Chapter 3 Standard Technical Processes

Overview

Performance Standards
Item Analyses
Scaling
Equating
Reliability
Validity
Measures of Student Progress
Sampling

Technical Details and Procedures

Performance Standards
Item Analyses
Scaling
Equating
Reliability
Validity
Measures of Student Progress
Sampling

Overview

The Standards for Educational and Psychological Testing by the American Educational Research Association, the American Psychological Association, and the National Council on Measurement in Education (2014) provide a set of guidelines for evaluating the quality of testing practices. By using these standards to guide test development, the Texas Education Agency (TEA) is confident that Texas assessments are technically defensible and appropriate for the purposes for which they are used.

The objective of this chapter is to provide a general description of the technical processes TEA follows to promote fairness, accuracy, validity, and reliability in the Texas assessment program. In-depth discussions of the specific processes are covered in subsequent chapters. This chapter is divided into two sections: an Overview section and a Technical Details and Procedures section. The Overview section
provides an overview of eight technical concepts. The Technical Details and Procedures section elaborates on these eight concepts.

The eight technical concepts described in this chapter are:

Performance Standards. Performance standards directly relate levels of test performance to what students are expected to learn, as described in the statewide curriculum.

Item Analyses. Statistical analyses are conducted on the student performance data collected for field-test items. These analyses are used to gauge the level of difficulty of the item, examine the degree to which the item appropriately distinguishes between students of different proficiency levels, and assess the item for potential bias.

Scaling. Scaling is a process that transforms test scores systematically so that they are easier to interpret.

Equating. Equating is used in conjunction with scaling to place scores from different tests on a common scale, thereby making test scores comparable across test administrations.

Reliability. Reliability indicates the precision of test scores, which also reflects the consistency of test results across testing conditions.

Validity. Validity refers to the extent to which test scores can be interpreted as indicators of what the test is intended to measure.

Measures of Student Progress. Measures of student progress describe changes in student performance across time.

Sampling. Sampling is a procedure that is used to select a small number of observations representative of a larger population. In STAAR, sampling involves the selection of a set of Texas students representative of the entire body of Texas students. The results from well-drawn samples allow TEA to estimate characteristics of the larger Texas student population.

Performance Standards

A critical aspect of any statewide testing program is the establishment of performance levels that provide a frame of reference for interpreting test scores. After an assessment is administered, students, parents, educators, administrators, and policymakers want to know, in clear language, how students performed on that assessment.

Performance standards help relate test performance directly to the student expectations expressed in the state curriculum in terms of what knowledge and skills students are expected to demonstrate upon completion of each grade or course. Performance standards, therefore, describe the level of competence students are expected to exhibit on an assessment.
Standard setting is the process of establishing the cut scores on an assessment that define performance levels. For example, the STAAR standard-setting process established two cut scores on each assessment, creating three performance levels: Level I: Unsatisfactory Academic Performance, Level II: Satisfactory Academic Performance, and Level III: Advanced Academic Performance.

The Technical Details and Procedures section of this chapter provides information about the standard-setting framework and the specific standard-setting processes that were used to establish the performance standards for the various tests in the Texas assessment program.

Item Analyses

Several statistical analyses are conducted using the student performance data collected for each item. Item analyses are conducted annually for the purpose of reviewing the quality of newly field-tested items to help determine which items might be included as operational items in future test administrations. The Technical Details and Procedures section of this chapter provides information about the various item statistics that are generated as part of the item analyses.

Scaling

Scaling is the process of associating numbers with a characteristic of interest such as temperature, time, speed, etc. Multiple scales can be used to provide information about measurable quantities for a single characteristic of interest. For example, temperature is frequently described using the Fahrenheit scale: “The high today will be 102 degrees Fahrenheit.” However, the same temperature can also be described using a different scale, such as the Celsius scale: “The high today will be 39 degrees Celsius.” The numbers 102 and 39 both refer to the same temperature, but they describe it using different scales. Similarly, test scores can also be reported using more than one scale.

The number of items that a student answers correctly on a given test is known as the raw score, and this raw score is interpreted in terms of the specific set of test questions answered. In general, raw scores from different test forms are not comparable, as the hypothetical example helps illustrate. Suppose there are two forms of an assessment that are not equally difficult. In this example, Form A is harder than Form B. Suppose also that a student (Student A) takes Form A and earns a raw score of 34 out of 50, while another student (Student B) takes Form B and also earns a raw score of 34 out of 50. Here, Student A’s performance reflects greater achievement than Student B’s performance even though both students receive the same raw score. When a new form of an assessment is administered, the questions on the new form are generally different from those on older forms. Despite the fact that different test forms target the same knowledge and skills, some forms will be slightly easier or slightly more difficult than others. As a result, in most cases, student performance cannot directly be compared across testing administrations using raw scores. To facilitate comparisons, raw scores from different test forms are transformed into scale scores on a common scale.
When scores from different tests are placed onto a common scale, the resulting scores are referred to as scale scores. A scale score is a conversion of the raw score onto a scale that is common to all test forms for that assessment. Unlike raw scores, scale scores allow for direct comparisons of student performance across separate test forms and different test administrations. A scale score takes into account the difficulty level of the specific set of questions on a test form. The scale score describes students’ performance relative to each other and relative to the performance standards across separate test forms. Scaling is the process of creating these scale scores.

Horizontal scale scores are used to describe student performance within a given grade level and content area. Horizontal scales are created separately for each grade level and content area, making no reference to potential similarities in content across grade levels. By contrast, vertical scale scores can be used to describe student performance across grade levels within a content area. A vertical scale places scores of assessments that measure student performance in the same content area at different grade levels onto a common scale, thereby making those scores comparable with one another and facilitating inferences about changes in students’ scores across grades.

For the STAAR assessments, vertical scales have been developed for the following grade levels and content areas: STAAR grades 3–8 mathematics (a single scale for English and Spanish assessments), STAAR grades 3–8 English reading, and STAAR grades 3–5 Spanish reading. TELPAS reading is also reported on a vertical scale. STAAR grades 4 and 7 writing, grades 5 and 8 science, grade 8 social studies, STAAR EOC assessments, and STAAR Alternate 2 assessments are reported on horizontal scales.

Equating

Used in conjunction with the scaling process, equating is the statistical process that takes into account the differences in difficulty across test forms and administrations and allows scores to be placed onto a common scale. Through the equating process, TEA enables the comparison of scale scores across test forms and test administrations.

The following example can help illustrate the purpose of equating. Figure 3.1 provides an example of the relationship between raw scores and scale scores relative to the performance standards (or cut scores) on two STAAR grade 3 reading test forms that vary slightly in difficulty. The scale scores required for the Level II: Satisfactory Academic Performance and Level III: Advanced Academic Performance standards remain the same across both test forms: 1331 is the cut score for Level II (at phase-in 1), and 1555 is the cut score for Level III. The raw scores required to achieve Level II and Level III on the April 2014 form were 21 and 35, respectively, while the raw scores required to achieve Level II and Level III on the April 2015 form were 20 and 34, respectively. At first glance, it might appear that less was expected of students for them to achieve Level II and Level III in 2015 than in 2014, but this would be a misinterpretation. Rather, the test questions on the 2015 test form were slightly more difficult than the test questions on the 2014 test form, when taken as a whole, so a
student who scored a 20 on the more difficult 2015 test form would have been expected to achieve a score of 21 on the easier 2014 test form.

Figure 3.1. Relationship between Raw Scores and Scale Scores at the Performance Standards

<table>
<thead>
<tr>
<th>Raw Score for April 2014</th>
<th>Satisfactory</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Score for April 2015</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>STAAR Grade 3 Reading Scale</td>
<td>1331</td>
<td>1555</td>
</tr>
</tbody>
</table>

Equating is done to ensure equitability. By accounting for the differences across test forms and administrations, equating enables fair comparisons of results when test forms are not exactly equal in difficulty.

Reliability

The concept of reliability is based on the idea that repeated administrations of the same assessment should generate consistent results. Reliability is a critical technical characteristic of any measurement instrument because unreliable scores cannot be interpreted in a valid way. The reliability of test scores must be demonstrated before issues such as validity, fairness, and interpretability can be discussed. There are many different methods for estimating test score reliability. Some methods of estimating reliability require multiple assessments to be administered to the same sample of students; however, obtaining these types of reliability estimates is burdensome on schools and students. Therefore, reliability estimation methods that require only one test administration have been developed and are commonly used for large-scale assessments, including STAAR.

Validity

The results of STAAR and STAAR Alternate 2 are used to make inferences about students’ knowledge and understanding of the Texas Essential Knowledge and Skills (TEKS) curriculum. Similarly, TELPAS test results are used to make inferences regarding English language acquisition aligned with the English Language Proficiency Standards (ELPS).

