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Study on Geographic Education Cost Variations and School 
District Transportation Costs 

 

Executive Summary 

In accordance with House Bill 3 (section 48.012), 86th Texas Legislature, 2019, the Texas 
Education Agency entered a Memorandum of Understanding and Agreement with Texas A&M 
University to conduct a study on geographic variations in known resource costs and costs of 
education due to factors beyond the control of school districts; and school district transportation 
costs. This report presents the results of that study.  

The report was divided into four chapters. Chapter 1 of this report describes geographic differences 
in the cost of education that arise from uncontrollable differences in wages and salaries. Chapter 
2 describes variations in the cost of education that arise from uncontrollable differences in cost 
factors other than wage levels. Chapter 3 describes differences in the cost of student transportation. 
Chapter 4 concludes the report by describing strategies for adjusting the Foundation School 
Program and Transportation Allotment protocols to address the cost differences identified in the 
previous chapters. 

Executive Summary of Chapter 1: Geographic Variations in Wages and Salaries  

Differences in the cost of living and the availability of amenities can lead to geographic differences 
in the prices that school districts must pay for their most important resource—people. Recent 
estimates from the National Center for Education Statistics (NCES) and the US Census Bureau 
indicate that the cost of hiring a college graduate can differ by as much as 50% from one part of 
Texas to another. Similar estimates from Texas Smart Schools (TSS) indicate that the cost of hiring 
a worker with a high school diploma but no bachelor’s degree can differ by up to 31%.  

Inequalities in school district purchasing power can lead to inequities in school funding formula. 
Therefore, a dozen US states have responded to evidence about geographic differences in labor 
cost by implementing geographic cost adjustments to their state school funding formulas. Six states 
have adopted a regional cost adjustment that relies on some sort of Comparable Wage Index 
(CWI). The basic premise of a CWI is that all types of workers—including teachers and other 
educators—demand higher wages in areas where the cost of living is high or there is a lack of 
desirable local amenities (such as good climate, low crime rates, or access to beaches, museums, 
or fancy restaurants). As a result, it should be possible to measure most of the uncontrollable 
variation in educator pay by observing systematic, regional variations in the earnings of 
comparably educated workers who are not educators. Intuitively, if accountants in Austin are paid 
5 percent more than the national average accounting wage; Austin engineers are paid 5 percent 
more than the national average engineering wage; Austin nurses are paid 5 percent more than the 
national average nursing wage; and so on, then a CWI would predict that the wage level for Austin 
teachers is also 5 percent more than the national average teacher wage. The new estimates from 
NCES/Census and TSS are both CWIs. 
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Another four states rely on a Teacher Cost Index (TCI) for their regional cost adjustments. A TCI 
is a labor cost index that has been based on an analysis of teacher compensation within the state. 
Researchers use regression analysis to separate the observed variation in teacher salaries into the 
part that is explained by school district decisions (such as teacher demographics or teaching 
assignments) and the part that is systematically related to factors outside of school district control 
(such as the cost of living, the degree of geographic isolation or student demographics). The 
researchers then use their regression model to predict the salary that each district would need to 
pay to hire a teacher with an identical set of characteristics. Finally, they construct a TCI as the 
local salary prediction divided by some reference salary (such as the state average prediction or 
state minimum prediction). Because all of the decision factors are held constant in the construction 
of a TCI, the resulting index is purely a function of labor market characteristics and other 
uncontrollable cost factors (like student demographics). The Texas Cost of Education Index (CEI), 
which was an element in the Foundation School Program from 1991 until 2019, was a TCI that 
had been estimated using teacher salary data from the 1988-1989 school year. 

A New Texas Teacher Cost Index 
This chapter presents a new TCI for Texas that was estimated using data from the six most recent 
school years (2014-15 through 2019-20). The Texas TCI embeds the new index from 
NCES/Census (the American Community Survey-Comparable Wage Index, or ACS-CWIFT) as 
one of the key cost factors outside of school district control. Other uncontrollable cost factors 
included in the index are fair market rents and unemployment rates, as well as various measures 
of geographic isolation, climate, student demographics, district type, and county type.  

