The State Board of Education Committee of the Full Board met at 9:03 a.m. on Wednesday, July 15, 2015, in the State Board of Education Room, #1-104, of the William B. Travis Building, 1701 N. Congress Avenue, Austin, Texas. The following members of the committee were present:

Presiding: Donna Bahorich, chair; Lawrence A. Allen, Jr.; Erika Beltran; David Bradley; Barbara Cargill; Ruben Cortez, Jr.; Martha M. Dominguez; Pat Hardy; Sue Melton-Malone; Ken Mercer; Geraldine “Tincy” Miller; Marisa B. Perez; Thomas Ratliff; Marty Rowley

Absent: Tom Maynard

Public Testimony

This item provides an opportunity for the public to present testimony at the time the related item comes up for committee discussion or action. The procedures for registering and taking public testimony at State Board of Education committee meetings and general board meetings are provided at http://tea.texas.gov/About_TEA/Leadership/State_Board_of_Education/SBOE_Meetings/SBOE_Operating_Rules_Amended_4-17-15/ or in the information section (yellow pages) of the agenda.

The Committee of the Full Board heard public testimony on agenda items #3, #8, and #9. Information regarding the individuals who presented public testimony is included in the discussion of that item.

The Committee of the Full Board considered items in the following order: Item #1, Items #4 through #9, Items #2 and #3.

DISCUSSION ITEMS

1. Commissioner’s Comments
 (Board agenda page I-533)

 Commissioner of Education Michael Williams congratulated Donna Bahorich on her appointment as chair of the State Board of Education and he thanked Barbara Cargill for her years of service as board chair. Commissioner Williams also noted that 98 public education bills were passed by the 84th Texas Legislature and that the Texas Education Agency’s administrative budget was cut by about $3.5 million. He answered questions from board members about specific bills that passed, as well as questions about the academic performance of charter schools.

2. Legislative Update
 (Board agenda page I-535)

 Julie Kopycinski, governmental relations director, provided an overview on public education legislation passed by the 84th Texas Legislature during the regular session and responded to questions by board members.
3. **Discussion of Item Development for the Texas Assessment Program**
(Board agenda page I-547)

Public testimony was provided by the following individual:

NAME: Randy Houchins
AFFILIATION: Self

Gloria Zyskowski, director for student assessment, opened the discussion concerning item development for the state assessments and legislation affecting the assessment program (see Attachment A).

Mr. Ratliff and agency staff discussed how and why certain test items are included on the state assessments (see Attachment B), if the state assessments only assess the Texas Essential Knowledge and Skills curriculum standards, and what authority the SBOE has over the assessment program.

ACTION ITEMS

4. **Proposed New 19 TAC Chapter 130, Texas Essential Knowledge and Skills for Career and Technical Education**
(Second Reading and Final Adoption)
(Board agenda page I-23)
[Official agenda item #4]

Shelly Ramos, curriculum division director, gave an overview of public comments and other matters related to the career and technical education courses presented in this item.

MOTION AND VOTE: It was moved by Mr. Mercer, seconded by Dr. Dominguez, and carried unanimously to recommend that the State Board of Education amend the following courses based on public comments received by TEA. The amendments would read as follows:
(c) Knowledge and skills.
(9) The student identifies the relationship between available resources and requirements of a project to accomplish realistic planning. The student is expected to:
(A) initiate a project, including identifying resources and materials required for a specific project, including time-management, labor-management, job-management, and job-site obligations in order to effectively plan;
(B) plan a project, including estimating correct amounts of required resources and materials as well as identifying risks;
(D) execute, monitor and control complete a project or resolve a problem using available resources and materials effectively; and
(E) close a project, including identifying lessons learned and evaluating waste of resources and materials.

(c) Knowledge and skills.
(12) The student manages a construction project. The student is expected to:
(B) participate in the organization and operation of a real or simulated construction project using project management processes, including initiate, plan, execute, monitor and control, and close a project.

Subchapter B, Architecture and Construction, §130.47. Construction Management II (Two Credits), Adopted 2015.
(c) Knowledge and skills.
(8) The student manages construction technology projects. The student is expected to:
(A) initiate develop a plan for completing a construction technology project;
(B) plan a construction technology project, including developing a project schedule and describing use of resources needed to complete a construction project; and
(C) execute a construction technology project and develop a timeline for completing a project;
(D) monitor and control a construction technology project; and
(E) close a construction technology project.

