Texas Essential Knowledge and Skills (TEKS) Breakouts

Subject	Chapter 111. Mathematics
Subchapter	Subchapter C. High School
Course	§111.40. Algebra II, Adopted 2012 (One-Half to One Credit).

(a) General requirements. Students shall be awarded one-half to one credit for successful completion of this course. Prerequisite: Algebra I.
(b) Introduction.
(1) The desire to achieve educational excellence is the driving force behind the Texas essential knowledge and skills for mathematics, guided by the college and career readiness standards. By embedding statistics, probability, and finance, while focusing on fluency and solid understanding, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century.
(2) The process standards describe ways in which students are expected to engage in the content. The placement of the process standards at the beginning of the knowledge and skills listed for each grade and course is intentional. The process standards weave the other knowledge and skills together so that students may be successful problem solvers and use mathematics efficiently and effectively in daily life. The process standards are integrated at every grade level and course. When possible, students will apply mathematics to problems arising in everyday life, society, and the workplace. Students will use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Students will select appropriate tools such as real objects, manipulatives, paper and pencil, and technology and techniques such as mental math, estimation, and number sense to solve problems. Students will effectively communicate mathematical ideas, reasoning, and their implications using multiple representations such as symbols, diagrams, graphs, and language. Students will use mathematical relationships to generate solutions and make connections and predictions. Students will analyze mathematical relationships to connect and communicate mathematical ideas. Students will display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
(3) In Algebra II, students will build on the knowledge and skills for mathematics in Kindergarten-Grade 8 and Algebra I. Students will broaden their knowledge of quadratic functions, exponential functions, and systems of equations. Students will study logarithmic, square root, cubic, cube root, absolute value, rational functions, and their related equations. Students will connect functions to their inverses and associated equations and solutions in both mathematical and real-world situations. In addition, students will extend their knowledge of data analysis and numeric and algebraic methods.
(4) Statements that contain the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

(c) Knowledge and Skills.

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(A) apply mathematics to problems arising in everyday life, society, and the workplace	(i) apply mathematics to problems arising in everyday life
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(A) apply mathematics to problems arising in everyday life, society, and the workplace	(ii) apply mathematics to problems arising in society
		(A) apply mathematics to problems arising in everyday life, society, and the workplace
(iii) apply mathematics to problems arising		
in mathematical process standards. The student uses		
mathematical processes to acquire and demonstrate		
mathematical understanding. The student is expected to:		

Knowledge and Skills Statement	Student Expectation	Breakout
		(B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	(i) select tools, including real objects as appropriate, to solve problems
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	(ii) select tools, including manipulatives as appropriate, to solve problems

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	(v) select techniques, including mental math as appropriate, to solve problems
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	(vi) select techniques including estimation as appropriate, to solve problems

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	(vii) select techniques, including number sense as appropriate, to solve problems
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(i) communicate mathematical ideas using multiple representations, including symbols as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(iv) communicate mathematical ideas using multiple representations, including language as appropriate
(1) Mathematical process standards. The student uses	(D) communicate mathematical ideas, mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: multiple representations, including symbols, diagrams, graphs, and language as appropriate	(v) communicate mathematical reasoning using multiple representations, including symbols as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(vi) communicate mathematical reasoning using multiple representations, including diagrams as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(viii) communicate mathematical reasoning using multiple representations, including language as appropriate
(1) Mathematical process standards. The student uses	(D) communicate mathematical ideas, reasoning, and their implications using mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: symbols, diagrams, graphs, and language as appropriate	(ix) communicate [mathematical ideas'] implications using multiple representations, including symbols as appropre

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(x) communicate [mathematical ideas'] implications using multiple representations, including diagrams as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(xii) communicate [mathematical ideas'] implications using multiple representations, including language as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(xiv) communicate [mathematical reasoning's] implications using multiple representations, including diagrams as appropriate
(1) Mathematical process standards. The student uses	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language mathematical understanding. The student is expected to:	(xv) communicate [mathematical reasoning's] implications using multiple representations, including graphs as appropriate
as appriate		

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	(xvi) communicate [mathematical reasoning's] implications using multiple representations, including language as appropriate

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(E) create and use representations to organize, record, and communicate mathematical ideas	(iii) create representations to communicate mathematical ideas