When test scores are used to make inferences about student achievement, it is important that the assessment support those inferences. In other words, the assessment should measure what it was intended to measure in order for inferences about test results to be valid. For this reason, test makers are responsible for collecting evidence that supports the intended interpretations and uses of the scores (Kane,
Evidence that supports the validity of interpretations and uses of test scores can be classified into the following categories:

- Evidence based on test content
- Evidence based on response processes
- Evidence based on internal structure
- Evidence based on relations to other variables
- Evidence based on consequences of testing

Measures of Student Progress

Student performance is commonly described using performance levels. For example, each STAAR 3–8 and EOC assessment has three performance levels: Level I: Unsatisfactory Academic Performance, Level II: Satisfactory Student Performance, and Level III: Advanced Academic Performance. This information is useful in describing students' current knowledge and skills. However, the overall description of student achievement can be enhanced by providing student progress measures that convey information about how performance in the current year compares to performance in the prior year.

Sampling

Sampling plays a critical role in the research and annual test-development activities that are necessary to support the Texas assessment program. The assessment program affects all students (i.e., the “population” of students) in Texas. A sample is a group of students smaller than the entire population that can be used to represent the overall population. Through the careful selection of student samples, TEA is able to gather reliable information about student performance on its assessments while minimizing campus and district burden. In particular, sampling is used in the Texas assessment program for research studies, audits, and field testing.

In general, research studies involve assessing a sample of Texas students under various testing conditions in order to collect evidence supporting the technical quality of the assessment program. Audits allow for the collection of information from school districts that can be used to evaluate training, administration, and scoring of the STAAR assessments. Results from field testing are used to evaluate statistical properties of newly developed test items that have not yet been used on an operational test form.

Because the results will be generalized to the overall student population, the way in which a sample of students is selected is critical. Samples are carefully selected to mirror important characteristics of the state population such as gender, ethnicity, and campus size.
Technical Details and Procedures

Performance Standards

Performance standards directly relate levels of test performance to what students are expected to learn, as described in the statewide curriculum. This is done by establishing cut scores that distinguish performance levels or categories.

The STAAR assessments (including STAAR Spanish, STAAR L, and STAAR A) have two cut scores that identify three performance levels:

- Level I: Unsatisfactory Academic Performance
- Level II: Satisfactory Academic Performance
- Level III: Advanced Academic Performance

For STAAR Alternate 2, the performance levels are as follows:

- Level I: Developing Academic Performance
- Level II: Satisfactory Academic Performance
- Level III: Accomplished Academic Performance

The TELPAS assessments have three cut scores that identify four performance (or English language proficiency) levels:

- Beginning
- Intermediate
- Advanced
- Advanced High

Standard setting is the process of establishing cut scores that define the performance levels on an assessment. This section describes the standard-setting framework and process for the STAAR and TELPAS testing programs.
STANDARD SETTING FOR STAAR

As Texas implemented the STAAR program, TEA used an evidence-based standard-setting approach (O’Malley, Keng, & Miles, 2012) to determine the cut scores for the three performance levels (Level I: Unsatisfactory Academic Performance, Level II: Satisfactory Academic Performance, Level III: Advanced Academic Performance).

Standard setting for STAAR involved a process of combining policy considerations, the TEKS content standards, educator knowledge about what students should know and be able to do, and information about how student performance on statewide assessments aligns with performance on other assessments. Standard-setting advisory panels, made up of diverse groups of stakeholders, considered the interaction of all these elements for each STAAR assessment. Figure 3.2 illustrates the critical elements of the evidence-based standard-setting approach that was used by Texas to establish the STAAR performance standards.

Figure 3.2. Critical Elements of the Evidence-Based Standard-Setting Approach

Each element of the evidence-based standard-setting approach as it relates to STAAR is described below.

- **TEKS Curriculum Standards.** The TEKS curriculum standards are designed to reflect the knowledge and skills students need to succeed in their postsecondary (college and career) endeavors and to compete globally. They provide the underlying basis for several key components of the standard-setting process, including the performance labels, policy definitions, and specific performance level descriptors.

- **Assessment.** Each STAAR assessment has been developed to measure the knowledge and skills described in the TEKS curriculum standards. Each STAAR assessment is based on the student expectations and reporting
categories specified in the STAAR assessed curriculum document and the STAAR test blueprint.

- **Policy Considerations and External Validation.** Research studies that empirically correlated performance on the STAAR assessments with scores on other related measures or external assessments were conducted and used to inform the standard-setting process. Stakeholders and experts with experience in educational policy and knowledge of the Texas assessment program considered the results of the research studies when making recommendations about reasonable ranges for setting performance standards.

- **Expertise and Knowledge about Students and Subject Matter.** Texas educators, including classroom teachers and curriculum specialists from elementary, secondary, and higher education, brought content knowledge and classroom experience to the standard-setting process. They played an integral role in developing the performance labels, policy definitions, and specific performance level descriptors, and in recommending the performance standards.

- **Standard Setting.** Within the framework of evidence-based standard setting, an established standard-setting method, such as item mapping with external data (Ferrara, Lewis, Mercado, D’Brot, Barth, & Egan, 2011; Phillips, 2012), was used to make recommendations for the performance standards.

Using this standard-setting framework, TEA defined and implemented a nine-step process to establish the performance standards for the STAAR and STAAR Alternate 2 assessments. Table 3.1 provides descriptions of each of the steps in the STAAR standard-setting process.
Table 3.1. The Nine-Step STAAR Standard Setting Process

<table>
<thead>
<tr>
<th>Standard Setting Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Conduct validity and linking studies</td>
<td>External validity evidence was collected to inform standard setting and support interpretations of the performance standards. Scores on each assessment were linked to performance on other assessments in the same content area.</td>
</tr>
<tr>
<td>2. Develop performance labels and policy definitions</td>
<td>Committees recommended performance categories, performance category labels, and general policy definitions for each performance category.</td>
</tr>
<tr>
<td>3. Develop grade/course specific performance level descriptors (PLDs)</td>
<td>Committees consisting primarily of educators developed performance level descriptors (PLDs) as an aligned system, describing a reasonable progression of skills within each content area (mathematics, English, science, and social studies).</td>
</tr>
<tr>
<td>4. Convene a policy committee and/or develop reasonable ranges for performance standards</td>
<td>For the STAAR EOC assessments, a committee considered policy implications of performance standards and empirical study results and made recommendations to identify reasonable ranges for performance standards (neighborhoods) for the cut scores. The STAAR EOC recommendations served as the foundation for decisions made regarding STAAR 3–8 and STAAR Alternate 2 assessments.</td>
</tr>
<tr>
<td>5. Convene standard setting committees</td>
<td>Committees consisting of K–12 educators and higher education faculty used the performance labels, policy definitions, PLDs, and neighborhoods to recommend cut scores for each STAAR assessment.</td>
</tr>
<tr>
<td>6. Review performance standards for reasonableness</td>
<td>TEA reviewed the cut-score recommendations across content areas.</td>
</tr>
<tr>
<td>8. Implement performance standards</td>
<td>Once established, performance standards were reported to students for the spring 2012 administration with phase-in standards applied.</td>
</tr>
<tr>
<td>9. Review performance standards</td>
<td>Performance standards are reviewed at least once every three years.*</td>
</tr>
</tbody>
</table>

*In June 2013, the 83rd Texas Legislature enacted House Bill 5, which removed the requirement to convene standards review panels. However, TEA and the commissioner of education review statewide performance relative to the standards after each administration to help inform decisions about the appropriate schedule for the phase-in of standards.

More detail about each step in the STAAR standard-setting process is given in the “STAAR Standard Setting Technical Report” available on the STAAR Performance Standards webpage of TEA’s Student Assessment Division website. A standard-setting report will be available soon for the STAAR Alternate 2 program.
TECHNICAL DIGEST 2014 – 2015

CHAPTER 3

Standard Technical Processes

STANDARD SETTING FOR TELPAS

TELPAS grades 2–12 reading proficiency level standards were established in 2008 when the Texas Assessment of Knowledge and Skills (TAKS) was the academic assessment in Texas. A two-phase approach was used to set the 2008 proficiency level standards. During the first phase, an internal work group reviewed item-level data, test-level data, and impact data to recommend a set of cut score ranges for each grade or grade cluster assessment. During the second phase, an external review group of state educators recommended specific cut scores after reviewing the cut score ranges from the first phase, the test forms on which the first-phase recommendations were based, and impact data.

The move from TAKS to STAAR in 2011–2012 made it necessary to review the original TELPAS reading proficiency level standards so that performance on TELPAS could still be a meaningful indicator of the level of English language proficiency required to access the language in STAAR assessments. In August 2013, a standards review was conducted with committees of educators. TEA used an evidence-based standard-setting approach to determine the cut scores for the four proficiency level categories. As with most STAAR standard settings, the item mapping with external data method (Ferrara, Lewis, Mercado, D’Brot, Barth, & Egan, 2011; Phillips, 2012) was used, along with validity study information, to recommend the performance standards. The commissioner of education approved the new standards, which were first implemented during the 2014 spring administration of TELPAS reading.