(c) Knowledge and skills.
(2) The student develops a management plan for a project or an activity. The student is expected to:
(A) identify and describe the steps required to complete a project using project management processes, including initiate, plan, execute, monitor and control, and close a project;
(C) develop a timeline to complete a project schedule.
Subchapter B, Architecture and Construction, §130.64. Practicum in Construction Technology (Two Credits), Adopted 2015.
(c) Knowledge and skills.
 (2) The student develops a management plan for a project or an activity. The student is expected to:
 (A) identify and describe the steps required to complete a project using project management processes, including initiate, plan, execute, monitor and control, and close a project;
 (C) develop a timeline to complete a project schedule.

(c) Knowledge and skills.
 (4) The student creates a coherent plan for project management. The student is expected to:
 (A) initiate a project, including securing secure class or instructor approval of project scope integrated plans;
 (B) plan a project create a format to monitor plan budgets;
 (C) execute a project, including responding respond to classroom, student, or instructor requests for information;
 (D) monitor and control a project, including demonstrating demonstrate effective, cogent presentation skills for public meetings and creating a format to monitor plan budgets; and
 (E) close a project; and
 (F) maintain professionalism in challenging group and one-on-one situations.

(c) Knowledge and skills.
 (1) The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
 (G) demonstrate planning and time-management skills such as project management and storyboarding and project management, including initiate, plan, execute, monitor and control, and close a project.

(c) Knowledge and skills.
 (1) The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
 (G) demonstrate planning and time-management skills such as project management, including initiate, plan, execute, monitor and control, and close a project.

(c) Knowledge and skills.
 (1) The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
 (I) demonstrate planning and time-management skills such as project management, including initiate, plan, execute, monitor and control, and close a project.
(c) Knowledge and skills.
(1) The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
(I) demonstrate planning and time-management skills such as project management, including initiate, plan, execute, monitor and control, and close a project.

(c) Knowledge and skills.
(1) The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
(I) demonstrate planning and time-management skills such as project management, including initiate, plan, execute, monitor and control, and close a project.

(c) Knowledge and skills.
(1) The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
(G) demonstrate planning and time-management skills such as project management and storyboarding and project management, including initiate, plan, execute, monitor and control, and close a project.

(11) The student demonstrates appropriate project management in the creation of digital media projects. The student is expected to:
(A) initiate a project, including identifying identify the purpose, audience, and audience needs for design plans;
(B) develop a plan for a media project such as a storyboard, stage development, and identify identification of equipment and resources; and
(C) execute and monitor and control a project evaluate a project plan along its timeline and make suggested revisions until completion of the project; and
(D) close a project, including identifying lessons learned.

(c) Knowledge and skills.
(1) The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
(F) demonstrate planning and time-management skills such as project management, and storyboarding and project management, including initiate, plan, execute, monitor and control, and close a project.

(c) Knowledge and skills.
(1) The student demonstrates the necessary skills for career development, maintenance of employability, and successful completion of course outcomes. The student is expected to:
(F) demonstrate planning and time-management skills such as project management, including initiate, plan, execute, monitor and control, and close a project; and
(c) Knowledge and skills.
(1) The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
(H) demonstrate planning and time-management skills such as project management, including initiate, plan, execute, monitor and control, and close a project.

Subchapter K, Information Technology, §130.311. Computer Technician Practicum (Two Credits), Adopted 2015.
(c) Knowledge and skills.
(1) The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
(I) demonstrate planning and time-management skills such as project management and storyboarding and project management, including initiate, plan, execute, monitor and control, and close a project.
(8) The student employs project management knowledge to oversee IT projects. The student is expected to:
(A) implement project methodologies, including initiate, plan, execute, monitor and control, and close a project, to manage information system projects;

Subchapter K, Information Technology, §130.312. Practicum in Information Technology (Two Credits), Adopted 2015.
(c) Knowledge and skills.
(1) The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
(I) demonstrate planning and time-management skills such as project management and storyboarding and project management, including initiate, plan, execute, monitor and control, and close a project.