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(E) create and use representations to organize, record, and communicate mathematical ideas	(vi) use representations to communicate mathematical ideas
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(F) analyze mathematical relationships to connect and communicate mathematical ideas	(i) analyze mathematical relationships to connect mathematical ideas
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(F) analyze mathematical relationships to connect and communicate mathematical ideas	(ii) analyze mathematical relationships to communicate mathematical ideas

Knowledge and Skills Statement	Student Expectation	Breakout
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(G) display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication	(i) display, explain, or justify mathematical ideas using precise mathematical language in written or oral communication
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:	(G) display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication	(ii) display, explain, or justify mathematical languments using precise mathematical in written or oral communication

Knowledge and Skills Statement	Student Expectation	Breakout
(2) Attributes of functions and their inverses. The student applies mathematical processes to understand that functions have distinct key attributes and understand the relationship between a function and its inverse. The student is expected to:	(A) graph the functions $f(x)=\sqrt{ } x, f(x)=1 / x$, $f(x)=x^{3}, f(x)={ }^{3} \sqrt{ } x, f(x)=b^{x}, f(x)=\|x\|$, and $f(x)=\log _{b}(x)$ where b is 2,10, and e, and, when applicable, analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum given an interval applicable, analyze the key attributes	(i) graph the function $f(x)=\sqrt{ } x$, and, when

Knowledge and Skills Statement	Student Expectation	Breakout
(2) Atributes of functions and their inverses. The student applies mathematical processes to understand that functions have distinct key attributes and understand the relationship between a function and its inverse. The student is expected to:	(A) graph the functions $f(x)=\sqrt{ } x, f(x)=1 / x$, $f(x)=x^{3}, f(x)={ }^{3} \sqrt{ } x, f(x)=b^{x}, f(x)=\|x\|$, and $f(x)=l o g_{b}(x)$ where b is 2,10, and e, and, when applicable, analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum given an interval applicable, analyze the key attributes	

Knowledge and Skills Statement	Student Expectation	Breakout
(2) Attributes of functions and their inverses. The student applies mathematical processes to understand that functions have distinct key attributes and understand the relationship between a function and its inverse. The student is expected to:	(C) describe and analyze the relationship between a function and its inverse (quadratic and square root, logarithmic and exponential), including the restriction(s) on domain, which will restrict its range	(iii) analyze the relationship between a function and its inverse (quadratic and square root), including the restriction(s) on domain, which will restrict its range
(2) Attributes of functions and their inverses. The student applies mathematical processes to understand that functions have distinct key attributes and understand the relationship between a function and its inverse. The student is expected to:	(C) describe and analyze the relationship between a function and its inverse (quadratic and square root, logarithmic and exponential), including the restriction(s) on domain, which will restrict its range	(iv) analyze the relationship between a function and its inverse (logarithmic and exponential), including the restriction(s) on domain, which will restrict its range

$\left.\begin{array}{|l|l|l|}\hline \text { Knowledge and Skills Statement } & \text { Student Expectation } & \text { Breakout }\end{array} \left\lvert\, \begin{array}{l}\text { (2) Attributes of functions and their inverses. The student } \\ \text { applies mathematical processes to understand that } \\ \text { functions have distinct key attributes and understand the } \\ \text { relationship between a function and its inverse. The the composition of two functions, } \\ \text { student is expected to: }\end{array} \begin{array}{l}\text { (D) use the } \\ \text { including the necessary restrictions on the } \\ \text { domain, to determine if the functions are } \\ \text { inverses of each other } \\ \text { including the necessary restrictions on the } \\ \text { domain, to determine if the functions are } \\ \text { inverses of each other }\end{array}\right.\right\}$

Knowledge and Skills Statement	Student Expectation	Breakout
(3) Systems of equations and inequalities. The student applies mathematical processes to formulate systems of equations and inequalities, use a variety of methods to solve, and analyze reasonableness of solutions. The student is expected to:	(B) solve systems of three linear equations in three variables by using Gaussian elimination, technology with matrices, and substitution	(i) solve systems of three linear equations in three variables by using Gaussian elimination