Item Analyses

Several statistical analyses, based on both classical test theory and item response theory (i.e., the Rasch measurement model), are used to analyze the data collected for field-test items. Item analyses are conducted annually for the purpose of reviewing the quality of newly field-tested items to help determine which items may be included as operational test items in a future test administration.

Statistics generated for each item include p-value, point-biserial correlation, Rasch item difficulty, Rasch fit, and response/score point distribution. An analysis of group differences in performance is also conducted. The following sections provide descriptions of each statistic.

P-Value

The p-value indicates the proportion of the total group of students answering a multiple-choice or gridded-response item correctly. An item’s p-value shows how difficult the item was for the students who took the item. An item with a high p-value, such as 0.90 (meaning that 90 percent of students correctly answered the item), is a relatively easy item. An item with a low p-value, such as 0.30 (meaning that only 30 percent of students correctly answered the item), is a relatively difficult item.
POINT-BISERIAL CORRELATION
The point-biserial correlation describes the relationship between a student’s performance on a multiple-choice or gridded-response item (scored correct or incorrect) and performance on the assessment as a whole. A high point-biserial correlation indicates that students who answered the item correctly tended to score higher on the entire test than those who missed the item. In general, point-biserial correlations less than 0.20 indicate a potentially weaker-than-desired relationship.

Note that the point-biserial correlation may be weak on items with very high or very low p-values. For example, if nearly all students get an item correct (or incorrect), that item does not provide much useful information for distinguishing between students with higher performance and students with lower performance on the entire test.

RASCH ITEM DIFFICULTY
The Rasch item difficulty estimate is another indicator of item difficulty. In contrast to p-values, which are influenced by the ability level of the examinees who took the item, Rasch item difficulties can be compared across test forms and across different samples of students taking an item across test administrations. Items with low Rasch item difficulty values (e.g., −1.5) are relatively easy, and items with higher values (e.g., +1.2) are relatively difficult.

RASCH FIT
The Rasch fit statistic indicates the extent to which student performance on a multiple-choice or gridded-response item is similar to what would be expected under the Rasch measurement model. Specifically, items with good Rasch fit have relatively few unexpected responses (e.g., low-scoring students answering difficult items correctly or high-scoring students missing easy items). In general, a Rasch fit value greater than 1.3 may indicate that the item fits the Rasch model poorly.

RESPONSE/Score POINT DISTRIBUTION
The response/score point distribution represents the percentage of students responding to each of the answer choices (e.g., A, B, C, or D) for a multiple-choice item or the percentage of students who received each of the score points for a written composition prompt or short answer item (e.g., 0, 1, 2, 3). Response/score point distributions are provided for the entire group of students and for various demographic groups (e.g., gender and ethnicity for STAAR) or for proficiency level groups (e.g., Beginning, Intermediate, Advanced, and Advanced High for TELPAS).

GROUP DIFFERENCE ANALYSIS
Statistics from a group difference analysis provide information about how different student groups (e.g., male, female, African American, Hispanic, or white students) performed on an item. Such analyses help identify items on which a group of students performed unexpectedly well or poorly. This is referred to as differential item functioning (DIF). Two statistical indicators of DIF are used in the Texas assessment
program: the Mantel-Haenszel alpha and the ABC DIF classification (also known as the ETS DIF classification; Petersen, 1987; Zieky, 1993).

MANTEL-HAENSZEL ALPHA

To calculate Mantel-Haenszel alpha, students are first divided into categories of similar proficiency. An odds ratio is calculated for each of those proficiency categories, where the odds ratio equals the odds of answering correctly for the designated reference group (e.g., males) divided by the odds of answering correctly for the focal group (e.g., females). These odds ratios are combined across proficiency categories to obtain a common odds ratio, known as the Mantel-Haenszel (MH) alpha. If the value of MH alpha is 1, students of similar proficiency, regardless of group membership (e.g., males or females), are equally likely to answer the item correctly. If the MH alpha value is statistically significantly greater than 1, the chance of success on the item is better for the reference group (e.g., males) than for the focal group (e.g., females) when comparing students of similar proficiency. Statistically, a MH alpha value significantly less than 1 indicates the item is easier for the focal group compared to similarly proficient students in the reference group.

ABC DIF CLASSIFICATION

The ABC DIF classification is based on MH alpha, but it takes into account both statistical and practical significance when examining an item for DIF. Each item is classified into one of three categories based on each group comparison: “A” means negligible or no DIF, “B” means moderate DIF, and “C” means large DIF (refer to Zieky, 1993, for more information). Plus and minus signs (+/−) indicate the direction of DIF. A plus sign indicates that the item is unexpectedly easy for the focal group (e.g., females), and a minus sign indicates that the item is unexpectedly easy for the reference group (e.g., males). The ABC DIF classification is currently used as the DIF indicator for items on the STAAR assessments and the TELPAS reading assessments.

USE OF DIF ANALYSIS RESULTS

It should be noted that DIF analyses merely serve to identify test items that have unusual statistical characteristics related to student group performance. The DIF analyses alone do not prove that specific items are biased. Such judgments are made by item reviewers who are knowledgeable about the state’s content standards, instructional methodology, and student testing behavior.

Scaling

There are three scales that underlie the STAAR, STAAR Alternate 2, and TELPAS reading assessments: the raw score scale, the Rasch scale, and the reporting scale.

- The raw score scale is defined as the number of items answered correctly regardless of difficulty and includes weighting of short answer responses or written compositions, if applicable.
The Rasch scale is a transformation of the raw scores onto a scale that takes into account the difficulty of the items and is comparable across different test forms and test administrations.

The reporting scale is a linear transformation of the Rasch scale, through scaling constants, onto a user-friendly scale. Because the transformation is linear, the reporting scale also takes into account the difficulty of the items. The reported scale scores are comparable and maintain performance standards across test forms and test administrations.

The following sections detail the scaling process in terms of establishing the Rasch scale and transforming the scores on the Rasch scale into the reported scale scores.

THE SCALING PROCESS

The scaling process places test score data from different tests onto a common scale. There are three primary approaches to scaling: subject-centered, stimulus-centered, and response-centered (Crocker & Algina, 2006; Torgerson, 1958). Subject-centered approaches locate students on a scale according to the amount of knowledge each student possesses. By comparison, stimulus-centered approaches place the test items or stimuli on a scale according to the amount of knowledge required to answer each item correctly. Response-centered approaches can be thought of as a combination of subject-centered and stimulus-centered approaches and therefore are the most complex. Response-centered approaches simultaneously locate students and items on a scale based on how students respond to the items and how difficult the items are. TEA scales its assessments using a response-centered approach that involves specialized statistical methods that can estimate both student proficiency and the difficulty of a particular set of test items. Specifically, Texas assessments use a statistical model known as the Rasch Partial-Credit Model (RPCM) to place test items and measures of student proficiency on the same Rasch scale across test forms and test administrations. Scores on the Rasch scale are then transformed to more user-friendly scale scores to facilitate interpretation.

RASCH PARTIAL-CREDIT MODEL (RPCM)

Test items (whether multiple-choice, gridded-response, short answer, or written composition) for all Texas assessments are scaled and equated using the RPCM. The RPCM is an extension of the Rasch one-parameter Item Response Theory (IRT) model attributed to Georg Rasch (1966), as extended by Wright & Stone (1979), Masters (1982), Wright & Masters (1982), and Linacre (2001). The RPCM was selected because of its flexibility in accommodating multiple-choice data as well as multiple response category data (e.g., short answer items scored from zero to three points). The RPCM maintains a one-to-one relationship between scale scores and raw scores, meaning each raw score is associated with a unique scale score. An advantage to the underlying Rasch scale over the raw score scale is that it allows for comparisons of student performance across years. Additionally, the underlying Rasch scale enables the maintenance of equivalent performance standards across test forms.
The RPCM is defined by the following mathematical function where, for a given item \(i \) involving \(m_i + 1 \) score categories, the probability of person \(n \) scoring \(x \) is given by:

\[
P_{xni} = \frac{\exp\sum_{j=0}^{x}(\theta_n - \delta_{ij})}{\sum_{k=0}^{m_i} \exp\sum_{j=0}^{k}(\theta_n - \delta_{ij})}, x = 0, 1, \ldots, m_i
\]

(1)

The RPCM provides the probability of scoring each value of \(x \) on item \(i \) as a function of the student \(n \)'s proficiency estimate \(\theta_n \), and the step difficulties \(\delta_{ij} \), which indicate the proficiency level at which the probability of scoring \(x \) equals the probability of scoring \(x+1 \) (refer to Masters, 1982, for an example). Note that for multiple-choice and gridded-response questions, there are only two score categories: 0 for an incorrect response and 1 for a correct response. In this case, the RPCM reduces to the standard Rasch one-parameter IRT model and the resulting single-step difficulty is more properly referred to as an item difficulty.

Some of the advantages of RPCM scaling are as follows.

