The Implementation of House Bill 22

Collaborating to Build a Better accountability system

—— The School Progress Domain ——_

School Progress: Growth

School Progress: Two Aspects to Progress

Part A: Student Growth

Part B: Relative Performance

School Progress: Two Aspects to Progress

Part A: Student Growth

Part B: Relative Performance

STAAR: Test Inclusion Methodology

- Includes all tests (STAAR with a nd without accommodations and STAAR Altemate 2) combined
- Combines reading and mathematics
- Uses STAAR Progress Measure
- Includes ELs (except in their first year in US schools)
- Uses same STAAR Progress Mea sure for Els and non-Els
- Because the first STAAR tests a re given in third grade, we can't assess growth using the STAAR Progress Measure until fourth grade.
- In high school, there are limitations to measuring growth with STAAR. It can only possibly be done for 9th graders who take Algebra I, and then only for 9th and 10th graders taking English I or English II. At this point, only Relative Performance will be a nalyzed in high school.

Student Growth: Measuring Advancement

Masters

Student Growth: Percentage of Students Gaining

CurentYear

Student Growth: Percentage of Students G aining

CurentYear

	Does Not Meet Grade Level	Approaches Grade Level	Meets Grade Level	Masters Grade Level
Does Not Meet Grade Level	Did not meet $=\mathbf{0} \mathbf{p t s}$	Met/Exceeded Growth Measure $=1$ pt Did not meet .5 pts	1 pt	1 pt
Approaches Grade Level	Did not meet $=\mathbf{0} \mathbf{p t s}$	Met/Exceeded Growth Measure $=1$ pt Did not meet .5 pts	1 pt	1 pt
Meets Grade Level	0 pts	0 pts	1 pt	1 pt
Masters Grade Level	0 pts	0 pts	0 pts	1 pt

No Points

- Does Not Meet to Does Not Meet (without meeting growth expectations)
- Approachesto Does Not Meet (without meeting growth expectations)
- Meetsto Does Not Meet
- Meetsto

Approaches

- Mastersto Does Not Meet
- Mastersto Approaches
- Masters to Meets

Student Growth: Percentage of Students Gaining

CumentYear

Half Point

- Does Not Meet to Approaches (without meeting growth expectations)
- Approachesto Approaches (without meeting growth expectations)

Student Growth: Percenta ge of Students Gaining

CurentYear

	Does Not Meet Grade Level	Approaches Grade Level	Meets Grade Level	Masters Grade Level
Does Not Meet Grade Level	Met/Exceeded Growth Measure $=\mathbf{1 p t}$	Met/Exceeded Growth Measure $=1$ pt	1 pt	1 pt
Approaches Grade Level	Met/Exceeded Growth Measure $=1$ pt Did not meet $=0 \mathrm{pts}$	Met/Exceeded Growth Measure $=\mathbf{1}$ pt \qquad	1 pt	1 pt
Meets Grade Level	0 pts	0 pts	1 pt	1 pt
Masters Grade Level	0 pts	0 pts	0 pts	1 pt

One Point

- Does Not Meet to Approaches (meeting/exceeding growth expectations)
- Approachesto

Approaches
(meeting/exceeding growth expectations)

- Does Not Meet to Meets
- Does Not Meet to Masters
- Approachesto Meets
- Approachesto Masters
- Meets to Meets
- Meets to Masters
- Masters to Masters
- Does Not Meet to Does Not Meet (meeting/exceeding growth expectations)
- Approachesto

Does Not Meet (meeting/exceeding growth expectations)

Student Growth: Sample C a lculation

One Hundred Students

- Each with reading and mathematics results for last year and this year
- Denominator $=200$ STAAR Progress Measures

Student Growth: Sample C a lculation

No Points

- Does Not Meet to Does Not Meet
(without meeting growth expectations)
- Approac hes to Does Not Meet
(without meeting growth expectations)
- Masters to Meets

Previous Year Current Year Count of Tests

20
$+$

15
$+$

14
49

Student Growth: Sample C a lculation

Half Point

- Does Not Meet to Approaches (without meeting growth expectations)
- Approaches to Approaches
(without meeting growth expectations)

Student Growth: Sample C a lculation

One Point

- Does Not Meetto Does Not Meet (meeting/exceeding growth expectations)
- Approac hes to Does Not Meet (meeting/exceeding growth expectations)*
- Approaches to Approaches (meeting/exceeding growth expectations)

*Very rare but statistically possible

Student Growth: Sample C a lculation

One Point

- Meets to Meets
- Meets to Masters
- Masters to Masters

PreviousYear Current Year Count of Tests

33
$+$
32
$+$
17
82

Student Growth: Sample C a lculation

In this case, we loosely conclude that 71% of students have gained a year academic ally. Tec hnically, however, this is the percentage of tests taken, with some adjustment formainta ining proficiency.