(c) Knowledge and skills.
(6) The student thinks critically and applies fundamental principles of system modeling and design to multiple design projects. The student is expected to:
(A) identify and describe the fundamental processes needed for a project, including the design process and prototype developments, as well as initiating, planning, executing, monitoring and controlling, and closing a project;

(c) Knowledge and skills.
(4) The student develops skills for managing a project. The student is expected to:
(A) implement project management methodologies, including initiate, plan, execute, monitor and control, and close a project; use time-management techniques to develop and maintain work schedules and meet deadlines;
(B) develop a project schedule and complete work according to established criteria;
(c) Knowledge and skills.
(4) The student develops skills for managing a project. The student is expected to:
(A) implement project management methodologies, including initiate, plan, execute, monitor and control, and close a project; use time management techniques to develop and maintain work schedules to meet specific project objectives;
(B) develop a project schedule and complete work according to established criteria;

(c) Knowledge and skills.
(5) The student develops skills for managing a project. The student is expected to:
(A) implement project management methodologies, including initiate, plan, execute, monitor and control, and close a project; use time management techniques to develop and maintain work schedules and meet deadlines;
(B) develop a project schedule and complete work according to established criteria;

(c) Knowledge and skills.
(4) The student develops skills for managing a project. The student is expected to:
(A) implement project management methodologies, including initiate, plan, execute, monitor and control, and close a project; use time management techniques to develop and maintain work schedules and meet deadlines;
(B) develop a project schedule and complete work according to established criteria;

(c) Knowledge and skills.
(4) The student develops skills of project management. The student is expected to:
(A) implement project management methodologies, including initiate, plan, execute, monitor and control, and close a project; maintain work schedules and meet deadlines;
(B) develop a project schedule and complete work according to established criteria;

(c) Knowledge and skills.
(4) The student develops skills for managing a project. The student is expected to:
(A) implement project management methodologies, including initiate, plan, execute, monitor and control, and close a project; use time management techniques to develop and maintain work schedules and meet deadlines;
(B) develop a project schedule and complete work according to established criteria;

(c) Knowledge and skills.
(3) The student develops skills for managing a project. The student is expected to:
 (A) implement project management methodologies, including initiate, plan, execute, monitor and control, and close a project; use time management techniques to develop and maintain work schedules and meet deadlines;
 (B) develop a project schedule and complete projects according to established criteria;

(c) Knowledge and skills.
(9) The student manages an engineering design project. The student is expected to:
 (A) participate in the design and implementation of a real-world or simulated engineering project; using project management methodologies, including initiate, plan, execute, monitor and control, and close a project;
 (B) develop a plan and project schedule timeline for completion of a project;

MOTION AND VOTE: It was moved by Mrs. Miller, seconded by Ms. Hardy, and carried unanimously to recommend that the State Board of Education amend the following courses based on public comments received by TEA. The amendments would read as follows:

Subchapter M, Manufacturing, §130.362. Introduction to Welding (One Credit), Adopted 2015.

(a) General requirements. This course is recommended for students in Grades 9-12. Recommended prerequisite or co-requisite: Algebra I. Students shall be awarded one credit for successful completion of this course.

(c) Knowledge and skills.
(3) The student evaluates the function and application of the tools, equipment, technologies, and materials used in welding. The student is expected to:
 (C) explain the importance of recycling materials used in welding;
 (D) choose evaluate appropriate personal protective equipment; and

(5) The student applies academic skills in relationship to welding. The student is expected to:
 (E) solve calculate problems using whole numbers, fractions, mixed numbers, and decimals; and
 (F) perform conversions between fractions and decimals; and
 (G) perform conversions between standard units and metric units.

(7) The student performs oxy-fuel cutting processes on carbon steels. The student is expected to:
 (A) use observe safe operating practices;
 (E) identify the distinguish among factors affecting the oxy-fuel cutting of base metals such as ferrous and non-ferrous metals; and

(8) The student performs shielded metal arc welding principles and practices on metals. The student is expected to:
 (B) demonstrate knowledge of welding alternating currents;
 (F) perform fillet and groove welds in all varied positions such as techniques in fillet and groove welds; and
 (G) prepare joints for welding perform plates preparation.
The student performs gas metal arc welding principles and practices. The student is expected to:

(D) use appropriate equipment setup for base metal in gas metal arc welding; and
(E) perform fillet and groove welds using various gas metal arc welding with various metal transfer processes techniques.

Subchapter M, Manufacturing, §130.363. Welding I (Two Credits), Adopted 2015.

(c) Knowledge and skills.

(3) The student applies academic skills to the requirements of welding. The student is expected to:

(G) solve calculate problems using whole numbers, fractions, mixed numbers, and decimals;
(J) perform conversions between standard units and metric units;
(L)(K) diagram employ the parts of a circle.

