Breakout Instrument

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space S	Science, Beginning with Schoo	ol Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
aken concurrently, and three ur n Grade 11.			course. Required prerequisites: three units of ourse is recommended for students in Grade	
(b) Introduction.				
(1) Earth and Space Science (E Earth's system in space and time		igned to build on students' prior	scientific and academic knowledge and skills	to develop understanding of
ohenomena, as well as the know	vledge generated through this proce	ess." This vast body of changing	dence to construct testable explanations and and increasing knowledge is described by p cause they deal with phenomena that are no	hysical, mathematical, and
	nquiry is the planned and deliberate n should be appropriate to the ques		ld. Scientific methods of investigation can be	experimental, descriptive, or
	cientific decision making is a way o thical and social decisions that invo		natural world. Students should be able to dia	stinguish between scientific
properties of Earth and planetar Earth's subsystems over billions (B) Solid Earth. The geosphere move between subsystems at va resources as well as geologic ha (C) Fluid Earth. The fluid Earth o complex biogeochemical and ge	y systems within a chronological fra of years. is a collection of complex, interactin arious rates driven by the uneven di azards that impact society. consists of the hydrosphere, cryospl	amework. The origin and distributing, dynamic subsystems linking E istribution of thermal energy. The here, and atmosphere subsyster n is the thermal energy reservoir	gies continue to further our understanding of tion of resources that sustain life on Earth are Earth's interior to its surface. The geosphere ese dynamic processes are responsible for the ms. These subsystems interact with the biosp for surface processes and, through interact in Earth.	e the result of interactions among is composed of materials that ne origin and distribution of ohere and geosphere resulting in
 (A) Systems. A system is a collection of the second stellar system. Characterized and stellar system. Characterized and stellar system. Characterized and stellar system. Characterized and stellar system of (B) Energy. The uneven distribut subsystems. These interactions circulation. (C) Relevance. The interacting of the second stellar system of the second stellar system. The second stellar system of the second stellar system. The second stellar system of the second stellar system. 	ction of interacting physical, chemic sed of interdependent and interactin ange and constancy occur in Earth anges over time. tion of Earth's internal and external are responsible for the movement of components of Earth's system chan- nes, meteorite impacts, and climate system. Examples include climate of the understood to make wise decisio	cal, and biological processes that ing subsystems of the geosphere is system and can be observed, thermal energy is the driving for of matter within and between the ige by both natural and human-in e change. Some human-influence change, soil erosion, air and wate ons concerning the use of the lan	nes: systems, energy, and relevance. tt involves the flow of matter and energy on c e, hydrosphere, atmosphere, cryosphere, and measured as patterns and cycles, and desci- ce for complex, dynamic, and continuous inte subsystems resulting in, for example, plate influenced processes. Natural processes inclu- ed processes such as pollution and nonsusta er pollution, and biodiversity loss. The time s d, water, air, and natural resources. Proper s	d biosphere within a larger ribed or presented in models used eractions and cycles in Earth's motions and ocean-atmosphere ude hazards such as flooding, ainable use of Earth's natural cale of these changes and their
		iu uliministi uetimentai impacts t	o individuals and society.	

Texas Education Agency

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(1) Scientific processes. The student conducts laboratory and field investigations, for at least 40% of instructional time, using safe, environmentally appropriate, and ethical practices. The student is expected to:	(A) demonstrate safe practices during laboratory and field investigations	(i) demonstrate safe practices during laboratory investigations		
(1) Scientific processes. The student conducts laboratory and field investigations, for at least 40% of instructional time, using safe, environmentally appropriate, and ethical practices. The student is expected to:	(A) demonstrate safe practices during laboratory and field investigations	(ii) demonstrate safe practices during field investigations		
(1) Scientific processes. The student conducts laboratory and field investigations, for at least 40% of instructional time, using safe, environmentally appropriate, and ethical practices. The student is expected to:	(B) demonstrate an understanding of the use and conservation of resources and the proper disposal or recycling of materials	(i) demonstrate an understanding of the use of resources		
(1) Scientific processes. The student conducts laboratory and field investigations, for at least 40% of instructional time, using safe, environmentally appropriate, and ethical practices. The student is expected to:	(B) demonstrate an understanding of the use and conservation of resources and the proper disposal or recycling of materials	 (ii) demonstrate an understanding of the conservation of resources 		
(1) Scientific processes. The student conducts laboratory and field investigations, for at least 40% of instructional time, using safe, environmentally appropriate, and ethical practices. The student is expected to:	use and conservation of resources and the proper disposal or recycling of materials	(iii) demonstrate the proper disposal or recycling of materials		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
	(C) use the school's technology and	(i) use the school's technology systems in a		
conducts laboratory and field	information systems in a wise and ethical	wise manner		
investigations, for at least 40% of	manner			
instructional time, using safe,				
environmentally appropriate, and ethical				
practices. The student is expected to:				
(1) Scientific processes. The student	(C) use the school's technology and	(ii) use the school's information systems in a		
conducts laboratory and field	information systems in a wise and ethical	wise manner		
investigations, for at least 40% of	manner			
instructional time, using safe,				
environmentally appropriate, and ethical				
practices. The student is expected to:				
(1) Scientific processes. The student	(C) use the school's technology and	(iii) use the school's technology systems in		
conducts laboratory and field	information systems in a wise and ethical	a[n] ethical manner		
investigations, for at least 40% of	manner			
instructional time, using safe,				
environmentally appropriate, and ethical				
practices. The student is expected to:				
(1) Scientific processes. The student	(C) use the school's technology and	(iv) use the school's information systems in		
conducts laboratory and field	information systems in a wise and ethical	a[n] ethical manner		
investigations, for at least 40% of	manner			
instructional time, using safe,				
environmentally appropriate, and ethical				
practices. The student is expected to:				
	(A) know the definition of science and	(i) know the definition of science		
uses scientific methods during laboratory				
and field investigations. The student is	specified in subsection (b)(2) of this			
expected to:	section			
	(A) know the definition of science and	(ii) understand that [science] has limitations,		
uses scientific methods during laboratory		as specified in subsection (b)(2) [above]		
-	specified in subsection (b)(2) of this			
expected to:	section			

Subject	Chapter 112. Science			
Course Title		Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(B) know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power which have been tested over a wide variety of conditions are incorporated into theories	(i) know that scientific hypotheses are tentative statements that must be capable of being supported or not supported by observational evidence		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(B) know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power which have been tested over a wide variety of conditions are incorporated into theories	(ii) know that scientific hypotheses are testable statements that must be capable of being supported or not supported by observational evidence		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(B) know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power which have been tested over a wide variety of conditions are incorporated into theories	(iii) [know that] hypotheses of durable explanatory power which have been tested over a wide variety of conditions are incorporated into theories		

Subject	Chapter 112. Science			
Course Title		Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(C) know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well-established and highly- reliable explanations, but may be subject to change as new areas of science and new technologies are developed	(i) know that scientific theories are based on natural and physical phenomena		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(C) know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well-established and highly- reliable explanations, but may be subject to change as new areas of science and new technologies are developed	(ii) know that scientific theories are capable of being tested by multiple independent researchers		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(C) know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well-established and highly- reliable explanations, but may be subject to change as new areas of science and new technologies are developed	(iv) [know that], unlike hypotheses, scientific theories are well-established explanations		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(C) know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well-established and highly- reliable explanations, but may be subject to change as new areas of science and new technologies are developed			
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(C) know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well-established and highly- reliable explanations, but may be subject to change as new areas of science and new technologies are developed			
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(C) know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well-established and highly- reliable explanations, but may be subject to change as new areas of science and new technologies are developed			
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(D) distinguish between scientific hypotheses and scientific theories			

