Chapter 126. Texas Essential Knowledge and Skills for Technology Applications

Subchapter A. Elementary

Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code, §7.102(c)(4) and §28.002, unless otherwise noted.

§126.1. Technology Applications, Kindergarten, Adopted 2022.

- (a) Implementation. The provisions of this section shall be implemented by school districts beginning with the 2024-2025 school year.
 - (1) No later than August 1, 2024, the commissioner of education shall determine whether instructional materials funding has been made available to Texas public schools for materials that cover the essential knowledge and skills identified in this section.
 - (2) If the commissioner makes the determination that instructional materials funding has been made available this section shall be implemented beginning with the 2024-2025 school year and apply to the 2024-2025 and subsequent school years.
 - (3) If the commissioner does not make the determination that instructional materials funding has been made available under this subsection, the commissioner shall determine no later than August 1 of each subsequent school year whether instructional materials funding has been made available. If the commissioner determines that instructional materials funding has been made available, the commissioner shall notify the State Board of Education and school districts that this section shall be implemented for the following school year.

(b) Introduction.

- (1) Technology includes data communication, data processing, and the devices used for these tasks locally and across networks. Learning to apply these technologies motivates students to develop critical-thinking skills, higher-order thinking, and innovative problem solving. Technology applications incorporates the study of digital tools, devices, communication, and programming to empower students to apply current and emerging technologies in their careers, their education, and beyond.
- (2) The technology applications Texas Essential Knowledge and Skills (TEKS) consist of five strands that prepare students to be literate in technology applications by Grade 8: computational thinking; creativity and innovation; data literacy, management, and representation; digital citizenship; and practical technology concepts. Communication and collaboration skills are embedded across the strands.
 - (A) Computational thinking. Students break down the problem-solving process into four steps: decomposition, pattern recognition, abstraction, and algorithms.
 - (B) Creativity and innovation. Students use innovative design processes to develop solutions to problems. Students plan a solution, create the solution, test the solution, iterate, and debug the solution as needed and implement a completely new and innovative product.
 - (C) Data literacy, management, and representation. Students collect, organize, manage, analyze, and publish various types of data for an audience.
 - (D) Digital citizenship. Students practice the ethical and effective application of technology and develop an understanding of cybersecurity and the impact of a digital footprint to become safe, productive, and respectful digital citizens.
 - (E) Practical technology concepts. Students build their knowledge of software applications and hardware focusing on keyboarding and use of applications and tools.
- (3) The technology applications TEKS can be integrated into all content areas and can support standalone courses. Districts have the flexibility of offering technology applications in a variety of

August 2024 Update Page 1 of 16

- settings, including through a stand-alone course or by integrating the technology applications standards in the essential knowledge and skills for one or more courses or subject areas.
- (4) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.
- (c) Knowledge and skills.
 - (1) Computational thinking--foundations. The student explores the core concepts of computational thinking, a set of problem-solving processes that involve decomposition, pattern recognition, abstraction, and algorithms. The student is expected to:
 - (A) identify a problem or task such as making a sandwich and break it down (decompose) into smaller pieces;
 - (B) identify simple patterns and make predictions based on the patterns; and
 - (C) identify algorithms (step-by-step instructions) using a sequential process such as first, next, then, and last.
 - (2) Computational thinking--applications. The student, with guidance from an educator, applies the fundamentals of computer science. The student is expected to create a sequence of code with or without technology such as solving a maze using drag-and-drop programming or creating step-by-step directions for student movement to a specific location.
 - (3) Creativity and innovation--innovative design process. The student takes an active role in learning by using a design process to solve authentic problems for a local or global audience, using a variety of technologies. The student is expected to:
 - (A) practice personal skills, including following directions, needed to successfully implement design processes; and
 - (B) use a design process with components such as asking questions, brainstorming, or storyboarding to identify and solve authentic problems with adult assistance.
 - (4) Data literacy, management, and representation--collect data. The student defines data and explains how data can be found and collected. The student is expected to:
 - (A) communicate an understanding that data is information collected about people, events, or objects such as computer searches and weather patterns; and
 - (B) communicate with adult assistance the idea that digital devices can search for and retrieve information.
 - (5) Digital citizenship--social interactions. The student identifies appropriate ways to communicate in various digital environments. The student is expected to identify and demonstrate responsible behavior within a digital environment.
 - (6) Digital citizenship--ethics and laws. The student recognizes and practices responsible, legal, and ethical behavior while using digital tools and resources. The student is expected to:
 - (A) demonstrate acceptable use of digital resources and devices as outlined in local policies or acceptable use policy (AUP); and
 - (B) communicate an understanding that all digital content has owners.
 - (7) Digital citizenship--privacy, safety, and security. The student practices safe, legal, and ethical digital behaviors to become a socially responsible digital citizen. The student is expected to:
 - (A) identify ways to keep a user account safe, including not sharing login information and logging off accounts and devices; and
 - (B) identify and discuss what information is safe to share online such as hobbies and likes and dislikes and what information is unsafe such as identifying information.