(4) The student evaluates the function and application of the tools, equipment, technologies, and materials used in welding. The student is expected to:

(A) operate employ welding equipment according to safety standards;
(C) explain the importance of recycling materials used in welding;
(D)(G) choose evaluate appropriate personal protective equipment; and

(5) The student understands welding joint design, symbols, and welds. The student is expected to:

(B) interpret describe orthographic and isometric views of three-dimensional figures;
(E) identify analyze types of welding joints;
(F) identify analyze positions of welding; and

(6) The student analyzes the concepts and intricacies of inspections and related codes. The student is expected to:

(A) explain evaluate weld inspection processes; and
(B) interpret analyze welding codes.

(7) The student analyzes oxy-fuel cutting processes on carbon steels. The student is expected to:

(A) practice observe safe operating practices;
(C) identify components of oxy-fuel gas cutting system;
(D) demonstrate proper set-up procedures for oxy-fuel cutting process;
(E) identify distinguish factors affecting oxy-fuel cutting of base metals;
(H) evaluate alternative fuels gasses such as propane, propylene, and Chemtane 2® chemtane.

(8) The student analyzes plasma arc cutting on metals. The student is expected to:

(A) use observe safe operating practices;
(G) perform straight line, piercing, bevels, and shape cuts cuttings.

(9) The student analyzes shielded metal arc welding principles and practices on metals. The student is expected to:

(B) analyze welding current electrical relationships such as alternating current and direct current, heat transfer, and polarity;
(E) explain the American Welding Society’s identification system for shielded metal arc welding electrodes;
(F) determine appropriate electrodes filler for base metal in shielded metal arc welding; and
(G) perform multi passes groove welds in all positions to the American Welding Society’s SENSE standards such as root, hot, filler, and cover.
The student analyzes gas metal arc welding principles and practices. The student is expected to:
(A) use observe safe operating practices;
(B) explain the effects that weld angle, work angle, and electrode extension have on welds analyze electrical relationships such as alternating current and direct current, heat transfer, and polarity;
(E) explain the American Welding Society’s identification system for gas metal arc welding filler metal;
(F) determine appropriate filler metal for base metal in gas metal arc welding; and
(G) perform fillet and groove welds in all positions.

The student analyzes flux cored arc welding principles and practices on metals. The student is expected to:
(A) use observe safe operating practices;
(B) explain the effects that weld angle, work angle, and electrode extension have on welds analyze electrical relationships such as alternating current and direct current, heat transfer, and polarity;
(E) explain the American Welding Society’s identification system for flux cored arc welding electrodes;
(F) determine appropriate filler metal for base metal in flux cored arc welding; and
(G) perform fillet and groove welds in all positions.

The student analyzes gas tungsten arc welding on metals. The student is expected to:
(A) use demonstrate safe operating practices;
(B) analyze electrical welding current relationships such as alternating current and direct current, heat transfer, and polarity;
(C) identify determine the common types of tungsten and filler metals according to the American Welding Society’s identification system materials;
(E) perform fillet and groove welds in all appropriate positions; and
(F) perform welds on metals such as carbon steel, stainless steel, and aluminum.

Subchapter M, Manufacturing, §130.364. Welding II (Two Credits), Adopted 2015.

(c) Knowledge and skills.
(3) The student applies academic skills to the requirements of welding. The student is expected to:
(B) explain determine the impact of inaccurate readings of measuring devices on cost estimates;
(E) solve calculate problems using whole numbers, fractions, mixed numbers, and decimals;

(4) The student knows the functions and applications of the tools, equipment, technologies, and materials used in welding. The student is expected to:
(C) explain the importance of recycling materials used in welding;
(D) evaluate the determine the performance impact of emerging technologies in welding;

(5) The student illustrates welding joint design, symbols, and welds. The student is expected to:
(B) evaluate inspect projects using engineering drawing specifications.

(7) The student analyzes the concepts and intricacies of inspections related to welding codes. The student is expected to:
(B) select advanced codes for weld inspections; and
(8) The student performs advanced cutting processes on carbon steels. The student is expected to:
 (C) perform advanced cutting processes according to accepted welding standards.

(9) The student performs shielded metal arc welding on metals. The student is expected to:
 (B) demonstrate skills required to make welds in all positions according to the American Welding Society’s SENSE advanced knowledge of qualified welding positions using accepted welding standards.

(10) The student performs flux cored metal arc welding. The student is expected to:
 (B) perform fillet and groove welds; and
 (C) perform groove welds; and
 (D) perform welds in all appropriate positions according to the American Welding Society’s SENSE accepted welding standards.