Knowledge and Skills Statement	Student Expectation	Breakout
(3) Systems of equations and inequalities. The student applies mathematical processes to formulate systems of equations and inequalities, use a variety of methods to solve, and analyze reasonableness of solutions. The student is expected to:	(C) solve, algebraically, systems of two equations in two variables consisting of a linear equation and a quadratic equation	(i) solve, algebraically, systems of two equations in two variables consisting of a linear equation and a quadratic equation

Knowledge and Skills Statement	Student Expectation	Breakout
(3) Systems of equations and inequalities. The student applies mathematical processes to formulate systems of equations and inequalities, use a variety of methods to solve, and analyze reasonableness of solutions. The student is expected to:	(F) solve systems of two or more linear inequalities in two variables	(i) solve systems of two or more linear inequalities in two variables

Knowledge and Skills Statement	Student Expectation	Breakout
(4) Quadratic and square root functions, equations, and inequalites. The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(B) write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening	(i) write the equation of a parabola using given attributes, including vertex

Knowledge and Skills Statement	Student Expectation	Breakout
(4) Quadratic and square root functions, equations, and inequalities. The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(B) write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening	(iv) write the equation of a parabola using given attributes, including axis of symmetry

Knowledge and Skills Statement	Student Expectation	Breakout
(4) Quadratic and square root functions, equations, and inequalities. The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(C) determine the effect on the graph of $f(x)=\sqrt{ } x$ when $f(x)$ is replaced by af(x, $f(x)+d$, $f(b x)$, and $f(x-c)$ for specific and d	(iv) determine the effect on the graph of $f(x)=\sqrt{ } x$ when $f(x)$ is replaced by $f(x)+d$ for specific negative values of d

Knowledge and Skills Statement	Student Expectation	Breakout
(4) Quadratic and square root functions, equations, and inequalities. The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(C) determine the effect on the graph of $f(x)=\sqrt{ } x$ when $f(x)$ is replaced by af(x), $f(x)+d, f(b x)$, and $f(x-c)$ for specific positive and negative values of a, b, c, and d	(vii) determine the effect on the graph of $f(x)=\sqrt{ } x$ when $f(x)$ is replaced by $f(x-c)$ for specific positive values of c
(4) Quadratic and square root functions, equations, and inequalities. The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(C) determine the effect on the graph of $f(x)=\sqrt{ } x$ when $f(x)$ is replaced by af(x), $f(x)+d, f(b x)$, and $f(x-c)$ for specific positive and negative values of a, b, c, and d	(viii) determine the effect on the graph of $f(x)=\sqrt{ } x$ when $f(x)$ is replaced by $f(x-c)$ for specific negative values of c

Knowledge and Skills Statement	Student Expectation	Breakout
(4) Quadratic and square root functions, equations, and inequalities. The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(D) transform a quadratic function $f(x)=$ $a^{2}+b x+c$ to identify the different attributes of $f(x)$	(i) transform a quadratic function $f(x)=$ $a x^{2}+b x+c$ to the form $f(x)=a(x-h)^{2}+$ k to identify the different attributes of $f(x)$

Knowledge and Skills Statement	Student Expectation	Breakout
(4) Quadratic and square root functions, equations, and inequalities. The student applies mathematical processes to understand that quadratic and square root functions, equations, and quadratic inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(H) solve quadratic inequalities	(i) solve quadratic inequalities
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10 , and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(i) determine the effects on the key attributes on the graph of $f(x)=b^{x}$ where b is 2 when $f(x)$ is replaced by $a f(x)$ for specific positive real values of a

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(ii) determine the effects on the key attributes on the graph of $f(x)=b^{x}$ where is 2 when $f(x)$ is replaced by af (x) for specific negative real values of a

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(iv) determine the effects on the key attributes on the graph of $f(x)=b^{x}$ where is 10 when $f(x)$ is replaced by af (x) for specific negative real values of a

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(vi) determine the effects on the key attributes on the graph of $f(x)=b^{x}$ where is e when $f(x)$ is replaced by af (x) for specific negative real values of a

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(viii) determine the effects on the key attributes on the graph of $f(x)=b^{x}$ where is 2 when $f(x)$ is replaced by $f(x)+d$ for specific negative real values of d