August 2024 Update Page 2 of 16

(8) Practical technology concepts--skills and tools. The student demonstrates knowledge and appropriate use of technology systems, concepts, and operations. The student is expected to:

- (A) use a variety of applications, devices, and online learning environments to engage with content;
- (B) identify basic computer hardware, including a variety of input and output devices, and software using accurate terminology;
- (C) perform software application functions such as opening an application and modifying, printing, and saving digital artifacts using a variety of developmentally appropriate digital tools and resources;
- (D) practice ergonomically correct keyboarding techniques and developmentally appropriate hand and body positions; and
- (E) identify, locate, and practice using keys on the keyboard, including letters, numbers, and special keys such as space bar and backspace.

Source: The provisions of this §126.1 adopted to be effective August 7, 2022, 47 TexReg 4518.

§126.2. Technology Applications, Grade 1, Adopted 2022.

- (a) Implementation. The provisions of this section shall be implemented by school districts beginning with the 2024-2025 school year.
 - (1) No later than August 1, 2024, the commissioner of education shall determine whether instructional materials funding has been made available to Texas public schools for materials that cover the essential knowledge and skills identified in this section.
 - (2) If the commissioner makes the determination that instructional materials funding has been made available this section shall be implemented beginning with the 2024-2025 school year and apply to the 2024-2025 and subsequent school years.
 - (3) If the commissioner does not make the determination that instructional materials funding has been made available under this subsection, the commissioner shall determine no later than August 1 of each subsequent school year whether instructional materials funding has been made available. If the commissioner determines that instructional materials funding has been made available, the commissioner shall notify the State Board of Education and school districts that this section shall be implemented for the following school year.

(b) Introduction.

- (1) Technology includes data communication, data processing, and the devices used for these tasks locally and across networks. Learning to apply these technologies motivates students to develop critical-thinking skills, higher-order thinking, and innovative problem solving. Technology applications incorporates the study of digital tools, devices, communication, and programming to empower students to apply current and emerging technologies in their careers, their education, and beyond.
- (2) The technology applications Texas Essential Knowledge and Skills (TEKS) consist of five strands that prepare students to be literate in technology applications by grade 8: computational thinking; creativity and innovation; data literacy, management, and representation; digital citizenship; and practical technology concepts. Communication and collaboration skills are embedded across the strands.
 - (A) Computational thinking. Students break down the problem-solving process into four steps: decomposition, pattern recognition, abstraction, and algorithms.
 - (B) Creativity and innovation. Students use innovative design processes to develop solutions to problems. Students plan a solution, create the solution, test the solution, iterate, and debug the solution as needed, and implement a completely new and innovative product.

August 2024 Update Page 3 of 16

(C) Data literacy, management, and representation. Students collect, organize, manage, analyze, and publish various types of data for an audience.

- (D) Digital citizenship. Students practice the ethical and effective application of technology and develop an understanding of cybersecurity and the impact of a digital footprint to become safe, productive, and respectful digital citizens.
- (E) Practical technology concepts. Students build their knowledge of software applications and hardware focusing on keyboarding and use of applications and tools.
- (3) The technology applications TEKS can be integrated into all content areas and can support standalone courses. Districts have the flexibility of offering technology applications in a variety of settings, including through a stand-alone course or by integrating the technology applications standards in the essential knowledge and skills for one or more courses or subject areas.
- (4) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.
- (c) Knowledge and skills.
 - (1) Computational thinking--foundations. The student explores the core concepts of computational thinking, a set of problem-solving processes that involve decomposition, pattern recognition, abstraction, and algorithms. The student is expected to:
 - (A) identify and discuss a problem or task and break down (decompose) the solution into sequential steps;
 - (B) identify the simple patterns found in the solutions to everyday problems or tasks; and
 - (C) create a simple algorithm (step-by-step instructions) for an everyday task.
 - (2) Computational thinking--applications. The student, with guidance from an educator, applies the fundamentals of computer science. The student is expected to create a sequence of code that solves a simple problem with or without technology.
 - (3) Creativity and innovation--innovative design process. The student takes an active role in learning by using a design process to solve authentic problems for a local or global audience, using a variety of technologies. The student is expected to:
 - (A) practice personal skills and behaviors, including following directions and mental agility, needed to implement a design process successfully; and
 - (B) use a design process with components such as asking questions, brainstorming, or storyboarding to identify and solve authentic problems with adult assistance.
 - (4) Creativity and innovation--emerging technologies. The student understands that technology is dynamic and impacts different communities. The student is expected to identify examples of how technology has impacted different communities.
 - (5) Data literacy, management, and representation--collect data. The student defines data and explains how data can be found and collected. The student is expected to:
 - (A) explore and collect many types of data such as preferences or daily routines of people, events, or objects; and
 - (B) conduct a basic search using provided keywords and digital sources with adult assistance.
 - (6) Digital citizenship--social interactions. The student identifies appropriate ways to communicate in various digital environments. The student is expected to describe and demonstrate respectful behavior within a digital environment.
 - (7) Digital citizenship--ethics and laws. The student recognizes and practices responsible, legal, and ethical behavior while using digital tools and resources. The student is expected to:

August 2024 Update Page 4 of 16

(A) explain and demonstrate the importance of acceptable use of digital resources and devices as outlined in local policies or acceptable use policy (AUP); and

- (B) communicate an understanding that all digital content has owners and explain the importance of respecting others' belongings as they apply to digital content and information.
- (8) Digital citizenship--privacy, safety, and security. The student practices safe, legal, and ethical digital behaviors to become a socially responsible digital citizen. The student is expected to:
 - (A) identify ways to keep a user account safe, including not sharing login information and logging off accounts and devices;
 - (B) identify and discuss what information is safe to share online such as hobbies and likes and dislikes and what information is unsafe such as identifying information; and
 - (C) discuss and define cyberbullying with teacher support and guidance.
- (9) Practical technology concepts--skills and tools. The student demonstrates knowledge and appropriate use of technology systems, concepts, and operations. The student is expected to:
 - (A) select and use a variety of applications, devices, and online learning environments to create an original product;
 - (B) describe basic computer hardware, including a variety of input and output devices, and software using accurate terminology;
 - (C) perform software application functions such as file management, collaboration, and the creation and revision of digital artifacts using a variety of developmentally appropriate digital tools and resources;
 - (D) practice ergonomically correct keyboarding techniques and developmentally appropriate hand and body positions; and
 - (E) identify, locate, and practice using keys on the keyboard, including upper- and lower-case letters, numbers, and special keys such as space bar, shift, and backspace.

Source: The provisions of this §126.2 adopted to be effective August 7, 2022, 47 TexReg 4518.

§126.3. Technology Applications, Grade 2, Adopted 2022.

- (a) Implementation. The provisions of this section shall be implemented by school districts beginning with the 2024-2025 school year.
 - (1) No later than August 1, 2024, the commissioner of education shall determine whether instructional materials funding has been made available to Texas public schools for materials that cover the essential knowledge and skills identified in this section.
 - (2) If the commissioner makes the determination that instructional materials funding has been made available this section shall be implemented beginning with the 2024-2025 school year and apply to the 2024-2025 and subsequent school years.
 - (3) If the commissioner does not make the determination that instructional materials funding has been made available under this subsection, the commissioner shall determine no later than August 1 of each subsequent school year whether instructional materials funding has been made available. If the commissioner determines that instructional materials funding has been made available, the commissioner shall notify the State Board of Education and school districts that this section shall be implemented for the following school year.

(b) Introduction.

(1) Technology includes data communication, data processing, and the devices used for these tasks locally and across networks. Learning to apply these technologies motivates students to develop critical-thinking skills, higher-order thinking, and innovative problem solving. Technology

August 2024 Update Page 5 of 16

- applications incorporates the study of digital tools, devices, communication, and programming to empower students to apply current and emerging technologies in their careers, their education, and beyond.
- (2) The technology applications Texas Essential Knowledge and Skills (TEKS) consist of five strands that prepare students to be literate in technology applications by grade 8: computational thinking; creativity and innovation; data literacy, management, and representation; digital citizenship; and practical technology concepts. Communication and collaboration skills are embedded across the strands.
 - (A) Computational thinking. Students break down the problem-solving process into four steps: decomposition, pattern recognition, abstraction, and algorithms.
 - (B) Creativity and innovation. Students use innovative design processes to develop solutions to problems. Students plan a solution, create the solution, test the solution, iterate, and debug the solution as needed, and implement a completely new and innovative product.
 - (C) Data literacy, management, and representation. Students collect, organize, manage, analyze, and publish various types of data for an audience.
 - (D) Digital citizenship. Students practice the ethical and effective application of technology and develop an understanding of cybersecurity and the impact of a digital footprint to become safe, productive, and respectful digital citizens.
 - (E) Practical technology concepts. Students build their knowledge of software applications and hardware focusing on keyboarding and use of applications and tools.
- (3) The technology applications TEKS can be integrated into all content areas and can support standalone courses. Districts have the flexibility of offering technology applications in a variety of settings, including through a stand-alone course or by integrating the technology applications standards in the essential knowledge and skills for one or more courses or subject areas.
- (4) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.
- (c) Knowledge and skills.
 - (1) Computational thinking--foundations. The student explores the core concepts of computational thinking, a set of problem-solving processes that involve decomposition, pattern recognition, abstraction, and algorithms. The student is expected to:
 - (A) identify and communicate a problem or task and break down (decompose) multiple solutions into sequential steps;
 - (B) identify complex patterns and make predictions based on the pattern;
 - (C) analyze a plan with adult assistance that outlines the steps needed to complete a task; and
 - (D) create and troubleshoot simple algorithms (step-by-step instructions) that include conditionals such as if-then statements as they apply to an everyday task.
 - (2) Computational thinking--applications. The student, with guidance from an educator, applies the fundamentals of computer science. The student is expected to:
 - (A) identify and explore what a variable is in a sequence of code; and
 - (B) use a design process to create a sequence of code that includes loops to solve a simple problem with or without technology.
 - (3) Creativity and innovation--innovative design process. The student takes an active role in learning by using a design process to solve authentic problems for a local or global audience, using a variety of technologies. The student is expected to:
 - (A) demonstrate personal skills and behaviors, including effective communication, following directions, and mental agility, needed to implement a design process successfully; and