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (0	One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(E) demonstrate the use of course equipment, techniques, and procedures, including computers and web-based computer applications	(i) demonstrate the use of course equipment, including computers		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(E) demonstrate the use of course equipment, techniques, and procedures, including computers and web-based computer applications	(ii) demonstrate the use of course techniques, including web-based computer applications		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(E) demonstrate the use of course equipment, techniques, and procedures, including computers and web-based computer applications	(iii) demonstrate the use of course procedures		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:		(i) use a wide variety of additional course apparatuses [and] equipment as appropriate		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(F) use a wide variety of additional course apparatuses, equipment, techniques, and procedures as appropriate such as satellite imagery and other remote sensing data, Geographic Information Systems (GIS), Global Positioning System (GPS), scientific probes, microscopes, telescopes, modern video and image libraries, weather stations, fossil and rock kits, bar magnets, coiled springs, wave simulators, tectonic plate models, and planetary globes	techniques as appropriate		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(F) use a wide variety of additional course apparatuses, equipment, techniques, and procedures as appropriate such as satellite imagery and other remote sensing data, Geographic Information Systems (GIS), Global Positioning System (GPS), scientific probes, microscopes, telescopes, modern video and image libraries, weather stations, fossil and rock kits, bar magnets, coiled springs, wave simulators, tectonic plate models, and planetary globes			
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is <u>expected</u> to:	inferences, and predict trends from data	(i) organize data		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	inferences, and predict trends from data	(ii) analyze data		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(G) organize, analyze, evaluate, make inferences, and predict trends from data	(iii) evaluate data		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(G) organize, analyze, evaluate, make inferences, and predict trends from data	(iv) make inferences from data		
 (2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to: 	(G) organize, analyze, evaluate, make inferences, and predict trends from data	(v) predict trends from data		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(H) use mathematical procedures such as algebra, statistics, scientific notation, and significant figures to analyze data using the International System (SI) units	(i) use mathematical procedures to analyze data using the International System (SI) units		
(2) Scientific processes. The student uses scientific methods during laboratory and field investigations. The student is expected to:	(I) communicate valid conclusions supported by data using several formats such as technical reports, lab reports, labeled drawings, graphic organizers, journals, presentations, and technical posters	(i) communicate valid conclusions supported by data using several formats		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(i) in all fields of science, analyze scientific explanations by using empirical evidence		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(ii) in all fields of science, analyze scientific explanations by using logical reasoning		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student			
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(iv) in all fields of science, analyze scientific explanations by using observational testing		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	explanations		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(vi) in all fields of science, evaluate scientific explanations by using empirical evidence		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(vii) in all fields of science, evaluate scientific explanations by using logical reasoning		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(viii) in all fields of science, evaluate scientific explanations by using experimental testing		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(ix) in all fields of science, evaluate scientific explanations by using observational testing		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	explanations		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student			
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(xii) in all fields of science, critique scientific explanations by using logical reasoning		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(xiii) in all fields of science, critique scientific explanations by using experimental testing		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(xiv) in all fields of science, critique scientific explanations by using observational testing		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (C	One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student	(xv) in all fields of science, critique scientific explanations, including examining all sides of scientific evidence of those scientific explanations		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(B) communicate and apply scientific information extracted from various sources such as current events, news reports, published journal articles, and marketing materials	(i) communicate scientific information extracted from various sources		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(B) communicate and apply scientific information extracted from various sources such as current events, news reports, published journal articles, and marketing materials	(ii) apply scientific information extracted from various sources		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:		(i) draw inferences based on data related to promotional materials for products		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(C) draw inferences based on data related to promotional materials for products and services	(ii) draw inferences based on data related to promotional materials for services		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(D) evaluate the impact of research on scientific thought, society, and public policy	(i) evaluate the impact of research on scientific thought		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(D) evaluate the impact of research on scientific thought, society, and public policy	(ii) evaluate the impact of research on society		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(D) evaluate the impact of research on scientific thought, society, and public policy	(iii) evaluate the impact of research on public policy		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(E) explore careers and collaboration among scientists in Earth and space sciences	(i) explore careers in Earth sciences		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(E) explore careers and collaboration among scientists in Earth and space sciences	(ii) explore careers in space sciences		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (0	One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(E) explore careers and collaboration among scientists in Earth and space sciences	(iii) explore collaboration among scientists in Earth sciences		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(E) explore careers and collaboration among scientists in Earth and space sciences	(iv) explore collaboration among scientists in space sciences		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(F) learn and understand the contributions of scientists to the historical development of Earth and space sciences	(i) learn the contributions of scientists to the historical development of Earth sciences		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(F) learn and understand the contributions of scientists to the historical development of Earth and space sciences	(ii) learn the contributions of scientists to the historical development of space sciences		
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(F) learn and understand the contributions of scientists to the historical development of Earth and space sciences	(iii) understand the contributions of scientists to the historical development of Earth sciences		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:	(F) learn and understand the contributions of scientists to the historical development of Earth and space sciences	(iv) understand the contributions of scientists to the historical development of space sciences		
(4) Earth in space and time. The student knows how Earth-based and space-based astronomical observations reveal differing theories about the structure, scale, composition, origin, and history of the universe. The student is expected to:	Big Bang model such as red shift and cosmic microwave background radiation and current theories of the evolution of the universe, including estimates for the	(i) evaluate the evidence concerning the Big Bang model		
(4) Earth in space and time. The student knows how Earth-based and space-based astronomical observations reveal differing theories about the structure, scale, composition, origin, and history of the universe. The student is expected to:	Big Bang model such as red shift and cosmic microwave background radiation and current theories of the evolution of the universe, including estimates for the	(ii) evaluate current theories of the evolution of the universe, including estimates for the age of the universe		
(4) Earth in space and time. The student knows how Earth-based and space-based astronomical observations reveal differing theories about the structure, scale, composition, origin, and history of the universe. The student is expected to:	(B) explain how the Sun and other stars transform matter into energy through nuclear fusion	(i) explain how the Sun transform[s] matter into energy through nuclear fusion		
(4) Earth in space and time. The student knows how Earth-based and space-based astronomical observations reveal differing theories about the structure, scale, composition, origin, and history of the universe. The student is expected to:	(B) explain how the Sun and other stars transform matter into energy through nuclear fusion	(ii) explain how stars transform matter into energy through nuclear fusion		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(4) Earth in space and time. The student	(C) investigate the process by which a	(i) investigate the process by which a		
knows how Earth-based and space-based	supernova can lead to the formation of	supernova can lead to the formation of		
astronomical observations reveal	successive generation stars and planets	successive generation stars		
differing theories about the structure,				
scale, composition, origin, and history of				
the universe. The student is expected to:				
(4) Earth in space and time. The student	(C) investigate the process by which a	(ii) investigate the process by which a		
knows how Earth-based and space-based	supernova can lead to the formation of	supernova can lead to the formation of		
astronomical observations reveal	successive generation stars and planets	successive generation planets		
differing theories about the structure,		- ·		
scale, composition, origin, and history of				
the universe. The student is expected to:				
(5) Earth in space and time. The student	(A) analyze how gravitational	(i) analyze how gravitational condensation of		
understands the solar nebular	condensation of solar nebular gas and	solar nebular gas and dust can lead to the		
accretionary disk model. The student is	dust can lead to the accretion of	accretion of planetesimals		
expected to:	planetesimals and protoplanets			
(5) Earth in space and time. The student	(A) analyze how gravitational	(ii) analyze how gravitational condensation of		
understands the solar nebular	condensation of solar nebular gas and	solar nebular gas and dust can lead to the		
accretionary disk model. The student is	dust can lead to the accretion of	accretion of protoplanets		
expected to:	planetesimals and protoplanets			
(5) Earth in space and time. The student	(B) investigate thermal energy sources,	(i) investigate thermal energy sources,		
understands the solar nebular	including kinetic heat of impact	including kinetic heat of impact accretion		
accretionary disk model. The student is	accretion, gravitational compression, and	which [is] thought to allow protoplanet		
expected to:	radioactive decay, which are thought to	differentiation into layers		
	allow protoplanet differentiation into			
	layers			
(5) Earth in space and time. The student	(B) investigate thermal energy sources,	(ii) investigate thermal energy sources,		
understands the solar nebular	including kinetic heat of impact	including gravitational compression which [is]		
accretionary disk model. The student is	÷ .	thought to allow protoplanet differentiation		
expected to:	radioactive decay, which are thought to	into layers		
	allow protoplanet differentiation into			
	layers			