One of the keys to constructing a successful TCI is the inclusion of sufficient controls for teacher 
characteristics, because a failure to adequately account for differences in teacher quality can lead 
to measurement errors that misidentify high spending districts as high cost districts. The salary 
model used in the construction of the Texas TCI included a particularly rich set of demographic 
controls, including measures of teacher experience; teacher training; teacher years of service in the 
district; teaching assignments, and indicators for whether or not the teacher had administrative or 
support duties in addition to teaching. The ability to control for a wide array or teacher and 
assignment characteristics helped to ensure that the Texas TCI measures costs outside of school 
district control 

The Texas TCI for 2019-20 ranged from 1.00 to 1.37, meaning the cost of hiring teachers was 37% 
higher in highest-cost districts than the lowest-cost districts. As Figure E-1 illustrates, the Texas 
TCI was highest in the Houston metropolitan area, and lowest in a district on the outskirts of the 
El Paso metropolitan area (i.e., a place where teachers can have easy access to urban amenities 
while enjoying a relatively low cost of living). 
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Figure E-1: The New Teacher Cost Index for Texas, 2019-20 

 
Source: Authors’ calculations from PEIMS and other data sources. 

A Cost Index for Auxiliary Personnel (APCI) 
Geographic differences in the salaries for administrators, counselors and other certified personnel 
are likely to be highly correlated with those of teachers, and therefore align with the geographic 
patterns indicated by the Texas TCI. However, the wages of auxiliary personnel—those holding 
jobs that do not typically require a professional license or other form of certification (such as bus 
drivers, clerical workers or cafeteria staff) —may follow a different geographic pattern. This 
chapter also develops an Auxiliary Personnel Cost Index (APCI) that was constructed using the 
same methodology as the Texas TCI, but was based on data about the earnings of auxiliary workers 
in Texas school districts. Due to data availability issues, the APCI was estimated from only three 
years of data (2017-18 through 2019-20). Again the cost index was based on a wage model that 
controlled for worker demographics and job assignments, so that the cost index was a function of 
labor market conditions, working conditions outside of school district control and county type. 

The APCI for 2019-20 ranged from 1.00 to 1.36, meaning the cost of hiring auxiliary workers was 
36% higher in highest-cost districts than the lowest-cost districts. As Figure E-2 illustrates, the 
APCI was highest among K8 districts in the Alice and Austin metropolitan areas, and lowest in 
Hale, Lamb, Sabine and Starr Counties. 
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Figure E-2: The Auxiliary Personnel Cost Index for Texas, 2019-20 

 
Source: Authors’ calculations from PEIMS and other data sources. 

Policy Implications from Chapter 1 
In the past, Texas has incorporated geographic cost adjustments into the school finance formula. 
This analysis suggests that adjustments for differences in the price of labor are still needed in 
Texas. Such adjustments level the playing field so that all school districts can recruit and retain 
the same sort of high quality personnel despite local conditions that make some districts more 
attractive to teachers than others. Just as inflation adjustments allow the state to equalize school 
district purchasing power over time, regional cost adjustments allow the state to equalize 
purchasing power over locations. As such, regional cost adjustments can greatly enhance the equity 
of a school funding formula.  

Executive Summary of Chapter 2: Geographic Variation in Costs of Education 
other than Wages 
The school funding and finance literature has identified three main drivers of uncontrollable 
variation in educational cost: input prices, student needs, and economies of scale. All three of these 
drivers can vary geographically. Therefore, any analysis of geographic variation in the cost of 
education must be able to handle multiple dimensions of cost.  

Cost-function analysis is the strategy best suited to an examination of geographic differences in 
the cost of education, and is the method used here. In the educational context, a cost function 
describes the relationship between school spending and school outputs, given the prices of 
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educational inputs (such as teachers or school supplies), student characteristics, and other 
determinants of the educational environment (such as school district size or population density).  

The Educational Cost Function 
When properly specified and estimated using stochastic frontier analysis (SFA), the education cost 
function is a theoretically and statistically reliable method for estimating the relationship between 
the cost of education and various cost drivers, both those that are under the control of school 
districts and those that are considered uncontrollable by school districts.  

The outcomes of the educational process are cost drivers that are under the control of school 
districts. Here, the campus-level educational outcomes have both a quantity and a quality 
dimension. Quantity is measured using the number of students in fall enrollment at the campus. 
Quality is measured using a campus-average, normalized gain score in mathematics and reading. 
The gain scores (which measure changes in the performance of an individual student from one 
year to the next) were based on student performance on the State of Texas Assessments of 
Academic Readiness (STAAR®) Grades 3–8 and end-of-course (EOC) exams. 