August 2024 Update Page 6 of 16

(B) apply a design process with components such as testing and reflecting to create new and useful solutions to identify and solve for authentic problems.

- (4) Creativity and innovation--emerging technologies. The student demonstrates an understanding that technology is dynamic and impacts different communities. The student is expected to identify and analyze how technology impacts different communities.
- (5) Data literacy, management, and representation--collect data. The student defines data and explains how data can be found and collected. The student is expected to:
 - (A) identify and collect non-numerical data, such as weather patterns, preferred reading genres, and holidays; and
 - (B) conduct a basic search independently using provided keywords and digital sources.
- (6) Data literacy, management, and representation--communicate and publish results. The student communicates data through the use of digital tools. The student is expected to use a digital tool to individually or collaboratively create and communicate data visualizations such as pictographs and bar graphs.
- (7) Digital citizenship--social interactions. The student identifies appropriate ways to communicate in various digital environments. The student is expected to participate in digital environments to develop responsible and respectful interactions.
- (8) Digital citizenship--ethics and laws. The student recognizes and practices responsible, legal, and ethical behavior while using digital tools and resources. The student is expected to:
 - (A) explain and demonstrate the importance of acceptable use of digital resources and devices as outlined in local policies or acceptable use policy (AUP); and
 - (B) communicate an understanding that all digital content has owners and explain the importance of respecting others' belongings as they apply to digital content and information.
- (9) Digital citizenship--privacy, safety, and security. The student practices safe, legal, and ethical digital behaviors to become a socially responsible digital citizen. The student is expected to:
 - (A) demonstrate account safety, including creating a strong password and logging off accounts and devices;
 - (B) compare and contrast private and public information and discuss what is safe to be shared online and with whom; and
 - (C) discuss cyberbullying and identify examples.
- (10) Practical technology concepts—skills and tools. The student demonstrates knowledge and appropriate use of technology systems, concepts, and operations. The student is expected to:
 - (A) select and use a variety of applications, devices, and online learning environments to create and share content;
 - (B) identify, compare, and describe the function of basic computer hardware, including a variety of input and output devices, and software applications using accurate terminology;
 - (C) operate a variety of developmentally appropriate digital tools and resources to perform software application functions such as reviewing digital artifacts and designing solutions to problems;
 - (D) practice ergonomically correct keyboarding techniques and developmentally appropriate hand and body positions; and
 - (E) identify, locate, and practice using keys on the keyboard, including secondary actions of different keys such as "@," "#," "\$," and "?".

August 2024 Update Page 7 of 16

Source: The provisions of this §126.3 adopted to be effective August 7, 2022, 47 TexReg 4518.

§126.8. Technology Applications, Grade 3, Adopted 2022.

(a) Implementation. The provisions of this section shall be implemented by school districts beginning with the 2024-2025 school year.

- (1) No later than August 1, 2024, the commissioner of education shall determine whether instructional materials funding has been made available to Texas public schools for materials that cover the essential knowledge and skills identified in this section.
- (2) If the commissioner makes the determination that instructional materials funding has been made available this section shall be implemented beginning with the 2024-2025 school year and apply to the 2024-2025 and subsequent school years.
- (3) If the commissioner does not make the determination that instructional materials funding has been made available under this subsection, the commissioner shall determine no later than August 1 of each subsequent school year whether instructional materials funding has been made available. If the commissioner determines that instructional materials funding has been made available, the commissioner shall notify the State Board of Education and school districts that this section shall be implemented for the following school year.

(b) Introduction.