(11) The student performs gas tungsten arc welding on metals. The student is expected to:
 (B) perform fillet and groove welds in all positions; and
 (C) perform groove welds;
 (D) perform welds in all appropriate positions according to accepted welding standards; and
 (E) perform welds on metals such as carbon steel, stainless steel, pipe, and aluminum to the American Welding Society’s SENSE welding standards.

§130.365. Welding II Lab (One Credit), Adopted 2015.

(c) Knowledge and skills.

(2) The student demonstrates the functions and applications of the tools, equipment, technologies, and metals used in code welding. The student is expected to:
 (C) explain the importance of recycling materials used in welding; and

(4) The student analyzes the concepts and intricacies of inspections and related codes. The student is expected to:
 (A) explain and evaluate weld inspection processes; and

(5) The student performs oxy-fuel cutting processes. The student is expected to:
 (A) use safe operating practices;
 (D) demonstrate proper setup ratios of compressed gases in cutting techniques such as piercing, straight line, bevel; and

(6) The student performs plasma arc cutting on metals. The student is expected to:
 (A) use safe operating practices;
 (B) explain the difference between safe and unsafe storage and handling of compressed gas supply;
 (D) demonstrate straight line, piercing, bevels, and shape cutting.

(7) The student performs shielded metal arc welding principles and practices on metals. The student is expected to:
 (A) use safe operating practices;
 (D) select appropriate electrodes filler for base metal in shielded metal arc welding;
 (E) perform welds such as fillet and groove according to the American Welding Society’s SENSE welding standards;
 (F) perform multiple pass welds such as root, hot, filler, and cover;
 (G) prepare joints for welding plate preparation; and
 (H) explain, employ, and evaluate heating processes such as pre-heating and post-heating.
(8) The student demonstrates proper set-up procedure for gas metal arc welding. The student is expected to:
(A) use employ safe operating practices;
(C) demonstrate proper ratios procedures of compressed gases for proper set-up for gas metal arc welding;
(D) select judge appropriate use of fillers metals for base metal in gas metal arc welding; and
(E) perform employ fillet and groove welds in all appropriate positions according to the American Welding Society’s SENSE welding standards.

(9) The student performs flux cored arc welding principles and practices on metals. The student is expected to:
(A) use employ safe operating practices;
(D) appraise appropriate filler metal for base metal in flux cored arc welding;
(E) perform fillet and groove welds; and
(F) perform employ welds in all appropriate positions according to the American Welding Society’s SENSE welding standards.

(10) The student performs gas tungsten arc welding principles and practices on metals. The student is expected to:
(A) use employ safe operating practices;
(C) demonstrate proper ratios procedures of compressed gases for proper set-up for gas tungsten arc welding;
(D) select judge appropriate use of filler metals for base metal in gas tungsten arc welding; and
(E) perform employ welds in all appropriate positions according to the American Welding Society’s SENSE welding standards.

(11) The student performs weldment fabrications. The student is expected to:
(A) identify layout tools;
(B) perform a part layout on plate according to a blueprint;
(C) perform a layout of a pipe fitting according to a blueprint; and
(D) perform an assembly according to a blueprint;

MOTION AND VOTE: It was moved by Ms. Hardy, seconded by Mr. Rowley, and carried unanimously to recommend that the State Board of Education amend the following based on public comments received by the TEA. The amendments would read as follows:

(c) Knowledge and skills.
(2) Mathematical process standards. The student uses applies mathematical processes standards to acquire and demonstrate mathematical understanding. The student is expected to:
(3) The student applies mathematical process standards to demonstrate an understanding of employment earnings. The student is expected to:
(D) analyze and interpret calculate payroll deductions, including federal taxes, state taxes, and city taxes, using current tax rates;
(J) analyze and interpret calculate total compensation, including payroll, Federal Insurance Contribution Act (FICA) tax, employer cost of benefits, employers' matching costs for FICA and Medicare, and employer match in savings plans, to explain how compensation is more than what is reflected in a paycheck;
(4) The student applies mathematical process standards to demonstrate an understanding of the various federal taxes. The student is expected to:
(F) calculate tax on interest income and use regression methods available through technology to analyze data and interpret the results by tax bracket;
(L) describe the relationships among education tax credit, student loan interest, dependency and filing status and income tax liability understand the application of education tax credits and student loan interest deductions to reduce income tax; and