The uncontrollable cost drivers examined in this campus-level analysis were input price measures 
and environmental cost factors. Key input prices included the two measures of labor price 
developed in Chapter 1 (the Texas TCI and the APCI). Key environmental cost factors included 
school district size, student demographics, and county population density. 

The basic approach was to use SFA to estimate a campus-level cost function using data from the 
five most-recent school years with actual financial data (2014-15 through 2018-19). SFA explicitly 
allows for the possibility that spending could be systematically higher than cost. If schools are 
behaving efficiently, then SFA generates the same cost function estimates as other estimation 
techniques. Therefore, SFA can be thought of as a more general approach.  

Findings 
The analysis supported a number of key findings: 

1. There were significant economies of scale at the campus level. For example, the cost 
function indicated that all other things being equal, a 200-student campus cost 4% more 
to operate (per pupil) than a 400-student campus, which in turn costs 2.5% more to 
operate (per pupil) than an 800 student campus. Per-pupil costs were minimized at a 
campus size of 1,500 students. However, the economies of scale at the campus level were 
largely exhausted once campus enrollment reached 1,000. The difference in the predicted, 
per-pupil cost of education between a campus of 1,000 students and a campus of 1,500 
students was only 0.3%.  

2. There were also significant economies of scale at the district level. Assuming that each 
campus in the district had the average campus-level enrollment for that district, and 
holding all other factors at their statewide means, the cost function indicated that a 
district with 300 students cost 15% more to operate (per pupil) than a district with 1,000 
students. Similarly, a district with 1,000 students was predicted to cost 10% more to 
operate (per pupil) than a district with 5,000 students. As district size increased, costs per 
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pupil tended to fall, but most of the cost savings from increases in district size were 
largely exhausted at relatively low levels of district enrollment. 

3. The cost of education was highly sensitive to differences in teacher wage levels. On 
average, a 10% increase in the Texas TCI was associated with a 6.6% increase in 
predicted cost per pupil, all other things being equal. In contrast, a 10% increase in the 
APCI (holding teacher wages constant) was only associated with a 0.5% increase in 
predicted cost.  

4. The cost of serving an additional economically disadvantaged student was sharply higher 
for campuses that already had a high percentage of economically disadvantaged students. 
Among campuses with very low percentages of economically disadvantaged students, the 
marginal cost of serving an additional student who was economically disadvantaged was 
negative. This pattern of increasing intensity leading to sharply increasing cost was also 
observed for students who had ever been identified as an English Language Learner 
(ELL). 

5. Expenditures exceeded what would be expected if campuses were operating efficiently. 
The average cost efficiency score was 0.93, indicating that campuses were producing 
93% of their potential output. Given that inefficiency in this context means unexplained 
expenditures, not necessarily waste, and that many campuses may have been producing 
outcomes that were not reflected in test scores, the average efficiency level was high. On 
the other hand, efficiency was measured relative to the best practice in Texas, and that 
may still fall short of the ideal. Furthermore, the minimum efficiency scores were below 
50%, suggesting that some campuses spend much more than could be explained by 
measured outcomes, input prices or student need. As a general rule, campus efficiency 
was higher in locations where educational choice was also higher. 

The Educational Cost Index 
The findings above all describe how the cost of education changes as one uncontrollable cost factor 
changes, holding all other cost factors constant. However, the cost function can also be used to 
estimate how much more or less it costs to produce educational outcomes in specific districts. 
Essentially, one uses the cost function to predict how much each district must spend, each year, in 
order to produce the normal (i.e., state average) level of output, assuming the district was making 
cost-minimizing choices about campus size. The Educational Cost Index (ECI) is the ratio of the 
predicted cost for the district, divided by the state minimum predicted cost.  