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(B) investigate thermal energy sources, including kinetic heat of impact accretion, gravitational compression, and radioactive decay, which are thought to allow protoplanet differentiation into layers	(iii) investigate thermal energy sources, including radioactive decay which [is] thought to allow protoplanet differentiation into layers		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(C) contrast the characteristics of comets, asteroids, and meteoroids and their positions in the solar system, including the orbital regions of the terrestrial planets, the asteroid belt, gas giants, Kuiper Belt, and Oort Cloud	(i) contrast the characteristics of comets, asteroids, and meteoroids		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(C) contrast the characteristics of comets, asteroids, and meteoroids and their positions in the solar system, including the orbital regions of the terrestrial planets, the asteroid belt, gas giants, Kuiper Belt, and Oort Cloud	(ii) contrast [the] positions [of comets, asteroids, and meteoroids] in the solar system, including the orbital regions of the terrestrial planets		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(C) contrast the characteristics of comets, asteroids, and meteoroids and their positions in the solar system, including the orbital regions of the terrestrial planets, the asteroid belt, gas giants, Kuiper Belt, and Oort Cloud	(iii) contrast [the] positions [of comets, asteroids, and meteoroids] in the solar system, including the asteroid belt		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(C) contrast the characteristics of comets, asteroids, and meteoroids and their positions in the solar system, including the orbital regions of the terrestrial planets, the asteroid belt, gas giants, Kuiper Belt, and Oort Cloud	(iv) contrast [the] positions [of comets, asteroids, and meteoroids] in the solar system, including gas giants		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(C) contrast the characteristics of comets, asteroids, and meteoroids and their positions in the solar system, including the orbital regions of the terrestrial planets, the asteroid belt, gas giants, Kuiper Belt, and Oort Cloud	(v) contrast [the] positions [of comets, asteroids, and meteoroids] in the solar system, including Kuiper Belt		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(C) contrast the characteristics of comets, asteroids, and meteoroids and their positions in the solar system, including the orbital regions of the terrestrial planets, the asteroid belt, gas giants, Kuiper Belt, and Oort Cloud	(vi) contrast [the] positions [of comets, asteroids, and meteoroids] in the solar system, including Oort Cloud		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(D) explore the historical and current hypotheses for the origin of the Moon, including the collision of Earth with a Mars-sized planetesimal	(i) explore the historical hypotheses for the origin of the Moon, including the collision of Earth with a Mars-sized planetesimal		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(D) explore the historical and current hypotheses for the origin of the Moon, including the collision of Earth with a Mars-sized planetesimal	(ii) explore the current hypotheses for the origin of the Moon		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(E) compare terrestrial planets to gas- giant planets in the solar system, including structure, composition, size, density, orbit, surface features, tectonic activity, temperature, and suitability for life	(i) compare terrestrial planets to gas-giant planets in the solar system, including structure		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(E) compare terrestrial planets to gas- giant planets in the solar system, including structure, composition, size, density, orbit, surface features, tectonic activity, temperature, and suitability for life	(ii) compare terrestrial planets to gas-giant planets in the solar system, including composition		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(E) compare terrestrial planets to gas- giant planets in the solar system, including structure, composition, size, density, orbit, surface features, tectonic activity, temperature, and suitability for life	(iii) compare terrestrial planets to gas-giant planets in the solar system, including size		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(E) compare terrestrial planets to gas- giant planets in the solar system, including structure, composition, size, density, orbit, surface features, tectonic activity, temperature, and suitability for life	(iv) compare terrestrial planets to gas-giant planets in the solar system, including density		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(E) compare terrestrial planets to gas- giant planets in the solar system, including structure, composition, size, density, orbit, surface features, tectonic activity, temperature, and suitability for life	(v) compare terrestrial planets to gas-giant planets in the solar system, including orbit		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(E) compare terrestrial planets to gas- giant planets in the solar system, including structure, composition, size, density, orbit, surface features, tectonic activity, temperature, and suitability for life	(vi) compare terrestrial planets to gas-giant planets in the solar system, including surface features		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(E) compare terrestrial planets to gas- giant planets in the solar system, including structure, composition, size, density, orbit, surface features, tectonic activity, temperature, and suitability for life	(vii) compare terrestrial planets to gas-giant planets in the solar system, including tectonic activity		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (0	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:		(viii) compare terrestrial planets to gas-giant planets in the solar system, including temperature		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:	(E) compare terrestrial planets to gas- giant planets in the solar system, including structure, composition, size, density, orbit, surface features, tectonic activity, temperature, and suitability for life	(ix) compare terrestrial planets to gas-giant planets in the solar system, including suitability for life		
(5) Earth in space and time. The student understands the solar nebular accretionary disk model. The student is expected to:		(i) compare extra-solar planets with planets in our solar system		
· · ·	(F) compare extra-solar planets with planets in our solar system and describe how such planets are detected	(ii) describe how [extra-solar planets] are detected		
(6) Earth in space and time. The student knows the evidence for how Earth's atmospheres, hydrosphere, and geosphere formed and changed through time. The student is expected to:	(A) analyze the changes of Earth's atmosphere that could have occurred through time from the original hydrogen- helium atmosphere, the carbon dioxide- water vapor-methane atmosphere, and the current nitrogen-oxygen atmosphere			
(6) Earth in space and time. The student knows the evidence for how Earth's atmospheres, hydrosphere, and geosphere formed and changed through time. The student is expected to:	1. ·	(i) evaluate the role of volcanic outgassing in developing Earth's atmosphere		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(6) Earth in space and time. The student knows the evidence for how Earth's atmospheres, hydrosphere, and geosphere formed and changed through time. The student is expected to:		(ii) evaluate the role of [the] impact of water- bearing comets in developing Earth's atmosphere		
(6) Earth in space and time. The student knows the evidence for how Earth's atmospheres, hydrosphere, and geosphere formed and changed through time. The student is expected to:	(B) evaluate the role of volcanic outgassing and impact of water-bearing comets in developing Earth's atmosphere and hydrosphere	(iii) evaluate the role of volcanic outgassing in developing Earth's hydrosphere		
(6) Earth in space and time. The student knows the evidence for how Earth's atmospheres, hydrosphere, and geosphere formed and changed through time. The student is expected to:		(iv) evaluate the role of [the] impact of water- bearing comets in developing Earth's hydrosphere		
(6) Earth in space and time. The student knows the evidence for how Earth's atmospheres, hydrosphere, and geosphere formed and changed through time. The student is expected to:		(i) investigate how the formation of atmospheric oxygen impacted the formation of the geosphere		
knows the evidence for how Earth's atmospheres, hydrosphere, and		(ii) investigate how the formation of the ozone layer impacted the formation of the geosphere		
knows the evidence for how Earth's atmospheres, hydrosphere, and		(iii) investigate how the formation of atmospheric oxygen impacted the formation of the biosphere		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(6) Earth in space and time. The student knows the evidence for how Earth's atmospheres, hydrosphere, and geosphere formed and changed through time. The student is expected to:		(iv) investigate how the formation of atmospheric the ozone layer impacted the formation of the biosphere		
(6) Earth in space and time. The student knows the evidence for how Earth's atmospheres, hydrosphere, and geosphere formed and changed through time. The student is expected to:	(D) evaluate the evidence that Earth's cooling led to tectonic activity, resulting in continents and ocean basins	(i) evaluate the evidence that Earth's cooling led to tectonic activity, resulting in continents		
(6) Earth in space and time. The student knows the evidence for how Earth's atmospheres, hydrosphere, and geosphere formed and changed through time. The student is expected to:	cooling led to tectonic activity, resulting	(ii) evaluate the evidence that Earth's cooling led to tectonic activity, resulting in ocean basins		
knows that scientific dating methods of fossils and rock sequences are used to	using original horizontality, rock superposition, lateral continuity, cross- cutting relationships, unconformities,	(i) evaluate relative dating methods using original horizontality to determine chronological order		
	(A) evaluate relative dating methods using original horizontality, rock superposition, lateral continuity, cross- cutting relationships, unconformities, index fossils, and biozones based on fossil succession to determine chronological order	(ii) evaluate relative dating methods using rock superposition to determine chronological order		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
knows that scientific dating methods of fossils and rock sequences are used to	(A) evaluate relative dating methods using original horizontality, rock superposition, lateral continuity, cross- cutting relationships, unconformities, index fossils, and biozones based on fossil succession to determine chronological order	(iii) evaluate relative dating methods using lateral continuity to determine chronological order		
(7) Earth in space and time. The student knows that scientific dating methods of fossils and rock sequences are used to construct a chronology of Earth's history expressed in the geologic time scale. The student is expected to:		(iv) evaluate relative dating methods using cross-cutting relationships to determine chronological order		
knows that scientific dating methods of fossils and rock sequences are used to	(A) evaluate relative dating methods using original horizontality, rock superposition, lateral continuity, cross- cutting relationships, unconformities, index fossils, and biozones based on fossil succession to determine chronological order	(v) evaluate relative dating methods using unconformities to determine chronological order		
(7) Earth in space and time. The student knows that scientific dating methods of fossils and rock sequences are used to construct a chronology of Earth's history expressed in the geologic time scale. The student is expected to:		(vi) evaluate relative dating methods using index fossils to determine chronological order		
(7) Earth in space and time. The student knows that scientific dating methods of fossils and rock sequences are used to construct a chronology of Earth's history expressed in the geologic time scale. The student is expected to:	(A) evaluate relative dating methods using original horizontality, rock superposition, lateral continuity, cross- cutting relationships, unconformities, index fossils, and biozones based on fossil succession to determine chronological order	(vii) evaluate relative dating methods using biozones based on fossil succession to determine chronological order		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(7) Earth in space and time. The student knows that scientific dating methods of fossils and rock sequences are used to construct a chronology of Earth's history expressed in the geologic time scale. The student is expected to:	(B) calculate the ages of igneous rocks from Earth and the Moon and meteorites using radiometric dating methods	(i) calculate the ages of igneous rocks from Earth using radiometric dating methods		
(7) Earth in space and time. The student knows that scientific dating methods of fossils and rock sequences are used to construct a chronology of Earth's history expressed in the geologic time scale. The student is expected to:		(ii) calculate the ages of igneous rocks from the Moon using radiometric dating methods		
(7) Earth in space and time. The student knows that scientific dating methods of fossils and rock sequences are used to construct a chronology of Earth's history expressed in the geologic time scale. The student is expected to:	(B) calculate the ages of igneous rocks from Earth and the Moon and meteorites using radiometric dating methods	(iii) calculate the ages of meteorites using radiometric dating methods		
knows that scientific dating methods of fossils and rock sequences are used to	(C) understand how multiple dating methods are used to construct the geologic time scale, which represents Earth's approximate 4.6-billion-year history			
(8) Earth in space and time. The student knows that fossils provide evidence for geological and biological evolution. Students are expected to:		(i) analyze a variety of fossil types with regard to their appearance		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(8) Earth in space and time. The student knows that fossils provide evidence for geological and biological evolution. Students are expected to:	(A) analyze and evaluate a variety of fossil types such as transitional fossils, proposed transitional fossils, fossil lineages, and significant fossil deposits with regard to their appearance, completeness, and alignment with scientific explanations in light of this fossil data	(ii) analyze a variety of fossil types with regard to their completeness		
(8) Earth in space and time. The student knows that fossils provide evidence for geological and biological evolution. Students are expected to:	(A) analyze and evaluate a variety of fossil types such as transitional fossils, proposed transitional fossils, fossil lineages, and significant fossil deposits with regard to their appearance, completeness, and alignment with scientific explanations in light of this fossil data	(iii) analyze a variety of fossil types with regard to their alignment with scientific explanations in light of this fossil data		
(8) Earth in space and time. The student knows that fossils provide evidence for geological and biological evolution. Students are expected to:	(A) analyze and evaluate a variety of fossil types such as transitional fossils, proposed transitional fossils, fossil lineages, and significant fossil deposits with regard to their appearance, completeness, and alignment with scientific explanations in light of this fossil data	(iv) evaluate a variety of fossil types with regard to their appearance		
(8) Earth in space and time. The student knows that fossils provide evidence for geological and biological evolution. Students are expected to:	(A) analyze and evaluate a variety of fossil types such as transitional fossils, proposed transitional fossils, fossil lineages, and significant fossil deposits with regard to their appearance, completeness, and alignment with scientific explanations in light of this fossil data	(v) evaluate a variety of fossil types with regard to their completeness		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(8) Earth in space and time. The student	(A) analyze and evaluate a variety of	(vi) evaluate a variety of fossil types with		
knows that fossils provide evidence for	fossil types such as transitional fossils,	regard to their alignment with scientific		
geological and biological evolution.	proposed transitional fossils, fossil	explanations in light of this fossil data		
Students are expected to:	lineages, and significant fossil deposits			
	with regard to their appearance,			
	completeness, and alignment with			
	scientific explanations in light of this			
	fossil data			
(8) Earth in space and time. The student	(B) explain how sedimentation,	(i) explain how sedimentation affect[s] the		
knows that fossils provide evidence for	fossilization, and speciation affect the	degree of completeness of the fossil record		
geological and biological evolution.	degree of completeness of the fossil			
	record			
Students are expected to: (8) Earth in space and time. The student	(B) explain how sedimentation,	(ii) explain how fossilization affect[s] the		
knows that fossils provide evidence for	fossilization, and speciation affect the	degree of completeness of the fossil record		
geological and biological evolution.	degree of completeness of the fossil	degree of completeness of the lossifie cord		
Students are expected to:	record			
	(B) explain how sedimentation,	(iii) explain how speciation affect[s] the		
knows that fossils provide evidence for	fossilization, and speciation affect the	degree of completeness of the fossil record		
geological and biological evolution.	degree of completeness of the fossil	degree of completeness of the lossifie cord		
Students are expected to:	record			
	(C) evaluate the significance of the	(i) evaluate the significance of the terminal		
knows that fossils provide evidence for	terminal Permian and Cretaceous mass	Permian mass extinction events, including		
geological and biological evolution.	extinction events, including adaptive	adaptive radiations of organisms after the		
Students are expected to:	radiations of organisms after the events	events		
	(C) evaluate the significance of the	(ii) evaluate the significance of the terminal		
knows that fossils provide evidence for	terminal Permian and Cretaceous mass	Cretaceous mass extinction event, including		
geological and biological evolution.	extinction events, including adaptive	adaptive radiations of organisms after the		
Students are expected to:	radiations of organisms after the events	events		
(9) Solid Earth. The student knows		(i) evaluate heat transfer through Earth's		
Earth's interior is differentiated		subsystems by radiation and include its role		
chemically, physically, and thermally.	conduction and include its role in plate	in ocean circulation		
The student is expected to:	tectonics, volcanism, ocean circulation,			
	weather, and climate			