- (1) Technology includes data communication, data processing, and the devices used for these tasks locally and across networks. Learning to apply these technologies motivates students to develop critical-thinking skills, higher-order thinking, and innovative problem solving. Technology applications incorporates the study of digital tools, devices, communication, and programming to empower students to apply current and emerging technologies in their careers, their education, and beyond.
- (2) The technology applications Texas Essential Knowledge and Skills (TEKS) consist of five strands that prepare students to be literate in technology applications by Grade 8: computational thinking; creativity and innovation; data literacy, management, and representation; digital citizenship; and practical technology concepts. Communication and collaboration skills are embedded across the strands.
 - (A) Computational thinking. Students break down the problem-solving process into four steps: decomposition, pattern recognition, abstraction, and algorithms.
 - (B) Creativity and innovation. Students use innovative design processes to develop solutions to problems. Students plan a solution, create the solution, test the solution, iterate, and debug the solution as needed, and implement a completely new and innovative product.
 - (C) Data literacy, management, and representation. Students collect, organize, manage, analyze, and publish various types of data for an audience.
 - (D) Digital citizenship. Students practice the ethical and effective application of technology and develop an understanding of cybersecurity and the impact of a digital footprint to become safe, productive, and respectful digital citizens.
 - (E) Practical technology concepts. Students build their knowledge of software applications and hardware focusing on keyboarding and use of applications and tools. Students also build their knowledge and use of technology systems, including integrating the use of multiple applications.
- (3) The technology applications TEKS can be integrated into all content areas and can support standalone courses. Districts have the flexibility of offering technology applications in a variety of settings, including through a stand-alone course or by integrating the technology applications standards in the essential knowledge and skills for one or more courses or subject areas.
- (4) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

August 2024 Update Page 8 of 16

- (c) Knowledge and skills.
 - (1) Computational thinking--foundations. The student explores the core concepts of computational thinking, a set of problem-solving processes that involve decomposition, pattern recognition, abstraction, and algorithms. The student is expected to:
 - (A) decompose story problems into smaller, manageable subproblems and identify a solution to the problems;
 - (B) identify simple and complex patterns in story problems;
 - (C) develop a plan collaboratively and document a plan that outlines specific steps taken to complete a project; and
 - (D) debug simple algorithms (set of procedures) by identifying and removing errors.
 - (2) Computational thinking--applications. The student applies the fundamentals of computer science. The student is expected to:
 - (A) use variables within a program to store data; and
 - (B) use a design process to create programs that include sequences, loops, and conditionals to express ideas or address a problem.
 - (3) Creativity and innovation--innovative design process. The student takes an active role in learning by using a design process to solve authentic problems for a local or global audience, using a variety of technologies. The student is expected to:
 - (A) explain the importance of and demonstrate personal skills and behaviors, including metacognition, effective communication, following directions, and mental agility, needed to implement the design process successfully; and
 - (B) apply an appropriate design process using components such as peer and teacher feedback to create new and useful solutions to authentic problems.
 - (4) Creativity and innovation--emerging technologies. The student demonstrates an understanding that technology is dynamic and impacts different communities. The student is expected to define emerging technologies.
 - (5) Data literacy, management, and representation--collect data. The student uses digital strategies to collect and identify data. The student is expected to:
 - (A) identify and collect numerical data such as the price of goods or temperature; and
 - (B) use various search strategies with adult assistance.
 - (6) Data literacy, management, and representation--organize, manage, and analyze data. The student uses data to answer questions. The student is expected to analyze data in graphs to identify and discuss trends and inferences.
 - (7) Data literacy, management, and representation--communicate and publish results. The student communicates data through the use of digital tools to inform an audience. The student is expected to use digital tools to communicate and publish results to inform an intended audience.
 - (8) Digital citizenship--social interactions. The student understands different styles of digital communication and that a student's actions online can have a long-term impact. The student is expected to:
 - (A) define digital footprint;
 - (B) define digital etiquette; and
 - (C) define digital collaboration.
 - (9) Digital citizenship--ethics and laws. The student recognizes and practices responsible, legal, and ethical behavior while using digital tools and resources. The student is expected to:

August 2024 Update Page 9 of 16

(A) demonstrate adherence to local acceptable use policy (AUP) that reflects positive social behavior in the digital environment;

- (B) communicate the purpose of copyright law and identify appropriate and inappropriate uses of digital content and information; and
- (C) identify the required elements of citations for digital forms of media.
- (10) Digital citizenship--privacy, safety, and security. The student practices safe, legal, and ethical digital behaviors to become a socially responsible digital citizen. The student is expected to:
 - (A) demonstrate account safety, including creating a strong password and logging off accounts and devices;
 - (B) describe ways to employ safe practices such as protecting digital identity and avoid online dangers such as accessing unsafe websites or clicking on suspicious links; and
 - (C) discuss cyberbullying and explain how to respond to cyberbullying.
- (11) Practical technology concepts--processes. The student engages with technology systems, concepts, and operations. The student is expected to:
 - (A) compare and contrast applications such as word processor, spreadsheet, and presentation tools for relevance to an assigned task; and
 - (B) perform software application functions such as inserting or deleting text, inserting images, and formatting page layout and margins.
- (12) Practical technology concepts--skills and tools. The student selects appropriate methods or techniques for an assigned task and identifies and solves simple hardware and software problems using common troubleshooting strategies. The student is expected to:
 - (A) communicate an understanding of terminology related to operating systems and network systems such as internet, intranet, wireless network, short-range wireless technology, and learning management systems;
 - (B) identify where and how to save files such as using appropriate naming conventions and effective file management strategies;
 - (C) demonstrate proper touch keyboarding techniques with accuracy and ergonomic strategies such as correct hand and body positions;
 - (D) identify and practice using keyboard or other input device shortcuts for actions such as copy, paste, undo, or closing windows; and
 - (E) identify minor technical problems with hardware and software and solve the issues with assistance.