Figure E-3 illustrates the relationship between district size and the ECI. As the figure illustrates, 
the ECI ranges from 1.00 to 4.74. In other words, the cost model predicted that the per-pupil cost 
of producing an average level of academic performance in the highest- cost district—San Vincente 
ISD with its total enrollment of 13 students—was more than 4.7 times the per-pupil cost of 
producing the same level of performance in the districts with the lowest cost of education. The 
median of the ECI was 1.29, so given their district-specific uncontrollable factors, half of the 
districts had to spend more than 29% above the minimum just to provide the state average level of 
educational output. 
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Figure E-3: The Relationship between the ECI and District Enrollment (log), 2018-19 

 
Source: Authors’ calculations from Appendix F. 

Table E-1 provides another perspective on the ECI. As the table illustrates, the average ECI was 
higher in rural counties than in metropolitan or micropolitan areas. The average rural district had 
an ECI of 1.46 while the average metropolitan district had an ECI of 1.28. It appears that the 
generally lower wages in rural areas were more than offset by the district size and sparsity 
adjustments built into the ECI. The average high-poverty district had an ECI that was more than 
16 percentage points higher than the average low-poverty district. Districts in sparsely populated 
counties had significantly higher ECIs than districts in more populous counties. All of these 
patterns were consistent with reasonable expectations about the costs of education in Texas.  
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Table E-1: The Educational Cost Index, by Location and School District Type, 2019-20 

School District Type 
Number of 

Districts Mean Minimum Maximum 
Metropolitan 493 1.283 1.000 2.410 
Micropolitan 200 1.350 1.000 3.837 
Rural 329 1.462 1.151 4.736 

 
Very Sparsely Populated County 165 1.608 1.099 4.736 
Sparsely Populated County  110 1.405 1.061 1.913 
Other County 747 1.290 1.000 3.315 

 
Small district 640 1.444 1.000 4.736 
Midsized district 201 1.219 1.010 1.783 
Large district 181 1.185 1.000 1.586 

 
Highest Poverty Quintile 205 1.439 1.061 2.950 
Lowest Poverty Quintile 204 1.277 1.000 4.736 

Source: Authors’ calculations from Appendix F. 

Policy Implications from Chapter 2 
The overarching takeaway from this analysis of the educational cost function is that the cost of 
education is far from uniform. Texas has a big and highly diverse educational landscape. Those 
differences in educational context drive differences in educational cost. Wages differ by up to 37% 
from one district to another and those differences drive significant differences in cost. The largest 
district in the state is more than 15 thousand times as large as the smallest district in the state. 
Small districts with correspondingly small campuses face significantly higher costs than other 
districts. The percentage of economically disadvantaged students ranges from zero to 100%. Such 
dramatic differences in the educational environment lead to dramatic differences in the cost of 
education. 

Educational costs are higher in some parts of the state because the prices those districts must pay 
for educational resources—like teachers—are particularly high. But the cost function analysis 
suggests that other external cost drivers—namely student need, sparsity and a lack of economies 
of scale—require some districts to use real resources more intensively than others. Thus, the 
analysis suggests a need for adjustments to the funding formula in all these dimensions. 

Executive Summary of Chapter 3: Geographic Variations in Transportation Cost  

Transportation costs may vary between districts based on a number of factors outside of district 
control, including district size and location. Districts that are sparsely populated, for example, may 
have to transport fewer students across longer distances, thus generating large per-pupil 
transportation costs. On the other hand, densely populated, urban districts may face lower per-
pupil transportation costs if they transport many students across a short distance.  
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Cost function analysis is a popular tool for analyses of transportation cost. This cost function 
analysis provides estimates of geographic variation in transportation costs, based on the five most-
recent school years with actual financial data (2014-15 through 2018-19). As was the case for the 
educational cost function described in Chapter 2 of this report, the transportation cost function was 
estimated using SFA because, unlike other statistical techniques, SFA explicitly allows for the 
possibility that spending could be systematically higher than cost. 

Key components of any cost function analysis are expenditures, outcome measures, input prices 
and environmental factors. 

Expenditures  
State administrative records provide two alternative sources of annual transportation 
expenditures—the Transportation Operations Report and the Public Information Management 
System (PEIMS). Each data system has strengths and weaknesses, and the data are not directly 
comparable. For consistency with the educational cost function analysis in Chapter 2, this analysis 
relied on the PEIMS data on current operating expenditures for student transportation (Function 
34). Because the expenditure data reported under Function 34 exclude transportation expenses 
associated with extracurricular and co-curricular activities, the cost model also excluded such 
transportation activities. In other words, this was a cost function analysis of route transportation 
services.  