- All items, regardless of type, are placed on the same common Rasch scale.
- Students’ achievement results are placed onto the same scale as the items, so it is possible to make inferences about which items a student is likely to get correct or incorrect based on the student’s proficiency. This facet of the RPCM is helpful in describing test results to students, parents, and teachers.
- Field-test items can be placed on the same Rasch scale as items on the operational assessment. This enables student performance on the field-test items to be linked to all items in the item bank, which is useful in the construction of future test forms.
- The RPCM allows for the pre-equating of future test forms, which can help test builders evaluate test forms during the test construction process.
- The RPCM also supports post-equating of the test, which establishes a link between the current and previous test forms. Linking the current test form to previous test forms enables comparisons of test difficulties and passing rates across test forms given in different administrations. Because both pre-equated and post-equated item difficulty estimates are available, any drift in scale or difficulty can be quantified.

Student test scores on the Rasch scale are converted using a linear transformation to a more user-friendly reporting scale.

HORIZONTAL SCALING

The STAAR scale scores represent linear transformations of Rasch-based proficiency estimates (\(\theta \)). For horizontal scale scores, this transformation is made by first multiplying any given \(\theta \) by a slope (\(A \)) and then adding an intercept (\(B \)). This operation is represented by the following equation:
The slope and intercept in Equation (2) are called scaling constants, and they are derived using a method described by Kolen and Brennan (2004). For STAAR and STAAR Alternate 2, two features of the desired scale score system were established in advance: a scale score value at the passing standard and the standard deviation of the scale. The A scaling constant is calculated as follows:

$$A = \frac{\sigma_{SS}}{\sigma_\theta}$$

Equation (3)

In Equation (3), σ_{SS} represents the desired standard deviation of the scale, and σ_θ represents the standard deviation of Rasch-based θ values among a sample group.

For example, the standard deviation σ_θ was established for each STAAR EOC assessment using all students who took that assessment in spring 2011 (or spring 2013 in the case of English I and English II). For the STAAR 3–8 horizontal scales, the sample group for a given assessment consisted of all students who took that assessment in spring 2012. For the STAAR Alternate 2 horizontal scales, the sample group for a given assessment consisted of all students who took that assessment in spring 2015. The B scaling constant is calculated as follows:

$$B = SS_{Level_{II}} - \frac{\sigma_{SS}}{\sigma_\theta} \times \theta_{Level_{II}}$$

Equation (4)

Because each assessment’s horizontal scale is derived using its own sample group, σ_θ varies across assessments. Likewise, each assessment has a unique Level II performance standard in Rasch units, so $\theta_{Level_{II}}$ varies across assessments. $SS_{Level_{II}}$ and σ_{SS} are set to be consistent within academic content areas but not across all assessments. Once these constants are established, the same transformations are applied each year to the Rasch proficiency estimates derived from performance on that year’s test questions.

VERTICAL SCALING

A vertical scale score system allows for direct comparison of student test scores across grade levels within a content area. Vertical scaling refers to the process of placing scores of tests in the same content area at different grade levels onto a common scale. In order to implement a vertical scale, research studies were needed to determine differences in difficulty across grade levels or grade clusters. Such studies were conducted for the STAAR grades 3–8 mathematics and reading assessments in spring 2012, the STAAR Spanish grades 3–5 reading assessments in spring 2012, and for the TELPAS reading assessments in spring 2008. A new STAAR grades 3–8 mathematics vertical scale was developed after the spring 2015 administration because of changes to the assessed curriculum and assessment blueprint reflecting revisions to the mathematics TEKS. For these studies, embedded field-test positions from several regular field-test forms (refer to the Field-Test Equating section of this chapter) included vertical linking items instead of field-test items. The studies assumed a
common-item nonequivalent groups design (refer to the Equating section of this chapter), in which items from different grade levels appear together on adjacent grade-level tests, allowing for direct comparison of item difficulties across grade levels. By embedding vertical linking items across grade levels, it is possible to calculate linking constants equal to the average differences in item difficulties of vertical linking items between adjacent grade pairs. These linking constants are used to create a vertical scale.

For detailed information about vertical scaling studies, refer to the Assessment Reports and Studies webpage on TEA’s Student Assessment Division website.

Similar to the horizontally scaled assessments, vertically scaled scale scores also reflect linear transformations of Rasch-based proficiency level estimates (θ). Vertically scaled scores, however, include an extra scaling constant (V_g) that varies across each grade (g). This is given by the equation below.

$$SS_{\theta} = A \times (\theta - V_g) + B$$

(5)

SS_{θ} is the scale score for a Rasch proficiency level estimate (θ). The scaling constants A and B in Equation (5) are derived in the same way as for horizontal scale score systems, except that the scale score for one of the performance standards (e.g., Level II) is fixed only for one of the assessments in the vertical scale (e.g., STAAR grade 8 mathematics for the STAAR mathematics vertical scale), and the standard deviation is calculated across all of the assessments (e.g., all STAAR grades 3–8 mathematics assessments). The A scaling constant is calculated as follows:

$$A = \frac{\sigma_{SS}}{\sigma_{\theta}}$$

(6)

In Equation (6), σ_{SS} represents the desired standard deviation of the scale across all assessments, while σ_{θ} represents the standard deviation of Rasch-based θ values for a sample group. The STAAR 3–8 reading vertical scale sample group consisted of all students who took a test form with embedded vertical scale items in spring 2012. For the STAAR 3–8 mathematics vertical scale, the sample group consisted of all students who took a test form with embedded vertical scale items in spring 2015. Like field-test items, vertical scale items are not used to calculate student scores.

The B scaling constant is calculated as follows:

$$B = SS_{Level_II} - \frac{\sigma_{SS}}{\sigma_{\theta}} \times \theta_{Level_II}$$

(7)

In Equation (7), SS_{Level_II} represents the desired scale score at the Level II cut for the final assessment in the vertical scale, and θ_{Level_II} represents the approved Level II performance standard (in Rasch units) for the final assessment in the vertical scale. In Equation (7), σ_{SS} represents the desired standard deviation of the scale, while σ_{θ} represents the standard deviation of Rasch-based θ values in the sample group.
Equating

As mentioned in the Scaling section of this chapter, Texas uses the RPCM to scale its assessments. Kolen and Brennan (2004) describe three data collection designs that facilitate the equating of IRT scales:

1. **Single group design.** Two or more tests are administered to the same group of examinees, with the test administration order counterbalanced to compensate for time and/or fatigue effects.

2. **Randomly equivalent groups design.** Two or more tests are administered to randomly equivalent groups of examinees.

3. **Common-item nonequivalent groups design.** A common set of test items is administered to nonequivalent groups (i.e., groups that do not have the same distribution of student proficiency).

Texas uses the common-item nonequivalent groups design to equate most of its tests because of its relative ease of implementation and, more importantly, because it is less burdensome on students and campuses. Under the common-item nonequivalent groups design, each sample of students takes a different form of the test with a set of items that is common across tests. The common items, sometimes referred to as equating items, can be embedded within the test or can stand alone as a separate test. The specific data collection designs and equating methods used in Texas are described below. Refer to Kolen and Brennan (2004) or Petersen, Kolen, and Hoover (1989) for a more detailed explanation of equating designs and methods.

TYPES OF EQUATING

There are three stages in the item and test development process related to equating:

1. Pre-equating test forms that are under construction

2. Post-equating operational test forms after administration

3. Equating field-test items after administration

These three stages allow the established performance standards for the assessments to be maintained on all subsequent test forms. For example, the STAAR EOC performance standards for Algebra I, biology, and U.S. history were approved by the commissioner of education in April 2012, and those STAAR EOC assessments were administered for the first time in spring 2012. Thus, the scale-score systems for those STAAR EOC assessments were first implemented with the spring 2012 administration. All subsequent test forms for a given STAAR EOC assessment have been or will be equated to this scale score system. STAAR and TELPAS reading assessments all require annual equating.
Figure 3.3 illustrates the three stages of the equating process. While field-test equating focuses on equating individual items to the Rasch scale of the item bank, pre-equating and post-equating both focus on equating test forms to maintain score comparability and consistent performance standards. Pre-equating and post-equating methods take into account differences in the difficulty of test forms.

Figure 3.3. Three Stages of the Equating Process

![Equating Process Diagram]

PRE-EQUATING

The pre-equating process occurs when a newly developed test is placed onto the Rasch scale prior to administration. The goal of pre-equating is to produce a table that establishes the link between raw scores and scale scores before the test is administered. Because the difficulty of the items was established in advance (the items appeared previously on one or more test forms as field-test or operational items), the difficulty level of newly developed test forms can be estimated, and the anticipated connection among the raw scores, scale scores, and performance level standards can be identified. Once the anticipated connection among raw scores, scale scores, and performance levels has been established, a raw score to scale score (RSSS) conversion table can be produced that maps each raw score to a scale score and indicates the performance level cut scores.

The pre-equating process involves the following steps.