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(A) evaluate heat transfer through Earth's subsystems by radiation, convection, and conduction and include its role in plate tectonics, volcanism, ocean circulation, weather, and climate	(ii) evaluate heat transfer through Earth's subsystems by radiation and include its role in weather		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:		(iii) evaluate heat transfer through Earth's subsystems by radiation and include its role in climate		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(A) evaluate heat transfer through Earth's subsystems by radiation, convection, and conduction and include its role in plate tectonics, volcanism, ocean circulation, weather, and climate	(iv) evaluate heat transfer through Earth's subsystems by convection and include its role in volcanism		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(A) evaluate heat transfer through Earth's subsystems by radiation, convection, and conduction and include its role in plate tectonics, volcanism, ocean circulation, weather, and climate	(v) evaluate heat transfer through Earth's subsystems by convection and include its role in plate tectonics		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:		(vi) evaluate heat transfer through Earth's subsystems by convection and include its role in ocean circulation		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(A) evaluate heat transfer through Earth's subsystems by radiation, convection, and conduction and include its role in plate tectonics, volcanism, ocean circulation, weather, and climate	(vii) evaluate heat transfer through Earth's subsystems by convection and include its role in climate		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science,	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:		(viii) evaluate heat transfer through Earth's subsystems by convection and include its role in weather		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(A) evaluate heat transfer through Earth's subsystems by radiation, convection, and conduction and include its role in plate tectonics, volcanism, ocean circulation, weather, and climate	(ix) evaluate heat transfer through Earth's subsystems by conduction and include its role in volcanism		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(A) evaluate heat transfer through Earth's subsystems by radiation, convection, and conduction and include its role in plate tectonics, volcanism, ocean circulation, weather, and climate	(x) evaluate heat transfer through Earth's subsystems by conduction and include its role in plate tectonics		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(A) evaluate heat transfer through Earth's subsystems by radiation, convection, and conduction and include its role in plate tectonics, volcanism, ocean circulation, weather, and climate			
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(A) evaluate heat transfer through Earth's subsystems by radiation, convection, and conduction and include its role in plate tectonics, volcanism, ocean circulation, weather, and climate	(xii) evaluate heat transfer through Earth's subsystems by conduction and include its role in climate		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(i) examine the chemical structure of Earth's crust, including the lithosphere		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(ii) examine the physical structure of Earth's crust, including the lithosphere		