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(x) determine the effects on the key attributes on the graph of $f(x)=b^{x}$ where is 10 when $f(x)$ is replaced by $f(x)+d$ for specific negative real values of d

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xii) determine the effects on the key attributes on the graph of $f(x)=b^{x}$ where is e when $f(x)$ is replaced by $f(x)+d$ for specific negative real values of d

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=l o g_{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af $(x), f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xiv) determine the effects on the key attributes on the graph of $f(x)=b^{x}$ where is 2 when $f(x)$ is replaced by $f(x-c)$ for specific negative real values of c

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=l o g_{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af $(x), f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xvi) determine the effects on the key attributes on the graph of $f(x)=b^{x}$ b is 10 where $f(x)$ is replaced by $f(x-c)$ for specific negative real values of c

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xviii) determine the effects on the key attributes on the graph of $f(x)=b^{x}$ where is e when $f(x)$ is replaced by $f(x-c)$ for specific negative real values of c

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xx) determine the effects on the key attributes on the graph of $f(x)=l o g_{b}(x)$ where b is 2 when $f(x)$ is replaced by af(x) for specific negative real values of a

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xxii) determine the effects on the key attributes on the graph of $f(x)=l o g_{b}(x)$ where b is 10 when $f(x)$ is replaced by af(x) for specific negative real values of a

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xxiv) determine the effects on the key attributes on the graph of $f(x)=l o g_{b}(x)$ where b is e when $f(x)$ is replaced by af(x) for specific negative real values of a

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af $(x), f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xxvi) determine the effects on the key attributes on the graph of $f(x)=l o g_{b}(x)$ where b is 2 when $f(x)$ is replaced by $f(x)$ $+d$ for specific negative real values of d

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xxviii) determine the effects on the key attributes on the graph of $f(x)=l o g_{b}(x)$ where b is 10 when $f(x)$ is replaced by $f(x)+d$ for specific negative real values of d

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xxx) determine the effects on the key attributes on the graph of $f(x)=l o g_{b}(x)$ where b is e when $f(x)$ is replaced by $f(x)$ $+d$ for specific negative real values of d

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xxxii) determine the effects on the key attributes on the graph of $f(x)=l o g_{b}(x)$ where b is 2 when $f(x)$ is replaced by $f(x-$ $c)$ for specific negative real values of c

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xxxiv) determine the effects on the key attributes on the graph of $f(x)=l o g_{b}(x)$ where b is 10 when $f(x)$ is replaced by $f(x-$ $c)$ for specific negative real values of c

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(A) determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$ where b is 2,10, and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d	(xxxvi) determine the effects on the key attributes on the graph of $f(x)=l o g_{b}(x)$ where b is e when $f(x)$ is replaced by $f(x-$ c) for specific negative real values of c

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(C) rewrite exponential equations as their corresponding logarithmic equations and logarithmic equations as their corresponding exponential equations	(i) rewrite exponential equations as their corresponding logarithmic equations

Knowledge and Skills Statement	Student Expectation	Breakout
(5) Exponential and logarithmic functions and equations. The student applies mathematical processes to understand that exponential and logarithmic functions can be used to model situations and solve problems. The student is expected to:	(D) solve exponential equations of the form $y=a b^{x}$ where a is a nonzero real number and b is greater than zero and not equal to one and single logarithmic equations having real solutions	(i) solve exponential equations of the form a and b and is greater than zero and not equal to one

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(A) analyze the effect on the graphs of $f(x)=x^{3}$ and $f(x)={ }^{3} \sqrt{ } x$ when $f(x)$ is replaced by $a f(x), f(b x), f(x-c)$, and $f(x)+$ d for specific positive and negative real values of a, b, c, and d	(i) analyze the effect on the graphs of $f(x)$ $=x^{3}$ and when $f(x)$ is replaced by af(x) for specific positive real values of a
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(A) analyze the effect on the graphs of $f(x)=x^{3}$ and $f(x)={ }^{3} \sqrt{ } x$ when $f(x)$ is replaced by af(x),f(bx),f(x-c), and $f(x)+$ d for specific positive and negative real values of a, b, c, and d	(ii) analyze the effect on the graphs of $f(x)$ $=x^{3}$ when $f(x)$ is replaced by $a f(x)$ for specific negative real values of a