Outputs 
The definition of outputs is critical to any cost function analysis. In the case of school bus 
transportation, there are two common measures of output. One measure is bus miles; the second is 
the number of student passenger trips. Following the literature, this analysis included both bus 
miles and riders per mile (as a measure of passenger trips) as output measures. This specification 
also corresponded to the two dimensions—total miles and riders per mile (a.k.a. linear rider 
density)—that were used in the transportation allotment formula in place during the 2014-15 
through 2018-19 time period. As with the expenditures data, the bus miles were restricted to Route 
miles and the student passenger trips were restricted to Route trips. 

In addition, the model included two measures of the bus fleets—the percentage of buses that were 
less than five years old and the total number of buses. Although the number of buses is a direct 
measure of bus capital input, it also serves as a meaningful proxy for the number of bus routes, 
which can be viewed as a quality dimension of transportation output. 

Input prices 
Although one tends to think of fuel costs as the most important price for a cost analysis of 
transportation services, salary and benefit costs are around 80% of variable operating costs for the 
districts that run their own student transportation operation (i.e., those that do not contract out their 
transportation services). Variations in the price that districts must pay to hire their transportation 
employees are thus expected to be key drivers of variations in transportation costs across districts. 
Given the pivotal role of labor price differences in understanding operating cost differences, and 
the need to use a price measure that is outside of school district control, the researchers relied on 
the Auxiliary Personnel Cost Index (APCI) described in Chapter 1.  
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Fuel costs are the second most important price to include in a model of transportation costs. 
Unfortunately, TEA does not collect data on the prices that districts are paying to fuel up their 
buses and other student transport vehicles. Therefore, the researchers purchased a dataset from Oil 
Price Information Services (OPIS) of average annual diesel fuel prices by county in Texas for the 
five years under analysis. These data were collected by OPIS on a daily basis from a sample of 
reporting suppliers. The OPIS data were retail prices that included federal and state diesel taxes. 
In Texas, during the sample period, the state tax on diesel was 20 cents/gallon and the federal tax 
was 24.4 cents/gallon. Since school districts are exempt from these taxes, 44.4 cents were 
subtracted from the average county diesel fuel prices reported in the OPIS data. Clearly, such tax-
adjusted retail prices are imperfect measures of the actual prices paid by districts. Undoubtedly, 
districts purchase fuel under a variety of contracting arrangements with fuel suppliers, many of 
which are with wholesale suppliers. However, the underlying market conditions that generate the 
quite persistent retail diesel price differences across counties in Texas (e.g., the transportation and 
distribution cost differentials) should lead to matching uncontrollable variations in the wholesale 
contract prices at which districts actually transact. 

Environmental Factors 
The prices for labor and fuel can vary geographically, giving rise to uncontrollable differences 
across districts in the cost of providing student transportation. Environmental factors—such as 
population density—can also influence the cost of student transportation in ways that are beyond 
school district control. To capture these sources of uncontrollable variation in cost, the model also 
included district population density, and a measure of roadway utilization (vehicle miles per lane 
mile) that was developed for this study by the Texas A&M Transportation Institute. Other 
environmental factors in the model included the percentage of route riders who were special 
education students and the percentage of route miles that were designated as special education 
route miles.  

Findings 
The cost function analysis provided a quite reasonable picture of the supply of route student 
transportation services. Costs were increasing in outputs and in input prices. Differences in the 
density of the distribution of potential riders and in the congestion features of the district road 
system also impacted the costs of hauling kids from home to school (and back again). The 
estimates indicated that costs increased as density decreased, which matched the finding in 
Hutchinson and Pratt (1999) from their study of school transportation costs in Tennessee, but was 
opposite of their finding for school transportation costs in Louisiana (2007). 

Districts were spending more than would have been expected if they were operating efficiently. 
The extent of the estimated inefficiency was, however, quite modest. On average, the cost 
efficiency score was 0.94, indicating that districts were producing 94% of their potential output. 
The relatively strong efficiency estimates are not altogether surprising. By the end of the analysis 
period, the transportation allotment –which was the mechanism through with the Legislature 
provided school districts with financial aid for transportation—covered less than 25% of district 
outlays for route services. A potential benefit of the low level of state support for school 
transportation was the strong incentive for districts to run their transportation operations 
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efficiently. It is also helpful that the technology for producing bus miles is relatively 
straightforward and well-known, reducing the scope for managerial error. 