1. Select items that have been equated to the Rasch scale and are available in the item bank.
2. Construct a new test form that meets the content specifications.
3. Evaluate the test form under construction against Rasch-based difficulty targets.
4. Develop an RSSS conversion table for the operational test form using the Rasch-based item difficulties.

Pre-equating is conducted for all assessments for which scale scores are reported as part of the test construction process. In many cases, post-equating (described in the following section) is also conducted. For some assessments, however, post-equating is...
not conducted, and the pre-equated RSSS conversion tables are used to assign scale scores. A pre-equating only model might be preferred when a small or non-representative sample of students is taking the operational test form or when faster reporting of scores is a priority. For example, for the STAAR EOC mathematics, science, and social studies assessments, pre-equating is used in order to report scale scores as quickly as possible.

POST-EQUATING

Post-equating might be preferred when changes in item presentation (e.g., position, formatting) or instructional practice have occurred since the time an item was field tested because those changes might impact the estimated difficulty of the item. Post-equating in the Texas assessment program employs conventional common-item nonequivalent groups equating design, whereby an equating constant is calculated and used to transform the Rasch difficulty obtained from the current calibration to the Rasch difficulty established by the original test form. This equating constant is defined as:

\[t_{a,b} = \frac{\sum_{i=1}^{k} (d_{i,a} - d_{i,b})}{k} \]

(8)

where \(t_{a,b} \) is the equating constant, \(d_{i,a} \) is the Rasch difficulty of item \(i \) on current form \(a \), \(d_{i,b} \) is the Rasch difficulty of item \(i \) on original form \(b \), and \(k \) is the number of common items (Wright, 1977). Once the equating constant is calculated, it is applied to all item difficulties, transforming them so they are on the same scale as the original form. After this transformation, the item difficulties from the current administration of the test are directly comparable to the item difficulties from the original form and to the item difficulties from all past administrations of the test (because equating was also performed on those items). These updated item difficulty estimates are then used to create the RSSS conversion table that is used to report scale scores. Both item difficulty and person proficiency are on the same scale under the Rasch model. Therefore, the resulting scale scores are also comparable from year to year.

The way in which equating items are identified differs between STAAR and TELPAS. For TELPAS, the equating item set consists of all the base-test items. The base-test items’ Rasch difficulty values from field testing are compared to their values from operational testing to calculate the equating constant. Figure 3.4 illustrates the source of the equating items for the TELPAS post-equating design. The arrows in the figure indicate the transformation of the base-test Rasch item difficulties for the current year onto the Rasch scale for an assessment through the same items’ field-test Rasch item difficulties from their appearance in previous assessments. In general, the field-test items are located around the middle of the test form. Therefore, the base-test position of an item is different from its field-test position. Item position effects are assumed to cancel out because half of the items will move to an earlier serial position in the test and half will move to a later serial position in the test.
TELPAS post-equating is conducted using all or nearly all of the student data, so no sampling is needed. The initial equating item set for most TELPAS assessments consists of all the base-test items. However, the stability of the Rasch item difficulty estimates is monitored from field test to base test and, if an item’s Rasch item difficulty appears less stable than expected, the item will be excluded from the equating item set during the stability check. Prior to applying the final equating constant, the number of items in the equating set is compared to the base test, and the content representation of the equating item set is compared to the base test to verify that the test content is appropriately represented in the equating item set.

The STAAR base-test items do not comprise the equating item set. Instead, the equating item set is placed in field-test positions on a small number of test forms instead of field-test items. For STAAR, the equating item set consists of a previously designated group of equating items that have been evaluated for statistical properties and content alignment. Figure 3.5 illustrates the source of the common item sets (referred to as LINK in the figure) for the STAAR post-equating design. The equating items appear in the same item positions on both the current year and previous year test forms, which minimizes item position effects for the equating items. The number of equating forms required for the equating item sets depends on the number of items on the base test, the number of items needed for the equating items to be content representative of the base test, and the size of the testing population for each STAAR assessment.
In order to obtain Rasch difficulty estimates on the same scale for the equating items on multiple forms, a concurrent calibration across the equating forms is conducted using an incomplete data matrix (Kolen & Brennan, 2004; Wingersky & Lord, 1984). Figure 3.6 illustrates the incomplete data matrix for the equating forms with the equating item sets (referred to as LINK in the figure). Forms 1 through 4 represent forms with equating items, and forms 5 through N represent forms with field-test items.

STAAR post-equating is conducted on a sample of students in order to provide score reporting in a timely manner. The requirements for the sample include a minimum sample size of 100,000 students, regional representation similar to the student population, ethnic distribution similar to the student population, and a representative raw score distribution. Only the test forms with the equating item sets are used in determining the equating constant that will place the base-test Rasch item difficulties on the Rasch scale common across administrations. However, student data from all test forms are used in estimating the Rasch item difficulties for the base-test items. The initial equating item set for most of the STAAR assessments consists of all equating items. However, the stability of the Rasch item difficulty estimates for the equating items is monitored from year to year. If an item’s Rasch item difficulty is less stable
than expected, the item will be excluded from the equating item set during the stability check. Prior to applying the final equating constant, the number of items in the equating set is compared to the base test, and the content representation of the common item set is compared to that of the base test to verify that the reporting categories are appropriately represented.

The post-equating procedure involves the following steps.

1. Tests are assembled and evaluated using Rasch-based difficulty targets.
2. Data from the test administrations are sampled.
3. Rasch item difficulty calibrations are conducted using the sampled data.
4. A post-equating constant is calculated as the difference in mean Rasch item difficulty of items in the equating item set on the scale of the item bank versus the operational scale.
5. The post-equating constant is applied to the Rasch difficulty estimates for the operational test items, and RSSS conversion tables are produced.

The full equating process is independently replicated by multiple psychometricians (from TEA and external vendors) for verification.

FIELD-TEST EQUATING

To replenish the item bank (as new tests are created each year), newly developed items must be field tested and equated to the Rasch scale of the assessment. The STAAR, STAAR Alternate 2, and TELPAS reading assessments, for example, use embedded field-test designs to collect data on field-test items.

In embedded field-test designs, after a newly constructed item has cleared the review process, it is embedded in a test form along with operational items. The operational items are common across all test forms and count toward an individual student’s score, but each field-test item appears on only a small number of test forms (typically one form) and does not count toward students’ scores. These forms are then spiraled, meaning that they are packaged in such a way that the test forms are assigned to students randomly. Test forms are spiraled so that a representative sample of examinees responds to the field-test items. A calibration of the Rasch item difficulties for both the base-test items and the field-test items is conducted. Wright’s (1977) common-items equating procedure is then used to transform the Rasch difficulty of the field-test items to the same Rasch scale as the common items, as described below.
1. Obtain Rasch item difficulty estimates for the combination of operational and field-test items.

2. Using the operational base-test items as the common items, calculate an equating constant equal to the difference between the mean Rasch item difficulty estimates for the common items on the base Rasch scale and for the common items as estimated with the field-test items.

3. The field-test item difficulties are placed on the scale of the item bank by adding the equating constant to each of the field-test Rasch item difficulties.

Because the Rasch scale of the common items had previously been equated to the base scale, the equated field-test items are also on the base scale.

Matched Sample Comparability Analysis

When the same assessment is administered in paper and online delivery modes, studies can be conducted to determine whether using the same RSSS conversion table for both delivery modes is warranted. Texas uses a comparability methodology known as Matched Samples Comparability Analysis (MSCA; Way, Davis, & Fitzpatrick, 2006). In this design, a bootstrap sampling approach, described in the Sampling section of this chapter, is used to select online and paper student samples wherein each selected online tester is matched to a paper tester with the same demographic variables and similar performance on previous tests. Item statistics, such as item p-values and Rasch item difficulties, are compared between the matched samples. Raw score to scale score conversions are calculated using Rasch scaling, as described above. The sampling is then replicated or repeated many times. RSSS conversion tables are retained and aggregated across replications, and the mean and standard deviation of the scale scores are determined at each raw score point to obtain the final RSSS conversion table and the standard errors of linking, respectively. The equivalency of online and paper scale scores is then evaluated using the standard errors and raw scores as guides. If the two sets of scores are considered not comparable, it might be necessary to use a separate RSSS table for each mode of delivery.

Reliability

The concept of reliability is based on the idea that repeated administrations of the same test should generate consistent results. The degree to which results are consistent is assessed using a reliability coefficient. Reliability is a critical technical characteristic of any measurement instrument because unreliable scores cannot be interpreted in a meaningful way.

Internal Consistency Estimates

Reliability coefficients based on one test administration are known as internal consistency measures because they measure the consistency with which students respond to the items within the test. As a general rule, reliability coefficients from 0.70 to 0.79 are considered adequate, those from 0.80 to 0.89 are considered good, and
those at 0.90 or above are considered excellent. However, what is considered appropriate might vary in accordance with how assessment results are used (e.g., for low-stakes or high-stakes purposes). Two types of internal consistency measures used to estimate the reliability of Texas assessments are described below.