Subject	Chapter 112. Science			
Course Title		Beginning with School Year 2010-2011 (Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(iii) examine the thermal structure of Earth's crust, including the lithosphere		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(iv) examine the chemical structure of Earth's mantle, including the lithosphere		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(v) examine the physical structure of Earth's mantle, including the lithosphere		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(vi) examine the thermal structure of Earth's mantle, including the lithosphere		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(vii) examine the chemical structure of Earth's core		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(viii) examine the physical structure of Earth's core		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(ix) examine the thermal structure of Earth's core		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(x) examine the chemical structure of Earth's mantle, including the asthenosphere		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science,	Beginning with School Year 2010-2011 (Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(xi) examine the physical structure of Earth's mantle, including the asthenosphere		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(B) examine the chemical, physical, and thermal structure of Earth's crust, mantle, and core, including the lithosphere and asthenosphere	(xii) examine the thermal structure of Earth's mantle, including the asthenosphere		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(C) explain how scientists use geophysical methods such as seismic wave analysis, gravity, and magnetism to interpret Earth's structure	(i) explain how scientists use geophysical methods to interpret Earth's structure		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(D) describe the formation and structure of Earth's magnetic field, including its interaction with charged solar particles to form the Van Allen belts and auroras	(i) describe the formation of Earth's magnetic field, including its interaction with charged solar particles to form the Van Allen belts		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(D) describe the formation and structure of Earth's magnetic field, including its interaction with charged solar particles to form the Van Allen belts and auroras	(ii) describe the formation of Earth's magnetic field, including its interaction with charged solar particles to form auroras		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(D) describe the formation and structure of Earth's magnetic field, including its interaction with charged solar particles to form the Van Allen belts and auroras	(iii) describe the structure of Earth's magnetic field, including its interaction with charged solar particles to form the Van Allen belts		
(9) Solid Earth. The student knows Earth's interior is differentiated chemically, physically, and thermally. The student is expected to:	(D) describe the formation and structure of Earth's magnetic field, including its interaction with charged solar particles to form the Van Allen belts and auroras	(iv) describe the structure of Earth's magnetic field, including its interaction with charged solar particles to form auroras		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
plate tectonics is the global mechanism for major geologic processes and that	(A) investigate how new conceptual interpretations of data and innovative geophysical technologies led to the current theory of plate tectonics	(i) investigate how new conceptual interpretations of data led to the current theory of plate tectonics		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(A) investigate how new conceptual interpretations of data and innovative geophysical technologies led to the current theory of plate tectonics	(ii) investigate how innovative geophysical technologies led to the current theory of plate tectonics		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(B) describe how heat and rock composition affect density within Earth's interior and how density influences the development and motion of Earth's tectonic plates	(i) describe how heat affect[s] density within Earth's interior		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(B) describe how heat and rock composition affect density within Earth's interior and how density influences the development and motion of Earth's tectonic plates	(ii) describe how rock composition affect[s] density within Earth's interior		
plate tectonics is the global mechanism for major geologic processes and that	(B) describe how heat and rock composition affect density within Earth's interior and how density influences the development and motion of Earth's tectonic plates	(iii) describe how density influences the development of Earth's tectonic plates		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	interior and how density influences the	(iv) describe how density influences the motion of Earth's tectonic plates		
plate tectonics is the global mechanism for major geologic processes and that	(C) explain how plate tectonics accounts for geologic processes and features, including sea floor spreading, ocean ridges and rift valleys, subduction zones, earthquakes, volcanoes, mountain ranges, hot spots, and hydrothermal vents	(i) explain how plate tectonics accounts for geologic processes, including sea floor spreading		
plate tectonics is the global mechanism for major geologic processes and that	(C) explain how plate tectonics accounts for geologic processes and features, including sea floor spreading, ocean ridges and rift valleys, subduction zones, earthquakes, volcanoes, mountain ranges, hot spots, and hydrothermal vents	(ii) explain how plate tectonics accounts for geologic features, including ocean ridges		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(C) explain how plate tectonics accounts for geologic processes and features, including sea floor spreading, ocean ridges and rift valleys, subduction zones, earthquakes, volcanoes, mountain ranges, hot spots, and hydrothermal vents	(iii) explain how plate tectonics accounts for geologic features, including rift valleys		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(C) explain how plate tectonics accounts for geologic processes and features, including sea floor spreading, ocean ridges and rift valleys, subduction zones, earthquakes, volcanoes, mountain ranges, hot spots, and hydrothermal vents	(iv) explain how plate tectonics accounts for geologic features, including subduction zones		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(C) explain how plate tectonics accounts for geologic processes and features, including sea floor spreading, ocean ridges and rift valleys, subduction zones, earthquakes, volcanoes, mountain ranges, hot spots, and hydrothermal vents	(v) explain how plate tectonics accounts for geologic processes, including earthquakes		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(C) explain how plate tectonics accounts for geologic processes and features, including sea floor spreading, ocean ridges and rift valleys, subduction zones, earthquakes, volcanoes, mountain ranges, hot spots, and hydrothermal vents	(vi) explain how plate tectonics accounts for geologic features, including volcanoes		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(C) explain how plate tectonics accounts for geologic processes and features, including sea floor spreading, ocean ridges and rift valleys, subduction zones, earthquakes, volcanoes, mountain ranges, hot spots, and hydrothermal vents	(vii) explain how plate tectonics accounts for geologic features, including mountain ranges		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (0	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
plate tectonics is the global mechanism for major geologic processes and that	(C) explain how plate tectonics accounts for geologic processes and features, including sea floor spreading, ocean ridges and rift valleys, subduction zones, earthquakes, volcanoes, mountain ranges, hot spots, and hydrothermal vents	(viii) explain how plate tectonics accounts for geologic features, including hot spots		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(C) explain how plate tectonics accounts for geologic processes and features, including sea floor spreading, ocean ridges and rift valleys, subduction zones, earthquakes, volcanoes, mountain ranges, hot spots, and hydrothermal vents	(ix) explain how plate tectonics accounts for geologic features, including hydrothermal vents		
plate tectonics is the global mechanism for major geologic processes and that	(D) calculate the motion history of tectonic plates using equations relating rate, time, and distance to predict future motions, locations, and resulting geologic features	(i) calculate the motion history of tectonic plates using equations relating rate, time, and distance to predict future motions		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(D) calculate the motion history of tectonic plates using equations relating rate, time, and distance to predict future motions, locations, and resulting geologic features	(ii) calculate the motion history of tectonic plates using equations relating rate, time, and distance to predict future locations		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(D) calculate the motion history of tectonic plates using equations relating rate, time, and distance to predict future motions, locations, and resulting geologic features	(iii) calculate the motion history of tectonic plates using equations relating rate, time, and distance to predict resulting geologic features		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (C	One Credit).	-
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles	(E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes	 (i) distinguish the location of convergent plate boundaries using evidence from the distribution of earthquakes 		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes	(ii) distinguish the type of convergent plate boundaries using evidence from the distribution of earthquakes		
plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles	and transform plate boundaries using	(iii) distinguish the relative motion of convergent plate boundaries using evidence from the distribution of earthquakes		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes	(iv) distinguish the location of divergent plate boundaries using evidence from the distribution of earthquakes		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	and transform plate boundaries using	(v) distinguish the type of divergent plate boundaries using evidence from the distribution of earthquakes		
Subject	Chapter 112. Science			
--	--	--	--------------	------------
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (One Credit).	-
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles	(E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes	(vi) distinguish the relative motion of divergent plate boundaries using evidence from the distribution of earthquakes		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes	(vii) distinguish the location of transform plate boundaries using evidence from the distribution of earthquakes		
plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles	and transform plate boundaries using	(viii) distinguish the type of transform plate boundaries using evidence from the distribution of earthquakes		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes	(ix) distinguish the relative motion of transform plate boundaries using evidence from the distribution of earthquakes		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	and transform plate boundaries using	(x) distinguish the location of convergent plate boundaries using evidence from the distribution of volcanoes		