(5) The student applies mathematical process standards to demonstrate an understanding of the various financial institutions and accounts. The student is expected to:
(B) identify and explain the advantages and disadvantages compare and contrast the features of interest-bearing accounts such as savings accounts, checking accounts, certificates of deposits, and money market accounts;
(C) calculate the time value of money, with or without technology, using exponential and rational functions that include graphs, tables, and algebraic methods related to simple and compound interest;
(D) analyze various representations of exponential functions with respect to compound interest situations and use the rule of 72 to determine the number of years it will take for savings to double in value; calculate compound interest and use the rule of 72 to determine the number of years it will take for savings to double in value;
(F) calculate the time value of money;

(6) The student applies mathematical process standards to demonstrate an understanding of the various types of credit. The student is expected to:
(A) examine the advantages and disadvantages of loans, including student loans;
(B) determine assess the advantages and disadvantages of credit cards such as cashback rewards, balance transfer, foreign currency, interest rates charged, late payment fees, credit score, and bonus incentives;
(C) analyze and compare graphically, with or without technology, the differences and risks in the cost of borrowing such as using a bank loan, a credit union loan, a student loans, and an easy-access loan such as pay-day and auto title loans and analyze the risks for each type of loan;
(E) collect and organize data, make and interpret scatterplots, interpret the results and make critical judgments about loan balances when regular equal monthly payments are made; calculate compound interest paid when regular payments are made;
(G) explain ways a negative credit report can affect a consumer’s financial options; and investigate ways that a negative credit report can affect a consumer’s financial options; and

(7) The student applies mathematical process standards to demonstrate an understanding of the cost of housing by comparing home purchases and renting. The student is expected to:
(A) analyze data of mortgage payments with various additional principal payments involving exponential functions using tables, graphs, or algebraic methods; calculate a mortgage payment with various additional principal payments;
(B) create prepare an amortization table using technology to collect and organize data to make decisions and critical judgments about varying the down payment, period of loan, special principal payment, and interest rate for a home loan; with a variety of down payments and interest rates for a home loan.
(E) analyze and interpret mortgage tax deductions;
(I) compare the cost of homeownership versus renting, identifying benefits and drawbacks to both homeownership and renting, such as the mortgage-related income tax deductions;
(J) demonstrate how to use the multiple listing service to identify and compare housing properties;

(8) The student applies mathematical process standards to demonstrate an understanding of the difference between a vehicle purchase and a vehicle lease and costs associated with each. The student is expected to:
(A) create and organize data to make decisions and critical judgments about varying down payment, period of loan, special principal payment, with a variety of interest rates for a vehicle loan;

(11) The student applies mathematical process standards to demonstrate an understanding of retirement plans. The student is expected to:
(B) calculate and graph the exponential growth function showing the benefits of starting early to invest with continuous contributions;
(D) calculate, using technology, the amount that must be saved annually to achieve financial independence by a desired age.

(12) The student applies mathematical process standards to demonstrate an understanding of a fixed pension, a variable pension, social security, and an annuity. The student is expected to identify an annuity, calculate, and display graphically the future value of an annuity.

(15) The student applies mathematical process standards to demonstrate an understanding of the budgeting process. The student is expected to:
(A) create a comprehensive balanced personal budget, including fixed and variable expenses, college savings, emergency savings, and retirement savings;
(B) prepare and balance a budget, including fixed and variable expenses, and differentiate between wants and needs;

(17) The student applies mathematical process standards to demonstrate an understanding for a postsecondary plan. The student is expected to:
(F) graph and explain the correlation between postsecondary education and standard of living.
(G) graph and compare compensation earnings of potential careers and the cost of post-secondary education.
(H) calculate the Return on Investment (ROI) from completing a desired postsecondary education program, taking into consideration anticipated earnings for a selected degree and the cost of attending a specific postsecondary program;

Mrs. Cargill announced her intent to file comments with TEA received from the Texas Science Education Leadership Association and the Science Teachers Association of Texas that may be considered as amendments at the Friday meeting of the State Board of Education.

MOTION AND VOTE: It was moved by Ms. Hardy, seconded by Mrs. Miller, and carried to recommend that the State Board of Education strike the following language from proposed §130.309(a), Computer Programming I and §130.310(a), Computer Programming II.

This course satisfies a high school languages other than English graduation requirement.
MOTION AND VOTE: It was moved by Mr. Rowley, seconded by Mrs. Melton-Malone, and carried to recommend that the State Board of Education strike the language from proposed §130.229, Mathematics for Medical Professionals (One Credit), Adopted 2015, §130.409, Robotics II (One Credit), Adopted 2015, and §130.416, Biotechnology II (One Credit), Adopted 2015, that would allow the courses to satisfy specific math or science graduation requirements.