Source: The provisions of this §126.8 adopted to be effective August 7, 2022, 47 TexReg 4518.

§126.9. Technology Applications, Grade 4, Adopted 2022.

- (a) Implementation. The provisions of this section shall be implemented by school districts beginning with the 2024-2025 school year.
 - (1) No later than August 1, 2024, the commissioner of education shall determine whether instructional materials funding has been made available to Texas public schools for materials that cover the essential knowledge and skills identified in this section.
 - (2) If the commissioner makes the determination that instructional materials funding has been made available this section shall be implemented beginning with the 2024-2025 school year and apply to the 2024-2025 and subsequent school years.
 - (3) If the commissioner does not make the determination that instructional materials funding has been made available under this subsection, the commissioner shall determine no later than August 1 of

August 2024 Update Page 10 of 16

each subsequent school year whether instructional materials funding has been made available. If the commissioner determines that instructional materials funding has been made available, the commissioner shall notify the State Board of Education and school districts that this section shall be implemented for the following school year.

(b) Introduction.

- (1) Technology includes data communication, data processing, and the devices used for these tasks locally and across networks. Learning to apply these technologies motivates students to develop critical-thinking skills, higher-order thinking, and innovative problem solving. Technology applications incorporates the study of digital tools, devices, communication, and programming to empower students to apply current and emerging technologies in their careers, their education, and beyond.
- (2) The technology applications Texas Essential Knowledge and Skills (TEKS) consist of five strands that prepare students to be literate in technology applications by Grade 8: computational thinking; creativity and innovation; data literacy, management, and representation; digital citizenship; and practical technology concepts. Communication and collaboration skills are embedded across the strands.
 - (A) Computational thinking. Students break down the problem-solving process into four steps: decomposition, pattern recognition, abstraction, and algorithms.
 - (B) Creativity and innovation. Students use innovative design processes to develop solutions to problems. Students plan a solution, create the solution, test the solution, iterate, and debug the solution as needed, and implement a completely new and innovative product.
 - (C) Data literacy, management, and representation. Students collect, organize, manage, analyze, and publish various types of data for an audience.
 - (D) Digital citizenship. Students practice the ethical and effective application of technology and develop an understanding of cybersecurity and the impact of a digital footprint to become safe, productive, and respectful digital citizens.
 - (E) Practical technology concepts. Students build their knowledge of software applications and hardware focusing on keyboarding and use of applications and tools. Students also build their knowledge and use of technology systems, including integrating the use of multiple applications.
- (3) The technology applications TEKS can be integrated into all content areas and can support standalone courses. Districts have the flexibility of offering technology applications in a variety of settings, including through a stand-alone course or by integrating the technology applications standards in the essential knowledge and skills for one or more courses or subject areas.
- (4) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

(c) Knowledge and skills.

- (1) Computational thinking--foundations. The student explores the core concepts of computational thinking, a set of problem-solving processes that involve decomposition, pattern recognition, abstraction, and algorithms. The student is expected to:
 - (A) decompose story problems into smaller, manageable subproblems and discuss and document various solutions to the problems;
 - (B) identify patterns in story problems and make predictions based on the pattern;
 - (C) communicate design plans and solutions using a variety of options; and
 - (D) debug algorithms (set of procedures) by identifying and removing errors.
- (2) Computational thinking--applications. The student applies the fundamentals of computer science. The student is expected to:

August 2024 Update Page 11 of 16

- (A) use variables within a program to modify data; and
- (B) use a design process to create programs that include sequences, loops, and conditionals to express ideas or address a problem.
- (3) Creativity and innovation--innovative design process. The student takes an active role in learning by using a design process to solve authentic problems for a local or global audience, using a variety of technologies. The student is expected to:
 - (A) explain the importance of and demonstrate personal skills and behaviors, including problem solving and questioning, effective communication, following directions, mental agility, and metacognition, that are needed to implement a design process successfully; and
 - (B) apply an appropriate design process that includes components to improve processes and refine original products for authentic problems.
- (4) Creativity and innovation--emerging technologies. The student demonstrates an understanding that technology is dynamic and impacts different communities. The student is expected to identify examples of emerging technologies.
- (5) Data literacy, management, and representation--collect data. The student uses digital strategies to collect and identify data. The student is expected to:
 - (A) classify numerical and non-numerical data; and
 - (B) identify and collect data by using various search strategies, including two or more keywords within specific parameters.
- (6) Data literacy, management, and representation--organize, manage, and analyze data. The student uses data to answer questions. The student is expected to use digital tools to transform and make inferences about data to answer a question.
- (7) Data literacy, management, and representation--communicate and publish results. The student communicates data through the use of digital tools to inform an audience. The student is expected to use digital tools to communicate results of an inquiry to inform an intended audience.
- (8) Digital citizenship--social interactions. The student understands different styles of digital communication and that a student's actions online can have a long-term impact. The student is expected to:
 - (A) describe how information retained online creates a permanent digital footprint;
 - (B) describe appropriate digital etiquette for various forms of digital communication such as text, email, and online chat; and
 - (C) demonstrate appropriate digital etiquette for various forms of digital collaboration such as shared documents, video conferencing, and other platforms.
- (9) Digital citizenship--ethics and laws. The student recognizes and practices responsible, legal, and ethical behavior while using digital tools and resources. The student is expected to:
 - (A) demonstrate adherence to local acceptable use policy (AUP) and explain the importance of responsible and ethical technology use;
 - (B) describe the rights and responsibilities of a creator, define copyright law, and explain how copyright law applies to creative work; and
 - (C) create citations for digital forms of media with assistance.
- (10) Digital citizenship--privacy, safety, and security. The student practices safe, legal, and ethical digital behaviors to become a socially responsible digital citizen. The student is expected to:
 - (A) demonstrate account safety, including creating a strong password and logging off devices, and explain the importance of these practices;

