three-dimensional figures. The student uses the process skills in the application of formulas to determine measures of two- and three-dimensional figures. The student is expected to:	(C) apply the formulas for the total and lateral surface area of three-dimensional figures, including prisms, pyramids, cones, cylinders, spheres, and composite figures, to solve problems using appropriate units of measure	(ii) apply the formulas for the total surface area of three-dimensional figures, including pyramids, to solve problems using appropriate units of measure

| Knowledge and Skills Statement | Student Expectation | Breakout |
| :--- | :--- | :--- | :--- |
| (11) Two-dimensional and three-dimensional figures. The
 student uses the process skills in the application of formulas
 to determine measures of two- and three-dimensional figures.
 The student is expected to: | (C) apply the formulas for the total and lateral
 surface area of three-dimensional figures, including
 prisms, pyramids, cones, cylinders, spheres, and
 composite figures, to solve problems using
 appropriate units of measure | (iii) apply the formulas for the total surface area of
 three-dimensional figures, including cones, to solve
 problems using appropriate units of measure |

Knowledge and Skills Statement	Student Expectation	Breakout
(11) Two-dimensional and three-dimensional figures. The student uses the process skills in the application of formulas to determine measures of two- and three-dimensional figures. The student is expected to:	(C) apply the formulas for the total and lateral surface area of three-dimensional figures, including prisms, pyramids, cones, cylinders, spheres, and composite figures, to solve problems using appropriate units of measure	(v) apply the formulas for the total surface area of three-dimensional figures, including spheres, to solve problems using appropriate units of measure

Knowledge and Skills Statement	Student Expectation	Breakout
(11) Two-dimensional and three-dimensional figures. The student uses the process skills in the application of formulas to determine measures of two- and three-dimensional figures. The student is expected to:	(C) apply the formulas for the total and lateral surface area of three-dimensional figures, including prisms, pyramids, cones, cylinders, spheres, and composite figures, to solve problems using appropriate units of measure	(vii) apply the formulas for the lateral surface area of three-dimensional figures, including prisms, to solve problems using appropriate units of measure

| Knowledge and Skills Statement | Student Expectation | Breakout |
| :--- | :--- | :--- | :--- |
| (11) Two-dimensional and three-dimensional figures. The
 student uses the process skills in the application of formulas
 to determine measures of two- and three-dimensional figures.
 The student is expected to: | (C) apply the formulas for the total and lateral
 surface area of three-dimensional figures, including
 prisms, pyramids, cones, cylinders, spheres, and
 composite figures, to solve problems using
 appropriate units of measure | (ix) apply the formulas for the lateral surface area of
 three-dimensional figures, including cones, to solve
 problems using appropriate units of measure |

| Knowledge and Skills Statement | Student Expectation | Breakout |
| :--- | :--- | :--- | :--- |
| (11) Two-dimensional and three-dimensional figures. The
 student uses the process skills in the application of formulas
 to determine measures of two- and three-dimensional figures.
 The student is expected to: | (C) apply the formulas for the total and lateral
 surface area of three-dimensional figures, including
 prisms, pyramids, cones, cylinders, spheres, and
 composite figures, to solve problems using
 appropriate units of measure | (xi) apply the formulas for the lateral surface area of
 three-dimensional figures, including spheres, to
 solve problems using appropriate units of measure |

| Knowledge and Skills Statement | Student Expectation | Breakout |
| :--- | :--- | :--- | :--- |
| (11) Two-dimensional and three-dimensional figures. The
 student uses the process skills in the application of formulas
 to determine measures of two- and three-dimensional figures.
 The student is expected to: | (D) apply the formulas for the volume of three-
 dimensional figures, including prisms, pyramids,
 cones, cylinders, spheres, and composite figures, to
 solve problems using appropriate units of measure | (i) apply the formulas for the volume of three-
 dimensional figures, including prisms, to solve
 problems using appropriate units of measure |

| Knowledge and Skills Statement | Student Expectation | Breakout |
| :--- | :--- | :--- | :--- |
| (11) Two-dimensional and three-dimensional figures. The
 student uses the process skills in the application of formulas
 to determine measures of two- and three-dimensional figures.
 The student is expected to: | (D) apply the formulas for the volume of three-
 dimensional figures, including prisms, pyramids,
 cones, cylinders, spheres, and composite figures, to
 solve problems using appropriate units of measure | (iii) apply the formulas for the volume of three-
 problems using appropriate units of measure |

Knowledge and Skills Statement	Student Expectation	Breakout
(11) Two-dimensional and three-dimensional figures. The student uses the process skills in the application of formulas to determine measures of two- and three-dimensional figures. The student is expected to:	(D) apply the formulas for the volume of three- dimensional figures, including prisms, pyramids, cones, cylinders, spheres, and composite figures, to solve problems using appropriate units of measure	(v) apply the formulas for the volume of three- dimensional figures, including spheres, to solve problems using appropriate units of measure

Knowledge and Skills Statement	Student Expectation	Breakout
(12) Circles. The student uses the process skills to understand geometric relationships and apply theorems and equations about circles. The student is expected to:	(A) apply theorems about circles, including relationships among angles, radii, chords, tangents, and secants, to solve non-contextual problems	(i) apply theorems about circles, including relationships among angles, radii, chords, tangents, and secants, to solve non-contextual problems
equations about circles. The student is expected to:		

Knowledge and Skills Statement	Student Expectation	Breakout
(12) Circles. The student uses the process skills to understand geometric relationships and apply theorems and equations about circles. The student is expected to:	(D) describe radian measure of an angle as the ratio of the length of an arc intercepted by a central angle and the radius of the circle	(i) describe radian measure of an angle as the ratio of the length of an arc intercepted by a central angle and the radius of the circle
(12) Circles. The student uses the process skills to		
understand geometric relationships and apply theorems and		
equations about circles. The student is expected to:		

Knowledge and Skills Statement	Student Expectation	Breakout
(13) Probability. The student uses the process skills to understand probability in real-world situations and how to apply independence and dependence of events. The student is expected to:	(A) develop strategies to use permutations and combinations to solve contextual problems	(i) develop strategies to use permutations to solve
contextual problems		

Knowledge and Skills Statement	Student Expectation	Breakout
(13) Probability. The student uses the process skills to understand probability in real-world situations and how to apply independence and dependence of events. The student is expected to:	(E) apply independence in contextual problems	(i) apply independence in contextual problems