MOTION AND VOTE: It was moved by Mrs. Miller, seconded by Mrs. Melton-Malone, and carried to recommend that the State Board of Education postpone the second reading and final adoption of 19 TAC Chapter 130, Texas Essential Knowledge and Skills for Career and Technical Education, Subchapter P, Transportation, Distribution, and Logistics, §130.445, Small Engine Technology (One Credit), Adopted 2015, §130.446, Advanced Small Engine Technology (Two Credits), Adopted 2015, §130.447, Automotive Basics I (One Credit), Adopted 2015, §130.448, Automotive Basics II (One Credit), Adopted 2015, §130.449, Automotive Technology I (Two Credits), Adopted 2015, §130.450, Advanced Automotive Technology II (Two Credits), Adopted 2015, §130.451, Advanced Automotive Technology II (Three Credits), Adopted 2015, §130.452, Introduction to Aircraft Technology (One Credit), Adopted 2015, §130.453, Aircraft Technology I (Two Credits), Adopted 2015, §130.454, Aircraft Technology II (Two Credits), Adopted 2015, §130.455, Basic Collision Repair and Refinishing (One Credit), Adopted 2015, §130.456, Collision Repair and Refinishing I (Two Credits), Adopted 2015, §130.457, Collision Repair and Refinishing II (Three Credits), Adopted 2015, §130.458, Diesel Equipment Technology I (One Credit), Adopted 2015, §130.459, Diesel Equipment Technology II (Two Credits), Adopted 2015, until the September board meeting.

The committee directed staff to make technical edits to §130.30, Agricultural Laboratory and Field Experience, and §130.205, Foreign Service and Diplomacy.

MOTION AND VOTE: It was moved by Mrs. Bahorich, seconded by Ms. Hardy, and carried to recommend that the State Board of Education approve for second reading and final adoption proposed new 19 TAC Chapter 130, Texas Essential Knowledge and Skills for Career and Technical Education, Subchapter F, Finance, §130.180, Financial Mathematics (One Credit), Adopted 2015, as amended, with an effective date of August 24, 2015.
5. Proposed New 19 TAC Chapter 130, *Texas Essential Knowledge and Skills for Career and Technical Education, Relating to New Marketing and Second-Level Practicum Courses*
(First Reading and Filing Authorization)
(Board agenda page I-469)
[Official agenda item #5]

Ms. Ramos provided an overview of the proposed language for new Advanced Marketing and extended practicum courses.

MOTION AND VOTE: *It was moved by Mr. Rowley, seconded by Mrs. Melton-Malone, and carried unanimously to recommend that the State Board of Education approve for first reading and filing authorization proposed new 19 TAC Chapter 130, *Texas Essential Knowledge and Skills for Career and Technical Education, Relating to New Marketing and Second-Level Practicum Courses*. (Mr. Cortez was absent for the vote.)*

6. Discussion of a Request for Proposals (RFP) for the Texas Certificate of High School Equivalency
(Board agenda page I-479)
[Official agenda item #6]

Ms. Perez recused herself from any consideration or action on this item.

Christine Hoang, contract procurement attorney, outlined the state procurement laws and the Texas open meeting act for the board to carefully consider when discussing a Request for Proposals (RFP) for Texas Certificate of High School Equivalency (TxCHSE) examination providers.

Monica Martinez, associate commissioner for standards and programs, presented questions and factors for the board to consider outlined in the Texas Certificate of High School Equivalency (TxCHSE) Decision Matrix (Attachment C).

The committee instructed staff to construct an RFP that requests price points if one vendor is selected, two vendors are selected and three vendors are selected.

MOTION AND VOTE: *It was moved by Mr. Rowley, seconded by Mr. Cortez and carried unanimously to recommend that the State Board of Education direct staff to construct an RFP.*

MOTION AND VOTE: *It was moved by Ms. Hardy, seconded by Mr. Ratliff, and carried unanimously to recommend that the State Board of Education not require test centers to offer all tests that are selected under the RFP process. (Mr. Mercer was absent for the vote.)*

MOTION AND VOTE: *It was moved by Mr. Ratliff and carried unanimously to recommend that the State Board of Education direct staff to construct an RFP that requires proposers to submit pricing in a manner that will allow for an apples to apples comparison and that includes all related costs. (Mr. Mercer was absent for the vote.)*