August 2024 Update Page 12 of 16

(B) identify and discuss types of data collection tools such as cookies, pop-ups, smart devices, and unsecured networks and explain why it is important to maintain digital privacy; and

- (C) discuss and explain how to respond to cyberbullying, including advocating for self and others.
- (11) Practical technology concepts--processes. The student engages with technology systems, concepts, and operations. The student is expected to:
 - (A) evaluate and choose applications for relevance to an assigned task; and
 - (B) perform software application functions such as outline options, bulleting, and numbering lists, and perform editing functions such as finding and replacing.
- (12) Practical technology concepts--skills and tools. The student selects appropriate methods or techniques for an assigned task and identifies and solves simple hardware and software problems using common troubleshooting strategies. The student is expected to:
 - (A) communicate an understanding of terminology related to virtual systems such as video conferencing, augmented reality, and virtual reality environments;
 - (B) evaluate where and how to save, including the use of appropriate naming conventions and effective file management strategies and folder structures;
 - (C) demonstrate proper touch keyboarding techniques with speed and accuracy and ergonomic strategies such as correct hand and body positions;
 - (D) identify and practice using cross-curricular symbols or other input device shortcuts on a keyboard; and
 - (E) use troubleshooting strategies to solve minor technical problems with hardware and software such as restarting software or rebooting hardware.

Source: The provisions of this §126.9 adopted to be effective August 7, 2022, 47 TexReg 4518.

§126.10. Technology Applications, Grade 5, Adopted 2022.

- (a) Implementation. The provisions of this section shall be implemented by school districts beginning with the 2024-2025 school year.
 - (1) No later than August 1, 2024, the commissioner of education shall determine whether instructional materials funding has been made available to Texas public schools for materials that cover the essential knowledge and skills identified in this section.
 - (2) If the commissioner makes the determination that instructional materials funding has been made available this section shall be implemented beginning with the 2024-2025 school year and apply to the 2024-2025 and subsequent school years.
 - (3) If the commissioner does not make the determination that instructional materials funding has been made available under this subsection, the commissioner shall determine no later than August 1 of each subsequent school year whether instructional materials funding has been made available. If the commissioner determines that instructional materials funding has been made available, the commissioner shall notify the State Board of Education and school districts that this section shall be implemented for the following school year.

(b) Introduction.

(1) Technology includes data communication, data processing, and the devices used for these tasks locally and across networks. Learning to apply these technologies motivates students to develop critical-thinking skills, higher-order thinking, and innovative problem solving. Technology applications incorporates the study of digital tools, devices, communication, and programming to empower students to apply current and emerging technologies in their careers, their education, and beyond.

August 2024 Update Page 13 of 16

(2) The technology applications Texas Essential Knowledge and Skills (TEKS) consist of five strands that prepare students to be literate in technology applications by Grade 8: computational thinking; creativity and innovation; data literacy, management, and representation; digital citizenship; and practical technology concepts. Communication and collaboration skills are embedded across the strands.