School Progress Domain: Feedback Opportunities

- New approach to growth
- Additional ways to measure growth in high school
- Percentage of students who need to grow to constitute
- Excellent performance
- Minimally acceptable performance

Part A Scores: Frequenc y by Campus Type				
	Eementary $(4,219)$	Middle School $(1,653)$	$\begin{aligned} & \text { K-12 } \\ & (334) \end{aligned}$	District $(1,203)$
Quantile	PartA Score (based on modeling data from 2017 accountability)			
100\% (Max)	100	96	100	100
99\%	88	85	87	86
95\%	84	81	83	79
90\%	82	78	80	77
75\% (Q3)	78	75	76	73
50\% (Med)	73	70	70	70
25\% (Q1)	68	65	64	66
10\%	63	61	59	62
5\%	59	59	56	59
1\%	52	54	45	49
0\% (Min)	34	41	0	24

Common Questions: School Progress Domain, Part A

Q: Is there no additional credit for meeting or exceeding growth at the Meets and Masters levels?
A: Students at Meets or Masters a re given the same one point asstudents who show growth at Does Not Meet and Approaches.
Q: Slide 14 shows an example of a student who falls from Approaches Grade Level one yearto Does Not Meet the next year a nd still meets STAAR Prog ress Measure expectations. Can this really happen?
A: It's very rare, but, sta tistic ally, it's possible when a student skipsa grade. Our modelling with 2017 data produced ten such instances in the entire state.

Q: Why are high schools only scored on relative performance? Is there no growth measure for high school?
A: The relatively few STAAR Progress Mea sures for high school make them an unreliable measure of a high school's progress with students. But the STAAR Progress Mea sure sc ores will be available on TAPR.

School Progress: Two Aspectsto Progress

Part A: Student Growth
Part B: Relative Performance

Relative Performance: Measuring School Progress

Higher Levels of Student
Achievement
Student Achievement
Doma in Score for All Students
Higher Rates of Economically
Disadvantaged Students

Relative Performance: Measuring School Progress

Higher Levels of Student
Achievement

Higher Rates of Economically
Disadvantaged Students

Relative Performance: Measuring School Progress

Higher Levels of Student
Achievement

Relative Performance: Measuring School Progress

Higher Levels of Student
Achievement

Relative Performance: Measuring School Progress

Higher Levels of Student
Achievement

Higher Rates of
Economically
Disadvantaged

Common Questions: School Progress Doma in

Q: Does the Student Achievement domain score (y-axis in relative performance) include CCMR and graduation rates?
A: Yes, forschools that have that data.

Q: House Bill 22 specific ally says that the method used to evaluate performance should provide for the mathematical possibility that all districts a nd ca mpuses rec eive an A, but this looks like a forced distribution that guarantees a set percentage of schools will get Ds and Fs.
A: Once the cut points are set using 2016-17 accounta bility data, the cut points will stay fixed for five years. That way a ny district or campus will be able to eam an A.

Relative Performance: Measuring School Progress

- Scatter plot of each district and campus (by campustype) comparing
- Student Achievement domain score
- Percentage of students who are economic ally disadvantaged
- Trendline showing average relationships
- Sliding cut points for campuses and districts based on
- Student Achievement domain score
- Percentage of students who are economic ally disad vantaged
- Cut points for each grade based on bands below and above the average line
- Separate cut points
- Elementary Schools
- Middle Schools
- High Schools/K-12
- AEAs
- Cut points based on slope-intercept form
- Based on 2016-17 performance
- Intended to stay fixed forfive years
- Cut points will be known before ratings release

Relative Performance: Sample Calculation

- $y=m x+b$
- y is the predicted Student Achievement domain score.
- x is the percentage of students who are economic ally disadvantaged.
- $m_{\text {is }}$ the slope of the trendline.
- b is the distance from the trend line (what decides the grade); it is based on average variance from trend line.
- Sample Middle School
- 94.4\%economically disad vantaged (x)
- $y=-.15666(x)+45.789$
- $y=-.15666(94.4)+45.789$
- $y=-14.79+45.789$
- Predicted Student Achievement domain score $(y)=31$
- Actual Student Achievement domain sc ore: 25
" Score in relative performance: D

School Progress Domaiin: Feedback Opportunities

- New approach to growth
- Additional ways to measure growth in high school
- Percentage of students who need to grow to constitute
- Excellent performance
- Minimally acceptable performance
- Combining two parts
- Best of
- Weighted average
- Average
- For Part B, what is the right cut points for
- Excellent performance
- Unacceptable performance

Questions and Feedback

Feedback

- Survey link to come by email
- feedbackAF@tea.texas.gov

Resources

- http://tea.texas.gov/A-F
- http://tea.texas.gov/accountability
- performance.reporting@tea.texas.gov
- (512) 463-9704