- **Kuder-Richardson 20 (KR20)** is used for tests with only multiple-choice items.
- **Stratified coefficient alpha** is used for tests containing a mixture of multiple-choice and constructed-response items.

KR20 is a mathematical expression of the classical test theory definition of test score reliability as the ratio of true score variance (i.e., no measurement error) to observed score variance (i.e., measurement error included). The classical test theory concept of reliability, in general, can be expressed as:

\[
P_{XX}' = \frac{\sigma^2_T}{\sigma^2_X} = \frac{\sigma^2_T}{\sigma^2_T + \sigma^2_E}
\]

(9)

where the reliability \(P_{XX}'\) of test \(X\) is a function of the ratio between true score variance \(\sigma^2_T\) and observed score variance \(\sigma^2_X\), which is further defined as the sum of the true score variance and error variance \(\sigma^2_T + \sigma^2_E\). As error variance is reduced, reliability increases (that is, students’ observed scores are more precise estimates of their true scores). KR20 can be represented mathematically as:

\[
KR_{20} = \frac{k}{k-1} \left[\frac{\sigma^2_X - \sum_{i=1}^{k} p_i(1-p_i)}{\sigma^2_X} \right]
\]

(10)

where \(KR_{20}\) is a lower-bound estimate of the true reliability, \(k\) is the number of items in test \(X\), \(\sigma^2_X\) is the observed score variance of test \(X\), and \(p_i\) is the proportion of students who answered item \(i\) correctly. This formula is used when test items are scored dichotomously.

Coefficient alpha (also known as Cronbach’s alpha) is an extension of KR20 to cases where items are scored polytomously (in more than two possible score categories) and is computed as follows:

\[
\alpha = \frac{k}{k-1} \left[1 - \frac{\sum_{i=1}^{k} \sigma^2_i}{\sigma^2_X} \right]
\]

(11)

where \(\alpha\) is a lower-bound estimate of the true reliability, \(k\) is the number of items in test \(X\), \(\sigma^2_X\) is the observed score variance of test \(X\), and \(\sigma^2_i\) is the observed score variance of item \(i\).

The stratified coefficient alpha is an extension of coefficient alpha used when a mixture of item types appears on the same test. In computing the stratified coefficient alpha as an estimate of reliability, each item type component (multiple-choice, short answer, or written composition) is treated as a subtest. A separate measure of reliability is computed for each component and combined as follows:
Stratified \(\alpha = 1 - \frac{\sum_{j=1}^{c} \sigma_{X_j}^2(1-\alpha_j)}{\sigma_X^2} \)

(12)

where \(c \) is the number of item-type components, \(\alpha_j \) is the estimate of reliability for each item-type component, \(\sigma_{X_j}^2 \) is the observed score variance for each item-type component \(j \), and \(\sigma_X^2 \) is the observed score variance for the total score. For components consisting of multiple-choice or short answer items, coefficient alpha is used as the estimate of component reliability. The correlation between ratings of the first two raters (i.e., interrater reliability) is used as the estimate of component reliability for written compositions.

Interrater Reliability

Assessments that are not composed of traditional multiple-choice and short answer items might require different types of reliability evidence than those described above. For example, TELPAS speaking, listening, and writing involve teachers evaluating students based on their recent demonstrations of English language proficiency in the classroom. As part of the process for evaluating the reliability of such assessments, TEA provides evidence that the teacher observation and resulting evaluation of student performance were appropriately conducted.

To gather such evidence of interrater reliability, two trained evaluators observe the same student performance and then independently provide ratings of that performance. These ratings can then be analyzed, and the extent of agreement (or correlation) between the two sets of ratings can be calculated. The correlation between the two sets of ratings is considered to be a measure of the reliability of the test scores.

Measurement Error

Though test scores for Texas assessments are typically highly reliable, each test score does contain a component of measurement error. This is the part of the test score that is not associated with the characteristic of interest. The measurement error associated with test scores can be broadly categorized as systematic or random. Systematic errors are caused by a particular characteristic of the student or test that has nothing to do with the construct being measured, and they affect scores in a consistent manner (i.e., making them lower or higher). An example of a systematic error would be a language barrier that caused a student to answer questions incorrectly that he or she actually knew the answer to. By contrast, random errors are chance occurrences that may increase or decrease test scores. An example of a random error would be a student guessing the correct answer to a test question. Texas computes the classical standard error of measurement (SEM), the conditional standard error of measurement (CSEM), and classification accuracy for the purpose of estimating the amount of random error in test scores.

Classical Standard Error of Measurement (SEM)

The classical standard error of measurement (SEM) reflects the amount of random variance in a score resulting from factors other than what the assessment is designed.
to measure. Because underlying traits such as academic achievement cannot be measured with perfect precision, the SEM is used to quantify the margin of uncertainty in test scores. For example, factors such as chance error and differential testing conditions can cause a student’s observed score (the score achieved on a test) to fluctuate above or below his or her true score (the student’s expected score). The SEM is calculated using both the standard deviation and the reliability of test scores, as follows:

\[\text{SEM} = \sigma_X \sqrt{1 - p_{XX}^r} \]

(13)

where \(p_{XX}^r \) is the reliability estimate (for example, KR20, coefficient alpha, or stratified alpha) and \(\sigma_X \) is the standard deviation of raw scores on test \(X \). A standard error provides some sense of the uncertainty or error in the estimate of the true score using the observed score. For example, suppose a student achieves a raw score of 50 on a test with an SEM of 3. Placing a one-SEM band around this student’s score would result in a raw score range of 47 to 53. If the student took the test 100 times and 100 similar raw score ranges were computed, about 68 of those score ranges would include the student’s true score.

It is important to note that the SEM provides an estimate of the average test score error for all students regardless of their individual proficiency levels. It is generally accepted (refer to, for example, Peterson, Kolen, & Hoover, 1989) that the SEM varies across the range of student proficiencies. For this reason, it is useful to report not only a test-level SEM estimate but also individual score-level estimates. Individual score-level SEMs are commonly referred to as conditional standard errors of measurement.

CONDITIONAL STANDARD ERROR OF MEASUREMENT (CSEM)

Like the SEM, the CSEM reflects the amount of variance in a score resulting from random factors other than what the assessment is designed to measure, but it provides an estimate conditional on proficiency. In other words, the CSEM provides a measurement error estimate at each score point on an assessment. The CSEM is usually smallest, and thus scores are most reliable, near the middle of the score distribution because achievement tests typically include a relatively large number of moderately difficult items (compared to easy or difficult items), and such items provide more precise information about student proficiency near the middle of the score distribution.

IRT methods for estimating score-level CSEM are used because test- and item-level difficulties for STAAR, STAAR Alternate 2, and TELPAS reading are calibrated using the Rasch measurement model, as described in the Scaling section of this chapter. By using CSEMs that are specific to each scale score, a more precise error band can be placed around each student’s observed score.

CLASSIFICATION ACCURACY

Test scores are used to classify students into performance levels. For the vast majority of students, these classifications are accurate reflections of their performance.
However, all test scores contain error, so some students might be misclassified. To better understand the expected degree of misclassification, TEA conducts an analysis of the accuracy of student classifications into performance levels based on results of tests for which performance standards have been previously established.

The procedures used for computing classification accuracy for Texas assessments are similar to those recommended by Rudner (2001, 2005). Under the Rasch model, for a given true proficiency score θ, the observed proficiency score $\hat{\theta}$ is expected to be normally distributed with a mean of θ and a standard deviation of $SE(\theta)$ (the CSEM). Using this information for a particular level k, the expected proportion of all students that have a true proficiency score between c and d and an observed proficiency score between a and b is:

$$PropLevel_k = \sum_{\theta=c}^{d} \left(\phi \left(\frac{b-\theta}{SE(\theta)} \right) - \phi \left(\frac{a-\theta}{SE(\theta)} \right) \right) \varphi \left(\frac{\theta-\mu}{\sigma} \right)$$

(14)

where ϕ are the cumulative normal distribution functions at the observed score boundaries, and φ is the normal density associated with the true score (Rudner, 2005).

This formula is modified for the current case in the following ways.

- φ is replaced with the observed frequency distribution. This is necessary because the Rasch model preserves the shape of the distribution, which is not necessarily normally distributed.

- The lower bound for the lowest performance level (Level I: Unsatisfactory for STAAR, Level I: Developing for STAAR Alternate 2, and Beginning for TELPAS reading) and the upper bound for the highest performance level (Level III: Advanced for STAAR, Level III: Accomplished for STAAR Alternate 2, and Advanced High for TELPAS reading) are replaced with extreme, but unobserved, true proficiency/raw scores in order to capture the theoretical distribution in the tails.

- In computing the theoretical cumulative distribution, the lower bounds for the Level II performance levels for STAAR and STAAR Alternate 2 and the Intermediate and Advanced performance levels for TELPAS reading are used as the upper bounds for the adjacent lower levels, even though under the Rasch model there are no observed true proficiency scores between discrete and adjacent raw score points. This is necessary because a small proportion of the theoretical distribution exists between the observed raw scores, given that the theoretical distribution assumes a continuous function between discrete and adjacent raw score points.