Subject	Chapter 112. Science			
Course Title		Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles	(E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes	(xi) distinguish the type of convergent plate boundaries using evidence from the distribution of volcanoes		
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	(E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes	(xii) distinguish the relative motion of convergent plate boundaries using evidence from the distribution of volcanoes		
plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles	and transform plate boundaries using	(xiii) distinguish the location of divergent plate boundaries using evidence from the distribution of volcanoes		
plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles	(E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes	(xiv) distinguish the type of divergent plate boundaries using evidence from the distribution of volcanoes		
plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles	and transform plate boundaries using	(xv) distinguish the relative motion of divergent plate boundaries using evidence from the distribution of volcanoes		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(10) Solid Earth. The student knows that plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles of thermodynamics, is the driving force. The student is expected to:	and transform plate boundaries using	(xvi) distinguish the location of transform plate boundaries using evidence from the distribution of volcanoes		
plate tectonics is the global mechanism for major geologic processes and that heat transfer, governed by the principles	and transform plate boundaries using	(xvii) distinguish the type of transform plate boundaries using evidence from the distribution of volcanoes		
plate tectonics is the global mechanism for major geologic processes and that	(E) distinguish the location, type, and relative motion of convergent, divergent, and transform plate boundaries using evidence from the distribution of earthquakes and volcanoes	(xviii) distinguish the relative motion of transform plate boundaries using evidence from the distribution of volcanoes		
plate tectonics is the global mechanism for major geologic processes and that	with respect to long-term global changes	(i) evaluate the role of plate tectonics with respect to long-term global changes in Earth's subsystems		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:		(i) compare the roles of erosion and deposition through the actions of water in constantly reshaping Earth's surface		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:		(ii) compare the roles of erosion and deposition through the actions of wind in constantly reshaping Earth's surface		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	-	(iii) compare the roles of erosion and deposition through the actions of ice in constantly reshaping Earth's surface		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	(A) compare the roles of erosion and deposition through the actions of water, wind, ice, gravity, and igneous activity by lava in constantly reshaping Earth's surface	(iv) compare the roles of erosion and deposition through the actions of gravity in constantly reshaping Earth's surface		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	-	 (v) compare the roles of erosion and deposition through the actions of igneous activity by lava in constantly reshaping Earth's surface 		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	(B) explain how plate tectonics accounts for geologic surface processes and features, including folds, faults, sedimentary basin formation, mountain building, and continental accretion	(i) explain how plate tectonics accounts for geologic surface processes, including sedimentary basin formation		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	(B) explain how plate tectonics accounts for geologic surface processes and features, including folds, faults, sedimentary basin formation, mountain building, and continental accretion	(ii) explain how plate tectonics accounts for geologic surface processes, including mountain building		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	(B) explain how plate tectonics accounts for geologic surface processes and features, including folds, faults, sedimentary basin formation, mountain building, and continental accretion	(iii) explain how plate tectonics accounts for geologic surface processes, including continental accretion		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	(B) explain how plate tectonics accounts for geologic surface processes and features, including folds, faults, sedimentary basin formation, mountain building, and continental accretion	(iv) explain how plate tectonics accounts for geologic surface features, including folds		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	(B) explain how plate tectonics accounts for geologic surface processes and features, including folds, faults, sedimentary basin formation, mountain building, and continental accretion	(v) explain how plate tectonics accounts for geologic surface features, including faults		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	(C) analyze changes in continental plate configurations such as Pangaea and their impact on the biosphere, atmosphere, and hydrosphere through time	(i) analyze changes in continental plate configurations and their impact on the biosphere through time		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:		(ii) analyze changes in continental plate configurations and their impact on the atmosphere through time		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:		(iii) analyze changes in continental plate configurations and their impact on the hydrosphere through time		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	(D) interpret Earth surface features using a variety of methods such as satellite imagery, aerial photography, and topographic and geologic maps using appropriate technologies	(i) interpret Earth surface features using a variety of methods using appropriate technologies		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	(E) evaluate the impact of changes in Earth's subsystems on humans such as earthquakes, tsunamis, volcanic eruptions, hurricanes, flooding, and storm surges and the impact of humans on Earth's subsystems such as population growth, fossil fuel burning, and use of fresh water	(i) evaluate the impact of changes in Earth's subsystems on humans		
(11) Solid Earth. The student knows that the geosphere continuously changes over a range of time scales involving dynamic and complex interactions among Earth's subsystems. The student is expected to:	(E) evaluate the impact of changes in Earth's subsystems on humans such as earthquakes, tsunamis, volcanic eruptions, hurricanes, flooding, and storm surges and the impact of humans on Earth's subsystems such as population growth, fossil fuel burning, and use of fresh water	(ii) evaluate the impact of humans on Earth's subsystems		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	(A) evaluate how the use of energy, water, mineral, and rock resources affects Earth's subsystems	(i) evaluate how the use of energy resources affects Earth's subsystems		
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	(A) evaluate how the use of energy, water, mineral, and rock resources affects Earth's subsystems	(ii) evaluate how the use of water resources affects Earth's subsystems		
Earth contains energy, water, mineral,	(A) evaluate how the use of energy, water, mineral, and rock resources affects Earth's subsystems	(iii) evaluate how the use of mineral resources affects Earth's subsystems		
Earth contains energy, water, mineral,	(A) evaluate how the use of energy, water, mineral, and rock resources affects Earth's subsystems	(iv) evaluate how the use of rock resources affects Earth's subsystems		
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	(B) describe the formation of fossil fuels, including petroleum and coal	(i) describe the formation of fossil fuels, including petroleum		
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	(B) describe the formation of fossil fuels, including petroleum and coal	(ii) describe the formation of fossil fuels, including coal		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:		(i) discriminate between renewable and nonrenewable resources based upon rate of formation		
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	(C) discriminate between renewable and nonrenewable resources based upon rate of formation and use	(ii) discriminate between renewable and nonrenewable resources based upon rate of use		
Earth contains energy, water, mineral,	(D) analyze the economics of resources from discovery to disposal, including technological advances, resource type, concentration and location, waste disposal and recycling, and environmental costs	(i) analyze the economics of resources from discovery to disposal, including technological advances		
	(D) analyze the economics of resources from discovery to disposal, including technological advances, resource type, concentration and location, waste disposal and recycling, and environmental costs	(ii) analyze the economics of resources from discovery to disposal, including resource type		
Earth contains energy, water, mineral,	(D) analyze the economics of resources from discovery to disposal, including technological advances, resource type, concentration and location, waste disposal and recycling, and environmental costs	(iii) analyze the economics of resources from discovery to disposal, including concentration		
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	(D) analyze the economics of resources from discovery to disposal, including technological advances, resource type, concentration and location, waste disposal and recycling, and environmental costs	(iv) analyze the economics of resources from discovery to disposal, including location		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
	(D) analyze the economics of resources from discovery to disposal, including technological advances, resource type, concentration and location, waste disposal and recycling, and environmental costs	(v) analyze the economics of resources from discovery to disposal, including waste disposal		
	(D) analyze the economics of resources from discovery to disposal, including technological advances, resource type, concentration and location, waste disposal and recycling, and environmental costs	(vi) analyze the economics of resources from discovery to disposal, including recycling		
Earth contains energy, water, mineral,	(D) analyze the economics of resources from discovery to disposal, including technological advances, resource type, concentration and location, waste disposal and recycling, and environmental costs	(vii) analyze the economics of resources from discovery to disposal, including environmental cost		
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	(E) explore careers that involve the exploration, extraction, production, use, and disposal of Earth's resources	(i) explore careers that involve the exploration of Earth's resources		
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	(E) explore careers that involve the exploration, extraction, production, use, and disposal of Earth's resources	(ii) explore careers that involve the extraction of Earth's resources		
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	(E) explore careers that involve the exploration, extraction, production, use, and disposal of Earth's resources	(iii) explore careers that involve the production of Earth's resources		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	exploration, extraction, production, use,	(iv) explore careers that involve the use of Earth's resources		
(12) Solid Earth. The student knows that Earth contains energy, water, mineral, and rock resources and that use of these resources impacts Earth's subsystems. The student is expected to:	exploration, extraction, production, use,	(v) explore careers that involve the disposal of Earth's resources		
the fluid Earth is composed of the hydrosphere, cryosphere, and	(A) quantify the components and fluxes within the hydrosphere such as changes in polar ice caps and glaciers, salt water incursions, and groundwater levels in response to precipitation events or excessive pumping	(i) quantify the components within the hydrosphere in response to precipitation events or excessive pumping		
the fluid Earth is composed of the hydrosphere, cryosphere, and	(A) quantify the components and fluxes within the hydrosphere such as changes in polar ice caps and glaciers, salt water incursions, and groundwater levels in response to precipitation events or excessive pumping	(ii) quantify the fluxes within the hydrosphere in response to precipitation events or excessive pumping		
(13) Fluid Earth. The student knows that the fluid Earth is composed of the hydrosphere, cryosphere, and atmosphere subsystems that interact on various time scales with the biosphere and geosphere. The student is expected to:	(B) analyze how global ocean circulation is the result of wind, tides, the Coriolis effect, water density differences, and the shape of the ocean basins	(i) analyze how global ocean circulation is the result of wind		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (One Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
the fluid Earth is composed of the hydrosphere, cryosphere, and	(B) analyze how global ocean circulation is the result of wind, tides, the Coriolis effect, water density differences, and the shape of the ocean basins	(ii) analyze how global ocean circulation is the result of tides		
(13) Fluid Earth. The student knows that the fluid Earth is composed of the hydrosphere, cryosphere, and atmosphere subsystems that interact on various time scales with the biosphere and geosphere. The student is expected to:	(B) analyze how global ocean circulation is the result of wind, tides, the Coriolis effect, water density differences, and the shape of the ocean basins	(iii) analyze how global ocean circulation is the result of the Coriolis effect		
the fluid Earth is composed of the hydrosphere, cryosphere, and		(iv) analyze how global ocean circulation is the result of water density differences		
the fluid Earth is composed of the hydrosphere, cryosphere, and		(v) analyze how global ocean circulation is the result of the shape of the ocean basins		
the fluid Earth is composed of the hydrosphere, cryosphere, and	(C) analyze the empirical relationship between the emissions of carbon dioxide, atmospheric carbon dioxide levels, and the average global temperature trends over the past 150 years			