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(B) solve cube root equations that have real roots	(i) solve cube root equations that have real roots

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(C) analyze the effect on the graphs of $f(x)=\|x\|$ when $f(x)$ is replaced by af($x)$, $f(b x), f(x-c)$, and $f(x)+d$ for specific positive and negative real values of a, b, c, and d	(ii) analyze the effect on the graphs of $f(x)$ $=\|x\|$ when $f(x)$ is replaced by af($x)$ for specific negative real values of a

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(C) analyze the effect on the graphs of $f(x)=\|x\|$ when $f(x)$ is replaced by af (x), $f(b x), f(x-c)$, and $f(x)+d$ for specific positive and negative real values of a, b, c, and d	(iv) analyze the effect on the graphs of $f(x)$ $=\|x\|$ when $f(x)$ is replaced by $f(b x)$ for specific negative real values of b

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(C) analyze the effect on the graphs of $f(x)=\|x\|$ when $f(x)$ is replaced by af (x), $f(b x), f(x-c)$, and $f(x)+d$ for specific positive and negative real values of a, b, c, and d	(vi) analyze the effect on the graphs of $f(x)$ $=\|x\|$ when $f(x)$ is replaced by $f(x-c)$ for specific negative real values of c

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(C) analyze the effect on the graphs of $f(x)=\|x\|$ when $f(x)$ is replaced by af (x), $f(b x), f(x-c)$, and $f(x)+d$ for specific positive and negative real values of a, b, $c, ~$	and (viii) analyze the effect on the graphs of $f(x)=\|x\|$ when $f(x)$ is replaced by $f(x)+d$ for specific negative real values of d

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:		

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(G) analyze the effect on the graphs of $f(x)=1 / x$ when $f(x)$ is replaced by af($x)$, $f(b x), f(x-c)$, and $f(x)+d$ for specific positive and negative real values of a, b, c, and d	(v) analyze the effect on the graphs of $f(x)$ a specific positive real values of c

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(G) analyze the effect on the graphs of $f(x)=1 / x$ when $f(x)$ is replaced by af(x), $f(b x), f(x-c)$, and $f(x)+d$ for specific positive and negative real values of a, b, c, and d	(vii) analyze the effect on the graphs of $f(x)=1 / x$ when $f(x)$ is replaced by $f(x)+d$ for specific positive real values of d

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(H) formulate rational equations that model real-world situations	(i) formulate rational equations that model real-world situations

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(J) determine the reasonableness of a solution to a rational equation	(i) determine the reasonableness of a solution to a rational equation

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(K) determine the asymptotic restrictions on the domain of a rational function and represent domain and range using interval notation, inequalities, and set notation	(ii) represent domain using interval notation

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(K) determine the asymptotic restrictions on the domain of a rational function and represent domain and range using interval notation, inequalities, and set notation	(iv) represent domain set notation

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(K) determine the asymptotic restrictions on the domain of a rational function and represent domain and range using interval notation, inequalities, and set notation	(vi) represent range using inequalities

Knowledge and Skills Statement	Student Expectation	Breakout
(6) Cubic, cube root, absolute value and rational functions, equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:	(L) formulate and solve equations involving inverse variation	(i) formulate equations involving inverse variation
(6) Cubic, cube root, absolute value and rational functions,	(L) formulate and solve equations involving inverse variation	(ii) solve equations involving inverse variation
(6) equations, and inequalities. The student applies mathematical processes to understand that cubic, cube root, absolute value and rational functions, equations, and inequalities can be used to model situations, solve problems, and make predictions. The student is expected to:		

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(A) add, subtract, and multiply complex numbers	(ii) subtract complex numbers
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(A) add, subtract, and multiply complex numbers	(iii) multiply complex numbers

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(B) add, subtract, and multiply polynomials	(iii) multiply polynomials
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(C) determine the quotient of a polynomial of divided by a polynomial of degree one and of degree two	(i) determine the quotient of a polynomial of degree three when divided by a polynomial of degree one

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(C) determine the quotient of a polynomial of degree three and of degree four when divided by a polynomial of degree one and of degree two	(iii) determine the quotient of a polynomial of degree four when divided by a polynomial of degree one