The Transportation Route Cost Index 
Once the transportation cost function had been estimated, transportation cost indices could be 
generated. These cost indices indicated how much more or less it costs to produce bus miles in 
Houston than in Hutto. Essentially, one uses the cost function to predict how much each district 
must spend, each year, in order to produce the state average level of transportation output, given 
the state average quantity and quality of buses. For the other cost factors, which are treated as 
uncontrollable, the cost model was evaluated at the actual values in each district. 

We estimated the cost index for each district by dividing the predicted spending level for each 
district by the minimum predicted spending level among the sample population of districts. The 
Transportation Route Cost Index (TRCI) is the ratio of the predicted cost for the district, divided 
by the state minimum predicted cost. The index values provide a measure of the uncontrollable 
cost in a district relative to the cost in a district with the most cost-favorable characteristics. For 
example, an index value of 1.5 indicates that a district is predicted to require 50 percent more 
dollars per mile than the least cost district to achieve the same level of output. Other normalizations 
are, of course, possible. For example, the reference cost level could be the predicted cost of 
producing the standardized outputs for a district with the average values of the uncontrollable cost 
factors. 

Figure E-4 illustrates the frequency distribution of TRCI for the 2018-19 school year, which ranged 
from 1.00 to 7.80. The median of the TRCI was 1.29, so half of the district values of costs per 
mile, given their district-specific uncontrollable factors, were between 100% and 129% of the 
minimum. The TRCI distribution was rather heavily skewed, with a long right tail of districts with 
TRCI values greater than 2.00. Still, these extreme values of the TRCI distribution were outliers. 
More than 85% of districts had an index value less than 2.00, and only 5% of the values were more 
than 3.00. 
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Figure E-4: The Distribution of the Transportation Route Cost Index, 2018-19 

 
Source: Authors’ calculations from Appendix G. 

Policy Implications from Chapter 3 
This chapter develops and estimates a model of the costs to school districts of transporting students 
to and from school. The model is grounded in the academic literature on bus transportation, both 
school bus services and municipal transit services. The cost of producing school bus miles depends 
on the number of miles the buses are covering, the prices of bus mile inputs (such as labor and 
fuel), the number and spatial distribution of student riders, and upon the environment in which the 
bus miles are being produced (such as features of the road infrastructure). The analysis 
demonstrates that there are important and uncontrollable differences among school districts with 
respect to the cost of providing route transportation services. 

Executive Summary of Chapter 4: Strategies to Address Geographic Cost 
Differences 
The above analyses demonstrate clearly that there are large geographic differences in the cost of 
providing educational and transportation services in Texas. Those differences arise from a lack of 
population density and economies of scale in rural Texas, higher labor costs in urban Texas, and 
district-by-district differences in uncontrollable cost factors like student need.  

Uncontrollable Cost Adjustment Using the ECI and TRCI 
The cost function analyses also generated cost indices that could be used to adjust the Foundation 
School Program (FSP) and the transportation allotment for those differences. The ECI could be 
used as an adjustment for the basic allotment in the FSP. If the legislature chose to go that route, 
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the ECI would replace the small and midsized allotments, the compensatory education allotments, 
the dyslexia allotment and the special education allotments, as well as the bilingual/ESL allotment. 
Because those allotments largely define weighted average daily attendance (WADA), the ECI 
would also largely redefine WADA in Tier II of the FSP.  

Similarly, the TRCI could be used to adjust the transportation allotment for geographic differences 
in the cost of education. During the 2014-15 through 2018-19 time period, the regular program 
allotment was determined using a linear density-based formula that provided a higher rate per mile 
for districts with a larger number of riders per mile. The formula for determining the regular 
transportation allotment was amended under House Bill 3 (HB 3) in June 2019. Under HB 3, the 
regular program allotment will be based on a flat rate per mile to be set by the Legislature in the 
General Appropriations Act (GAA). The rate adopted for 2020-21 under the current GAA is $1 
per mile. 