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, I	Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(13) Fluid Earth. The student knows that the fluid Earth is composed of the hydrosphere, cryosphere, and atmosphere subsystems that interact on various time scales with the biosphere and geosphere. The student is expected to:	(D) discuss mechanisms and causes such as selective absorbers, major volcanic eruptions, solar luminance, giant meteorite impacts, and human activities that result in significant changes in Earth's climate	(i) discuss mechanisms that result in significant changes in Earth's climate		
(13) Fluid Earth. The student knows that the fluid Earth is composed of the hydrosphere, cryosphere, and atmosphere subsystems that interact on various time scales with the biosphere and geosphere. The student is expected to:	(D) discuss mechanisms and causes such as selective absorbers, major volcanic eruptions, solar luminance, giant meteorite impacts, and human activities that result in significant changes in Earth's climate	(ii) discuss causes that result in significant changes in Earth's climate		
the fluid Earth is composed of the hydrosphere, cryosphere, and	(E) investigate the causes and history of eustatic sea-level changes that result in transgressive and regressive sedimentary sequences	(i) investigate the causes of eustatic sea-level changes that result in transgressive sedimentary sequences		
the fluid Earth is composed of the hydrosphere, cryosphere, and	(E) investigate the causes and history of eustatic sea-level changes that result in transgressive and regressive sedimentary sequences	(ii) investigate the history of eustatic sea- level changes that result in transgressive sedimentary sequences		
the fluid Earth is composed of the hydrosphere, cryosphere, and	(E) investigate the causes and history of eustatic sea-level changes that result in transgressive and regressive sedimentary sequences	(iii) investigate the causes of eustatic sea- level changes that result in regressive sedimentary sequences		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, Beginning with School Year 2010-2011 (One Credit).			
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
		(iv) investigate the history of eustatic sea-		
the fluid Earth is composed of the	eustatic sea-level changes that result in	level changes that result in regressive		
hydrosphere, cryosphere, and	transgressive and regressive sedimentary	sedimentary sequences		
. ,	sequences			
various time scales with the biosphere				
and geosphere. The student is expected				
to:				
(13) Fluid Earth. The student knows that	(F) discuss scientific hypotheses for the			
the fluid Earth is composed of the	origin of life by abiotic chemical			
hydrosphere, cryosphere, and	processes in an aqueous environment			
atmosphere subsystems that interact on	through complex geochemical cycles			
various time scales with the biosphere	given the complexity of living systems			
and geosphere. The student is expected				
to:				
(14) Fluid Earth. The student knows that	(A) analyze the uneven distribution of	(i) analyze the uneven distribution of solar		
Earth's global ocean stores solar energy				
and is a major driving force for weather		differences in atmospheric transparency		
and climate through complex	surface albedo, Earth's tilt, duration of			
atmospheric interactions. The student is				
expected to:	atmospheric and surface absorption of			
	energy			
(14) Fluid Earth. The student knows that	(A) analyze the uneven distribution of	(ii) analyze the uneven distribution of solar		
Earth's global ocean stores solar energy	solar energy on Earth's surface, including	energy on Earth's surface, including		
and is a major driving force for weather	differences in atmospheric transparency,	differences in surface albedo		
and climate through complex	surface albedo, Earth's tilt, duration of			
	insolation, and differences in			
expected to:	atmospheric and surface absorption of			
(14) Fluid Earth. The student knows that	energy (A) analyze the uneven distribution of	(iii) analyze the uneven distribution of solar		
Earth's global ocean stores solar energy		energy on Earth's surface, including		
and is a major driving force for weather		differences in Earth's tilt		
and climate through complex	surface albedo, Earth's tilt, duration of			
	insolation, and differences in			
expected to:	atmospheric and surface absorption of			
	energy			