- Actual boundaries are used for person levels, as these are the current observations.

To compute classification accuracy, the proportions are computed for all cells of an “n performance level by n performance level” classification table. The sum of the diagonal
entries (i.e., the instances of accurate classification) represents the classification accuracy for the test. An example of a classification accuracy table for the STAAR Level II: Satisfactory Academic Performance standard is presented in Table 3.2.

<table>
<thead>
<tr>
<th>True Classification</th>
<th>STAAR Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At or above Level II</td>
</tr>
<tr>
<td>At or above Level II</td>
<td>Proportion of accurate “At or above Level II” classifications</td>
</tr>
<tr>
<td>Below Level II</td>
<td>Proportion of inaccurate “Below Level II” classifications</td>
</tr>
</tbody>
</table>

Validity

In the Texas assessment program, validity refers to the extent to which test scores help educators make appropriate inferences about student achievement. The concepts described here are not types of validity, but types of validity evidence. Validity evidence can be organized into five categories (described in detail below): test content, response processes, internal structure, relations to other variables, and consequences of testing (AERA/APA/NCME, 2014; Schafer, Wang, & Wang, 2009). Such evidence supports the valid interpretation and use of test scores. It must be acknowledged, however, that validation is a matter of degree and is an ongoing process.

EVIDENCE BASED ON TEST CONTENT

Validity evidence based on test content supports the assumption that the content of the test adequately reflects the intended construct. For example, the STAAR test scores are designed to help make inferences about students’ knowledge and understanding of the statewide curriculum standards in the TEKS. Therefore, evidence supporting the content validity of the STAAR assessments maps the test content to the TEKS. Validity evidence supporting Texas’ test content comes from the established test development process and the judgments of content experts about the relationship between the items and the test construct.

The test-development process starts with a review of the TEKS by Texas educators. The educators then work with TEA to define the readiness and supporting standards in the TEKS and help determine how each standard would best be assessed. A test blueprint is developed with educator input, which maps the items to the reporting categories they are intended to represent. Items are then developed based on the test blueprint. Below is a list of steps in the test-development process that are followed each year to support the validity of test content in Texas.

- Develop items based on the reporting categories and item guidelines.
Review items on more than one occasion for appropriateness of item content and difficulty and to eliminate potential bias.

Collect and review data on field-test items to determine appropriateness for inclusion on a test.

Build tests to pre-defined criteria.

Have university-level experts review high school assessments for accuracy of the advanced content.

A more comprehensive description of the test-development process is available in chapter 2, “Building a High-Quality Assessment System.”

Evidence Based on Response Processes

Response processes refer to the cognitive behaviors required to respond to a test item. Texas collects evidence showing that the manner in which students are required to respond to test items supports an accurate measurement of the construct of interest. For example, the STAAR writing test includes a writing component in addition to multiple-choice questions because requiring students to answer multiple-choice questions as well as to respond to writing prompts reflects an appropriate manner for students to demonstrate their writing abilities. Student response processes on Texas’ assessments differ by both item type and administration mode.

The Texas program requires students to respond to four item types: multiple-choice, gridded-response, short answer, and written compositions. Texas gathers evidence to support validity based on response processes from several sources. First, when new item types or changes to the format of existing item types are considered for STAAR assessments, cognitive labs are used to study the way students engage with the various item presentations. In cognitive labs, students “think aloud” while responding to assessment items, and this can provide evidence that students’ cognitive processes are consistent with those expected of a given item type and reflect the knowledge and skills described in the TEKS. Next, test items are pilot-tested with a larger sample of students to gather information about performance on new item types and formats. After new item types and formats are determined to be appropriate, evidence is gathered about student responses through field testing, including statistical information such as item difficulty, point-biserial correlations, and differential item functioning. The evidence is then submitted to educator and expert review.

The process used to score items can provide validity evidence related to response processes. For assessments with constructed-response items, such as short answer items and written compositions, rubrics are used by human readers to score student responses. The validity of student scores is supported if such rubrics accurately describe the characteristics of student responses on a continuum from low to high quality. All rubrics for the STAAR assessments have been validated by educator committees and content experts. In addition, TEA has implemented a rigorous scoring process for the constructed-response items that includes training and qualification requirements for readers; ongoing monitoring during scoring; adjudication and
resolution processes for student responses that do not meet the perfect/adjacent scoring requirements; and rescoring of responses for which concerns have been raised regarding the assigned score by districts, campuses, or teachers. A more comprehensive description of the scoring process for constructed-response items is available in chapter 2, “Building a High-Quality Assessment System.”

When students are given the option to take tests either on paper or online, evidence is necessary to indicate that paper and online response processes lead to comparable score interpretations. Texas conducts comparability studies, using the methodology described in the Equating section of this chapter, to evaluate the comparability of online and paper test score interpretations. Score adjustments might be made when evidence suggests that student responses on paper and online are not comparable.

Evidence Based on Internal Structure

When a test is designed to measure a single construct, the internal components of the test should exhibit a high level of homogeneity that can be quantified in terms of the internal consistency reliability coefficients, as described in the Reliability section of this chapter. Internal consistency estimates are evaluated for Texas assessments for reported student groups, including all students as well as female, male, African American, Hispanic, and white students. Estimates are made for the full assessment as well as for each reporting category within a content area.

Validity studies have also been conducted to evaluate the structural composition of assessments, such as the comparability between two language versions of the same test. For example, a study conducted on the structural equivalence of transadapted tests (Davies, O’Malley, & Wu, 2007) provided evidence that the English and Spanish versions of Texas assessments were measuring the same construct, which supports the internal structure validity of the tests.

Evidence Based on Relationships to Other Variables

Another source of validity evidence is the relationship between test performance and performance on another measure, sometimes called criterion-related validity. The relationship can be concurrent, meaning that performance on two measures taken at the same time are correlated, or the relationship can be predictive, meaning that the current performance on one measure predicts performance on a future measure. The relationship can also be convergent, meaning performance on two measures that are meant to assess the same or similar construct should be strongly correlated, or the relationship can be discriminant, meaning performance on two measures that are meant to assess unrelated constructs should have a weak correlation or no correlation.

A large number of research studies have been conducted to evaluate the relationship between performance on the STAAR assessments and performance on other related tests or criteria. The studies include the following:

- STAAR-to-TAKS comparison studies, which link performance on the STAAR assessments to performance on TAKS assessments (for example, the STAAR grade 7 mathematics to the TAKS grade 7 mathematics);
STAAR linking studies, which link performance on the STAAR assessments across grade levels or courses in the same content areas (for example, grade 4 reading to grade 5 reading, and English I to English II);

STAAR inter-correlation estimates, which evaluate the strength of the relationship (or lack thereof) among scores on the STAAR assessments across different content areas (for example, grade 4 mathematics to grade 4 reading, and English I to biology);

grade correlation studies, which link performance on the STAAR EOC assessments to course grades;

external validity studies, which link performance on the STAAR assessments to external measures (for example, SAT and ACT); and

college students taking STAAR studies, which link performance on the STAAR EOC assessments to college course grades.

For detailed descriptions and results of such studies, refer to the STAAR Performance Standards webpage of TEA’s Student Assessment Division website.

EVIDENCE BASED ON CONSEQUENCES OF TESTING

Consequential validity refers to the idea that the validity of an assessment program should account for both intended and unintended consequences resulting from inferences based on test scores. For example, the STAAR assessments are intended to have an effect on instructional content and delivery strategies; however, an unintended consequence could be the narrowing of instruction, or “teaching to the test.” Consequential validity studies in Texas use surveys to collect input from various assessment program stakeholders to measure the intended and unintended consequences of the assessments.

Given the important stakes associated with the Texas program, the validity of interpretations and uses of test scores is critical. The intended interpretations of test results are stated in the policy definitions of the performance levels, which are provided in the “STAAR Standard Setting Technical Report” available on the STAAR Performance Standards webpage of TEA’s Student Assessment Division website.

Measures of Student Progress

Measures of student progress express a comparison between current and previous student performance. Student progress information provides essential context to understanding students’ current performance. For example, consider a student who achieves Level II: Satisfactory Academic Performance on a STAAR assessment. The interpretation of Level II performance would depend on the performance the student achieved in the previous year. If the student achieved Level I: Unsatisfactory Academic Performance in the previous year, then the student made notable progress this year by advancing a performance level. However, if the student had achieved Level III:
Advanced Academic Performance in the previous year, then the interpretation of Level II this year would be quite different because the student regressed a performance level.