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(D) determine the linear factors of a polynomial function of degree three and of degree four using algebraic methods	(ii) determine the linear factors of a polynomial function of degree four using algebraic methods
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(E) determine linear and quadratic factors of a polynomial expression of degree three and of degree four, including factoring the sum and difference of two cubes and factoring by grouping	(i) determine linear factors of a polynomial factoring the sum of two cubes
fing		

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(E) determine linear and quadratic factors of a polynomial expression of degree three and of degree four, including factoring the sum and difference of two cubes and factoring by grouping	(iii) determine linear factors of a polynomial expression of degree three including factoring by grouping

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(E) determine linear and quadratic factors of a polynomial expression of degree three and of degree four, including factoring the sum and difference of two cubes and factoring by grouping	(v) determine quadratic factors of a polynomial expression of degree three including factoring the sum of two cubes
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(E) determine linear and quadratic factors of a polynomial expression of degree three and of degree four, including factoring the sum and difference of two cubes and factoring by grouping	(vi) determine quadratic factors of a polynomial expression of degree three including factoring the difference of two cubes

$\left.\begin{array}{|l|l|l|}\hline \text { Knowledge and Skills Statement } & \text { Student Expectation } & \text { Breakout }\end{array} \begin{array}{l}\text { (7) Number and algebraic methods. The student applies } \\ \text { mathematical processes to simplify and perform operations } \\ \text { on expressions and to solve equations. The student is } \\ \text { expected to: }\end{array} \begin{array}{l}\text { (E) determine linear and quadratic factors } \\ \text { of a polynomial expression of degree three } \\ \text { and of degree four, including factoring the } \\ \text { sum and difference of two cubes and } \\ \text { factoring by grouping }\end{array} \begin{array}{l}\text { (vii) determine quadratic factors of a } \\ \text { polynomial expression of degree three } \\ \text { including factoring by grouping }\end{array}\right\}$

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(F) determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two	(ii) determine the sum of rational expressions with integral exponents of degree two
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(F) determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two	degree one and degree two expressions with integral exponents of
(iii) determine the sum of		

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(F) determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two	(v) determine the difference of rational expressions with integral exponents of degree two
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(F) determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two	(vi) determine the difference of rational degree one and of degree two

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(F) determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two	(viii) determine the product of rational expressions with integral exponents of degree two
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(F) determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two	(ix) determine the product of rational expressions with integral exponents of degree one and of degree two
(F) determine the sum, difference,		

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(F) determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two	(xi) determine the quotient of rational expressions with integral exponents of degree two

Knowledge and Skills Statement	Student Expectation	Breakout
(7) Number and algebraic methods. The student applies mathematical processes to simplify and perform operations on expressions and to solve equations. The student is expected to:	(I) write the domain and range of a function in interval notation, inequalities, and set notation	(iii) write the domain of a function in interval set notation

Knowledge and Skills Statement	Student Expectation	Breakout
(8) Data. The student applies mathematical processes to analyze data, select appropriate models, write corresponding functions, and make predictions. The student is expected to:	(B) use regression methods available through technology to write a linear function, a quadratic function, and an exponential function from a given set of data	(i) use regression methods available through technology to write a linear function from a given set of data
-		-
		(ex
(8) Data. The student applies mathematical processes to analyze data, select appropriate models, write corresponding functions, and make predictions. The student is expected to:	(B) use regression methods available through technology to write a linear function, a quadratic function, and an exponential function from a given set of data	(ii) use regression methods available through technology to write a quadratic function from a given set of data

Knowledge and Skills Statement	Student Expectation	Breakout
(8) Data. The student applies mathematical processes to analyze data, select appropriate models, write corresponding functions, and make predictions. The student is expected to:	(B) use regression methods available through technology to write a linear function, a quadratic function, and an exponential function from a given set of data	(iii) use regression methods available through technology to write an exponential function from a given set of data

Knowledge and Skills Statement	Student Expectation	Breakout
(8) Data. The student applies mathematical processes to analyze data, select appropriate models, write corresponding functions, and make predictions. The student is expected to:	(C) predict and make decisions and critical judgments from a given set of data using linear, quadratic, and exponential models	(ix) make critical judgments from a given set of data using exponential models