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, Beginning with School Year 2010-2011 (One Credit).			
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
 (14) Fluid Earth. The student knows that Earth's global ocean stores solar energy and is a major driving force for weather and climate through complex atmospheric interactions. The student is expected to: (14) Fluid Earth. The student knows that Earth's global ocean stores solar energy and is a major driving force for weather and climate through complex atmospheric interactions. The student is 	 (A) analyze the uneven distribution of solar energy on Earth's surface, including differences in atmospheric transparency, surface albedo, Earth's tilt, duration of insolation, and differences in atmospheric and surface absorption of energy (A) analyze the uneven distribution of solar energy on Earth's surface, including differences in atmospheric transparency, surface albedo, Earth's tilt, duration of insolation, and differences in 	 (iv) analyze the uneven distribution of solar energy on Earth's surface, including differences in atmospheric duration of insolation (v) analyze the uneven distribution of solar 		
expected to: (14) Fluid Earth. The student knows that Earth's global ocean stores solar energy and is a major driving force for weather and climate through complex atmospheric interactions. The student is expected to:	atmospheric and surface absorption of energy (A) analyze the uneven distribution of solar energy on Earth's surface, including differences in atmospheric transparency, surface albedo, Earth's tilt, duration of insolation, and differences in atmospheric and surface absorption of energy	(vi) analyze the uneven distribution of solar energy on Earth's surface, including differences in surface absorption of energy		
(14) Fluid Earth. The student knows that Earth's global ocean stores solar energy and is a major driving force for weather and climate through complex atmospheric interactions. The student is expected to:	(B)investigate how the atmosphere is heated from Earth's surface due to absorption of solar energy, which is re- radiated as thermal energy and trapped by selective absorbers			
(14) Fluid Earth. The student knows that Earth's global ocean stores solar energy and is a major driving force for weather and climate through complex atmospheric interactions. The student is expected to:		(i) explain how thermal energy transfer between the ocean and atmosphere drives surface currents that influence climate		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, Beginning with School Year 2010-2011 (One Credit).			
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(14) Fluid Earth. The student knows that Earth's global ocean stores solar energy and is a major driving force for weather and climate through complex atmospheric interactions. The student is expected to:	(C) explain how thermal energy transfer between the ocean and atmosphere drives surface currents, thermohaline currents, and evaporation that influence climate	(ii) explain how thermal energy transfer between the ocean and atmosphere drives thermohaline currents that influence climate		
Earth's global ocean stores solar energy and is a major driving force for weather and climate through complex	(C) explain how thermal energy transfer between the ocean and atmosphere drives surface currents, thermohaline currents, and evaporation that influence climate	(iii) explain how thermal energy transfer between the ocean and atmosphere drives evaporation that influence[s] climate		
interactions among Earth's five subsystems influence climate and	(A) describe how changing surface-ocean conditions, including El Niño-Southern Oscillation, affect global weather and climate patterns	(i) describe how changing surface-ocean conditions, including El Niño-Southern Oscillation, affect global weather patterns		
(15) Fluid Earth. The student knows that interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's habitability. The student is expected to:	(A) describe how changing surface-ocean conditions, including El Niño-Southern Oscillation, affect global weather and climate patterns	(ii) describe how changing surface-ocean conditions, including El Niño-Southern Oscillation, affect global climate patterns		
interactions among Earth's five subsystems influence climate and	(B) investigate evidence such as ice cores, glacial striations, and fossils for climate variability and its use in developing computer models to explain present and predict future climates	(i) investigate evidence for climate variability		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, E	Beginning with School Year 2010-2011 (C	Dne Credit).	
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's	glacial striations, and fossils for climate variability and its use in developing	(ii) investigate [the] use [of climate variability evidence] in developing computer models to explain present climates		
interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's	glacial striations, and fossils for climate variability and its use in developing	(iii) investigate [the] use [of climate variability evidence] in developing computer models to predict future climates		
interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's	(C) quantify the dynamics of surface and groundwater movement such as recharge, discharge, evapotranspiration, storage, residence time, and sustainability	(i) quantify the dynamics of surface movement		
interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's	(C) quantify the dynamics of surface and groundwater movement such as recharge, discharge, evapotranspiration, storage, residence time, and sustainability	(ii) quantify the dynamics of groundwater movement		
interactions among Earth's five subsystems influence climate and	(D) explain the global carbon cycle, including how carbon exists in different forms within the five subsystems and how these forms affect life	(i) explain the global carbon cycle, including how carbon exists in different forms within the five subsystems		
interactions among Earth's five subsystems influence climate and	(D) explain the global carbon cycle, including how carbon exists in different forms within the five subsystems and how these forms affect life	(ii) explain the global carbon cycle, including how [different forms within the five subsystems] affect life		

Subject	Chapter 112. Science			
Course Title	§112.36. Earth and Space Science, Beginning with School Year 2010-2011 (One Credit).			
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(15) Fluid Earth. The student knows that interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's habitability. The student is expected to:	(E) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature on evaporation, sea level, algal growth, coral bleaching, hurricane intensity, and biodiversity	 (i) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature on evaporation 		
(15) Fluid Earth. The student knows that interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's habitability. The student is expected to:	(E) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature on evaporation, sea level, algal growth, coral bleaching, hurricane intensity, and biodiversity	(ii) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature on sea level		
(15) Fluid Earth. The student knows that interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's habitability. The student is expected to:	(E) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature on evaporation, sea level, algal growth, coral bleaching, hurricane intensity, and biodiversity	(iii) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature on algal growth		
(15) Fluid Earth. The student knows that interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's habitability. The student is expected to:	(E) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature on evaporation, sea level, algal growth, coral bleaching, hurricane intensity, and biodiversity	(iv) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature coral bleaching		
(15) Fluid Earth. The student knows that interactions among Earth's five subsystems influence climate and resource availability, which affect Earth's habitability. The student is expected to:	(E) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature on evaporation, sea level, algal growth, coral bleaching, hurricane intensity, and biodiversity	(v) analyze recent global ocean temperature data to predict the consequences of changing ocean temperature on hurricane intensity		

Breakout Instrument

Subject	Chapter 112. Science			
Course Title	112.36. Earth and Space Science, Beginning with School Year 2010-2011 (One Credit).			
TEKS (Knowledge and Skills)	Student Expectation	Breakout	Element	Subelement
(15) Fluid Earth. The student knows that	(E) analyze recent global ocean	(vi) analyze recent global ocean temperature		
interactions among Earth's five	temperature data to predict the	data to predict the consequences of changing		
subsystems influence climate and	consequences of changing ocean	ocean temperature on biodiversity		
resource availability, which affect Earth's	temperature on evaporation, sea level,			
habitability. The student is expected to:	algal growth, coral bleaching, hurricane			
	intensity, and biodiversity			