- (A) Computational thinking. Students break down the problem-solving process into four steps: decomposition, pattern recognition, abstraction, and algorithms.
- (B) Creativity and innovation. Students use innovative design processes to develop solutions to problems. Students plan a solution, create the solution, test the solution, iterate, and debug the solution as needed, and implement a completely new and innovative product.
- (C) Data literacy, management, and representation. Students collect, organize, manage, analyze, and publish various types of data for an audience.
- (D) Digital citizenship. Students practice the ethical and effective application of technology and develop an understanding of cybersecurity and the impact of a digital footprint to become safe, productive, and respectful digital citizens.
- (E) Practical technology concepts. Students build their knowledge of software applications and hardware focusing on keyboarding and use of applications and tools. Students also build their knowledge and use of technology systems, including integrating the use of multiple applications.
- (3) The technology applications TEKS can be integrated into all content areas and can support standalone courses. Districts have the flexibility of offering technology applications in a variety of settings, including through a stand-alone course or by integrating the technology applications standards in the essential knowledge and skills for one or more courses or subject areas.
- (4) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.
- (c) Knowledge and skills.
 - (1) Computational thinking--foundations. The student explores the core concepts of computational thinking, a set of problem-solving processes that involve decomposition, pattern recognition, abstraction, and algorithms. The student is expected to:
 - (A) decompose a real-world problem into smaller, manageable subproblems using graphic organizers such as learning maps, concept maps, or other representations of data;
 - (B) identify patterns in real-world problems and make predictions based on the pattern;
 - (C) design and create an outline collaboratively that documents a problem, possible solutions, and an expected timeline for the development of a coded solution; and
 - (D) compare multiple algorithms for the same task and determine which algorithm is the most appropriate for that task.
 - (2) Computational thinking--applications. The student applies the fundamentals of computer science. The student is expected to:
 - (A) use variables within a program to store and modify data;
 - (B) use a design process to create block-based programs that include sequences, loops, conditionals, and events to solve an everyday problem; and
 - (C) analyze a code and how the code may be reused to develop new or improved programs.
 - (3) Creativity and innovation--innovative design process. The student takes an active role in learning by using a design process to solve authentic problems for a local or global audience, using a variety of technologies. The student is expected to:

August 2024 Update Page 14 of 16

(A) explain the importance of and demonstrate personal skills and behaviors, including persistence, effective communication, following directions, mental agility, metacognition, problem solving and questioning, that are needed to implement a design process successfully; and

- (B) apply an appropriate design process that includes components to generate multiple solutions for an authentic problem and develop original products.
- (4) Creativity and innovation--emerging technologies. The student demonstrates an understanding that technology is dynamic and impacts different communities. The student is expected to predict how emerging technologies may impact different communities.
- (5) Data literacy, management, and representation--collect data. The student uses digital strategies to collect and identify data. The student is expected to:
 - (A) identify and collect quantitative and qualitative data with digital tools; and
 - (B) identify keyword(s), Boolean operators, and limiters within provided search strategies.
- (6) Data literacy, management, and representation--organize, manage, and analyze data. The student uses data to answer questions. The student is expected to use digital tools to analyze and transform data and make inferences to answer questions.
- (7) Data literacy, management, and representation--communicate and publish results. The student communicates data through the use of digital tools to inform an audience. The student is expected to use digital tools to communicate and display data using appropriate visualization to inform an intended audience.
- (8) Digital citizenship--social interactions. The student understands different styles of digital communication and that a student's actions online can have a long-term impact. The student is expected to:
 - (A) identify the components of a digital footprint such as online activity, game use, or social media platforms;
 - (B) describe appropriate digital etiquette for addressing different audiences such as peers, teachers, and other adults; and
 - (C) apply appropriate digital etiquette for collaborating with different audiences such as peers, teachers, and other adults.
- (9) Digital citizenship--ethics and laws. The student recognizes and practices responsible, legal, and ethical behavior while using digital tools and resources. The student is expected to:
 - (A) demonstrate adherence to local acceptable use policy (AUP) and explain the importance of responsible and ethical technology use;
 - (B) describe the purpose of copyright law and the possible consequences for inappropriate use of digital content; and
 - (C) create citations for digital forms of media with assistance.
- (10) Digital citizenship--privacy, safety, and security. The student practices safe, legal, and ethical digital behaviors to become a socially responsible digital citizen. The student is expected to:
 - (A) discuss cybersecurity strategies such as using a secured internet connection to protect digital information;
 - (B) discuss how data collection technology is used to track online navigation and identify strategies to maintain digital privacy and security; and
 - (C) discuss and identify how interactions can escalate online and explain ways to stand up to cyberbullying, including advocating for self and others.

August 2024 Update Page 15 of 16

(11) Practical technology concepts--processes. The student engages with technology systems, concepts, and operations. The student is expected to:

- (A) identify file types for text, graphics, and multimedia files; and
- (B) perform software application functions, including inserting or deleting text and images and formatting tools or options.
- (12) Practical technology concepts--skills and tools. The student selects appropriate methods or techniques for an assigned task and identifies and solves simple hardware and software problems using common troubleshooting strategies. The student is expected to:
 - (A) describe and evaluate operating systems, learning management systems, virtual systems, and network systems such as internet, intranet, wireless network, and short-range wireless technology;
 - (B) organize files using appropriate naming conventions and folder structures;
 - (C) demonstrate proper touch keyboarding techniques with increasing speed and accuracy and ergonomic strategies such as correct hand and body positions;
 - (D) demonstrate keyboard or other input device shortcuts with fluency; and
 - (E) use help sources to research application features and solve software issues.

Source: The provisions of this §126.10 adopted to be effective August 7, 2022, 47 TexReg 4518.

August 2024 Update Page 16 of 16