MOTION AND VOTE: *It was moved by Mrs. Bahorich, seconded by Mrs. Melton-Malone and carried unanimously to recommend that the State Board of Education direct staff to construct an RFP that reflects decisions outlined in the Attachment. (Mr. Mercer was absent for the vote.)*
7. Approval of Proclamation 2017 Questions and Answers
(Board agenda page I-481)
[Official agenda item #7]

Kelly Callaway, instructional materials and educational technology division director, described the purpose and organization of Proclamation 2017 Questions and Answers. Ms. Callaway pointed out specific questions that were new or that had answers that had been significantly updated. The committee requested that the answer to Question 27 be clarified. Ms. Callaway stated that staff would prepare a new answer for the board to consider at the Friday meeting.

MOTION AND VOTE: It was moved by Mr. Rowley, seconded by Ms. Beltran, and carried unanimously to recommend that the State Board of Education approve Proclamation 2017 Questions and Answers. (Mr. Mercer was absent for the vote.)

DISCUSSION ITEMS

8. Discussion of Proposed Amendments to 19 TAC Chapter 66, State Adoption and Distribution of Instructional Materials
(Board agenda page I-549)

Public testimony was provided by the following individual:

NAME: Susan Lennox
AFFILIATION: Instructional Materials Coordinators’ Association of Texas (IMCAT)

Ms. Martinez presented considerations and options to facilitate discussion of policy decisions related to proposed amendments to Chapter 66, State Adoption and Distribution of Instructional Materials. The SBOE directed agency staff to draft proposed rules requiring

- all pre-adoption materials be made available and fully accessible to the public via the Internet,
- all samples include a word search feature,
- textbook coordinators to complete TEA-developed training about ordering materials,
- all complaints against publishing companies to be presented to the board, and
- the submission of the following in a format approved by the commissioner:
 - Reports of errors
 - Written public comment
 - Changes to instructional materials.

The SBOE directed agency staff to draft proposed rules allowing
- the commissioner to grant waivers of manufacturing standards,
- review panel members and non-review panel members to communicate regarding content,
- state review panel members to testify at any state board meeting, and
- public hearings related to adoption to proceed in a manner consistent with all other public hearings.
The SBOE directed agency staff to draft proposed rules addressing

- appropriate requirements for electronic materials,
- different kinds of calls for materials,
- contact of review panel members with SBOE members,
- action to be taken in response to public comment,
- public access to changes that are made during the review and prior to adoption,
- changes and additions that are permitted between the conclusion of the review and the adoption,
- whose permission is required for changes to an adopted product,
- the difference between a new edition and new or different content,
- all provisions of Texas Education Code, §31.151, and
- errors and fines.

9. **Update on Texas Essential Knowledge and Skills (TEKS) Review**
 (Board agenda page I-557)

Public testimony was provided by the following individuals:

<table>
<thead>
<tr>
<th>NAME:</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valerie Taylor</td>
<td>Texas Council of Teachers of English Language Arts</td>
</tr>
<tr>
<td>Ann-Marie Trammel</td>
<td>Coalition of English and Reading Supervisors of Texas</td>
</tr>
<tr>
<td>Patricia Durham</td>
<td>Texas Association for Literacy Education</td>
</tr>
<tr>
<td>Denise Collier</td>
<td>Texas Association of School Administrators</td>
</tr>
<tr>
<td>Randy Houchins</td>
<td>Self</td>
</tr>
</tbody>
</table>

Ms. Martinez reviewed the SBOE process for review and revision of the TEKS and the proposed timeline for the English language arts and reading (ELAR) and Spanish language arts and reading (SLAR) TEKS review. She also provided an overview of next steps for the review of the ELAR and SLAR TEKS. Ms. Martinez explained that the review committees have been finalized and that the first face-to-face meeting will occur as soon as possible following the September SBOE meeting. She also explained that an introductory webinar was being planned to provide information and resources to the TEKS review committee members before the first face-to-face meeting.

The committee directed staff to provide the expert reviewers with the joint statements and framework provided by the professional organizations during public testimony. Ms. Martinez explained that the board would have the opportunity to provide additional direction to the TEKS review committees at the September SBOE meeting.
Ms. Ramos reviewed information provided to board members, including committee and expert reviewer appointments for the ELAR and SLAR TEKS review process, expert reviewer disclosures and résumés, and initial feedback provided by the expert reviewers.

Mrs. Bahorich adjourned the meeting at 8:02 p.m.