Student progress information can also provide insight to help set future performance goals. For example, a worthy goal would be for all students to achieve at or above Level II on the STAAR assessments. When considered together, student progress measures and current performance can be used to set reasonable, individual goals. For those students who have not yet reached Level II, progress measures can be used to evaluate whether a student is on track to meet Level II in a future year. To that end, TEA calculates a STAAR on-track measure, which provides information about whether a student is on track to be at or above the Level II standard in a future target year. Using gain scores, individual students are categorized as Not On Track or On Track toward the target year. In 2015, on-track measures were available only for reading in grades 4–7. On-track measures were not available for mathematics because spring 2015 was the first administration STAAR 3–8 mathematics assessments aligned to the revised mathematics TEKS. Details about the calculation of STAAR on-track measures are provided in the “STAAR On-Track Measure Q&A” available on the STAAR Resources webpage of TEA’s Student Assessment Division website.

TYPES OF STUDENT PROGRESS MEASURES

Given the value of progress information, student progress measures are calculated and reported for STAAR. Several types of progress measures can be used, and each was considered for use with STAAR.

- **Regression models.** Regression models use past and present student performance to statistically predict future performance. These models are commonly used to predict whether a student will achieve a higher performance level, such as Level II, in the future.

- **Growth percentile models.** Similar to regression models, growth percentile models statistically predict future student performance and achievement. These models also provide information about a student relative to his or her peers.

- **Growth to proficiency models.** Growth to proficiency models do not predict future performance with statistical procedures. Rather, these models consider students’ current achievement and a future goal (e.g., achievement of Level II), and quantify the annual progress needed in order to achieve the goal.

- **Value/transition tables.** Similar to growth to proficiency models, value/transition tables establish annual progress goals to reach desired performance in a future year. This is done by subdividing performance levels. For example, Level I could be further divided into smaller categories and then progress could be tracked through these smaller categories.

- **Gain scores.** Gain scores reflect the difference between students’ scores achieved in the current year and the previous year. They are most commonly used on tests with vertical scales where achievement across grades (within the same subject) is communicated on the same scale. Gain scores are typically
compared to an annual progress target to determine if students have made sufficient progress from year to year.

These progress measures differ in the types of information used, the complexity of the calculations, the feedback provided, and the ease with which they can be explained. These factors are all important to consider when selecting a model for measuring student progress.

DEVELOPMENT OF STAAR PROGRESS MEASURES

As part of the development of STAAR progress measures, several factors were considered, including

- the suitability of different models for measuring student progress given the characteristics of the STAAR assessments,
- the appropriateness of progress measures given the content relationships among STAAR assessments,
- the usability of progress measures for accountability given federal and state requirements, and
- the effectiveness of communicating progress measure results given various reporting options.

Additionally, input was sought from a number of advisory groups with regard to the development of the STAAR progress measures. Several options for progress measures were presented to the Texas Technical Advisory Committee (TTAC), a national group of educational measurement experts, who provided recommendations and guidance. Progress measures were also discussed with the Accountability Technical Advisory Committee (ATAC) and the Accountability Policy Advisory Committee (APAC), which are groups consisting of educators from various Texas campuses, districts, and education service centers (ESCs), as well as parents, higher education representatives, business leaders, and legislative representatives. Input from these groups was requested at several points during the development of progress measures for STAAR.

IMPLEMENTATION

Based on the input and considerations described above, gain scores were selected as the progress measure for STAAR (refer to STAAR Progress Measures Questions and Answers for more information). A progress measure was reported for English language learners (ELLs) for the first time in 2013–2014. This progress measure accounts for the unique challenges facing this population, such as current language proficiency and years of schooling within the United States (refer to the ELL Progress Measure resources on the STAAR Resources webpage at TEA’s Student Assessment Division website for more information). Progress measures have not yet been reported for STAAR Alternate 2 because 2015 was the first year of administration.
In 2014–2015, progress measures were calculated and reported for STAAR grades 4–8 reading, grade 7 writing, Algebra I, and English II. The ELL progress measure was reported for all grades and subjects, although for mathematics the progress information was reported after the standard setting meetings in July 2015. Details about these progress measures can be found in chapter 4, “STAAR.” Additional details about the availability of progress measures for various tests can be found in the STAAR Progress Measures Implementation Schedule on the STAAR Resources webpage at TEA’s Student Assessment Division website.

Sampling

Sampling is a procedure used to select a relatively small number of observations that are representative of the larger population from which they are drawn. In this case, sampling involves the selection of a set of Texas students that is representative of the entire body of Texas students. The results from well-drawn samples allow TEA to estimate characteristics of the larger Texas student population.

KEY CONCEPTS OF SAMPLING

TARGET POPULATION

A target population is the complete collection of objects of interest (for example, students) (Lohr, 1999). This is the set of students to which the results should generalize. For example, consider a study with the goal of understanding how grade 3 ELLs perform on a set of test questions. In that case, the target population would be all grade 3 ELLs in Texas. Careful consideration is given to defining the target population before sampling takes place.

SAMPLING, SAMPLES, AND OBSERVATION UNITS

Sampling is the process of selecting a subset of the target population to participate in a study. A well-drawn sample allows reliable and valid inferences to be made about the target population. Thus, the primary goal of sampling is to create a small group from the population that is as similar as possible to the entire population.

A sampling unit is the unit to be sampled from the target population. A sampling unit could be a student, a campus, a district, or even a region. For example, if 20 campuses are randomly chosen from a list of all campuses in the state, then the campus is the sampling unit.

An observation unit is the unit on which data are actually collected. An observation unit might or might not be the same as the sampling unit. For example, a study designed to estimate the number of computers per campus in the entire state might involve requesting each of 20 randomly selected campuses to report the number of computers it has. In this case, the campus is both the sampling unit and the observation unit. By comparison, consider a study designed to estimate student computer access in the entire state, and each of the same 20 sampled campuses is requested to report student data on how many students have computer access at home. In that case, even though the sampling unit is still the campus (because 20 campuses were picked), the...
observation unit is the student (because the data being collected reflect student characteristics).

REASONS FOR SAMPLING

Texas employs sampling instead of studying entire target populations for several reasons, including

- **Size.** It is more efficient to examine a representative sample when the size of the target population is very large.

- **Accessibility.** There are situations where collecting data on every member of the target population is not feasible.

- **Cost.** It is less costly to obtain data for a carefully selected subset of a population than to collect the same data for the entire population.

- **Time.** Using sampling to study the target population is less time-consuming. Sampling might be needed when the speed of the analysis is important.

- **Burden.** Sampling minimizes the participation requirements for the campus and district, thereby reducing the testing burden.

SAMPLING DESIGNS

The Texas assessment program uses the following sampling designs to collect data for the purpose of field testing, audits, and research studies (e.g., linking studies, linguistic accommodations studies, cognitive labs, and comparability studies).

PROBABILITY SAMPLING

In a probability sample, all sampling units have a known probability of being selected. Probability sampling requires that the number of sampling units in the target population is known. For example, if the student is the sampling unit, probability sampling would require an accurate list of all the students in the target population. The three major types of probability sampling designs are

- **Simple random sampling.** All sampling units in the target population have the same probability of being selected.

- **Stratified sampling.** The sampling units are first grouped (i.e., stratified) according to variables of interest; then, a random sample is selected from each group.

- **Cluster sampling.** The sampling units are first grouped into clusters according to variables of interest. Then, unlike stratified sampling, a predetermined number of clusters is randomly selected. All sampling units within the selected clusters are observed.

Regardless of the type of probability sampling design used, a decision must be made whether to sample with or without replacement. To help clarify this distinction, consider simple random sampling with replacement and simple random sampling without
replacement. First, suppose that a simple random sample with replacement of size n is drawn from a population of size N. In this case, when a sampling unit is randomly selected, that unit remains eligible to be selected again. In other words, after the sample is picked, it is also put back and can be selected again. When sampling with replacement, a sampling unit might be selected multiple times and its data would be duplicated in the resulting sample of size n.

By comparison, suppose that a simple random sample without replacement of size n is drawn from a population of N. In this case, once a sampling unit is chosen, it is ineligible to be selected again. In other words, after the sample is picked, it is not put back. Thus, when sampling without replacement, each sample consists of n distinct, non-duplicate units from the population of size N.

Typically, sampling without replacement is preferred over sampling with replacement, because duplicate data adds no new information to the sample (Lohr, 1999). The method of sampling with replacement, however, is very important in resampling and replication methods, such as bootstrapping.

NONPROBABILITY (CONVENIENCE) SAMPLING

A sample that is created without the use of random selection is called a nonprobability (or convenience) sample. Convenience samples are selected when it is impractical or impossible to collect a complete list of sampling units. When using convenience sampling, the list of sampling units is incomplete, and sampling units have no known probability of being selected. Convenience sampling introduces sources of potential bias into the resulting data, which makes it difficult to generalize results to the target populations.

RESAMPLING AND REPLICATION METHODS: BOOTSTRAP

Resampling and replication methods, such as bootstrapping, treat the sample like a population. These methods repeatedly draw pseudo-samples from samples to estimate the parameters of distributions. Thus, sampling with replacement is assumed with these methods. The bootstrap method was developed by Efron (1979) and described in Efron & Tibshirani (1993). Texas uses bootstrapping methods when conducting comparability studies that compare online and paper versions of a test form.