The TRCI could be used directly to adjust the base allotment rate per mile for the estimated 
differential costs associated with the different uncontrollable cost environments facing district 
transportation planners. A district with an estimated TRCI of 1.29 would be assigned a regular 
program allotment rate of 1.29 times the base allotment rate per mile. Assuming no change in the 
base allotment, then at the median the current HB3 rate of $1 per mile would be increased to $1.29/ 
mile. Of course, the legislature could also use its discretion to make a revenue-neutral, downward 
adjustment to the base allotment per mile. A base allotment of $0.82 per mile multiplied by the 
TRCI would have the same predicted impact on the state’s total transportation allotment as the flat 
$1 per mile under HB3. Under a TRCI-driven model, relatively more transportation funding would 
flow to the districts where uncontrollable transportation costs are higher. 

One key to successful long-term implementation of either the ECI or the TRCI would be the 
development of a strategy for regularly updating the indices. Although many of the factors that 
drive differences in the costs of education and transportation are unlikely to change over time, 
other factors—such as wage levels outside of education, fuel costs and student enrollments—are 
sensitive to changing economic and socioeconomic conditions. To ensure that the cost indices are 
functioning as intended, the ECI and TRCI should be updated regularly, either by using the 
estimated cost models to generate new cost predictions corresponding to new values for the various 
cost factors, or by re-estimating the cost models themselves.   

Uncontrollable Cost Adjustment Using Individual Cost Factor Adjustments 
While it would be straightforward and analytically sound to use the ECI and TRCI as black-box 
cost adjustments, the legislature may instead choose to use the information provided herein to 
refine key components of the two funding models. For example: 

The Compensatory Program Allotments: HB3 instructed the Commissioner of Education to 
develop new measures of student socioeconomic status. The new measures were to be based on 
the demographics of the Census block where each educationally disadvantaged student resides. 
The funding formula weight was increased by 2.5 percentage points for economically 
disadvantaged students who live in Census blocks that were the least disadvantaged; and increased 
by 7.5 percentage points for economically disadvantaged students who live in severely 
disadvantaged Census blocks.  
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The cost function estimates suggest that the concentration of poverty in the school –not just the 
concentration of poverty in the student’s neighborhood—can have a significant impact on the cost 
of education. The higher the percentage of economically disadvantaged students, the higher the 
increase in cost associated with an additional disadvantaged student. The legislature may wish to 
consider adding an intensity adjustment, perhaps modeled after the concentration grants or the 
targeted assistance grants that are part of the Title 1 program.  

The Small and Midsized Allotments: HB3 replaced the small and midsized adjustments in the 
funding formula with small and midsized allotments. This change treated the scale adjustments in 
a manner analogous to the allotment for compensatory education. “Instead of flowing funds to 
small and mid-size districts as an adjustment that occurs before other funding adjustments, the 
funding now flows as an allotment under Tier I at the same time as other funding adjustments, 
such as the compensatory education allotment and the bilingual allotment.” (TEA 2019). As a 
result, the small and midsized adjustments no longer have a multiplicative effect on the other 
allotments, such as the compensatory or bilingual program allotments. This change reduced the 
funding differential for small and midsized districts. 

The cost function estimates suggest that the small and midsized allotments still overstate the 
relationship between school district size and the cost of education for all but the smallest districts. 
Figure E-5 compares the small and midsized allotments expected under HB3 (as a percentage of 
the funding for an otherwise identical district that was not eligible for the size adjustments) to 
those implied by the cost function analysis. (The dashed line indicates the supplemental allotment 
provided to districts with fewer than 300 students when the district is the only one in the county.) 
There are two alternatives for the FSP—one in which all the students are economically 
disadvantaged and live in a severely disadvantaged Census block, and one in which none of the 
students are economically disadvantaged. As the figure illustrates, the cost function estimates 
indicate that a district with 300 students costs 25% more to operate than a school district with 
5,000 students, whereas the funding formula provides an additional 35% to 44%, depending on 
the percentage of economically disadvantaged students. The gap between the FSP and the cost 
function-based estimates is even wider for districts with between 300 and 1,000 students. 
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Figure E-5: Two Perspectives on Economies of Scale 

 
Source: Authors’ calculations from the FSP and Appendix F.  

The Cost of Education Index: HB3 removed the Cost of Education Index (CEI) that had been 
part of the FSP since 1991. While the CEI was clearly outdated, Chapter 1 of this report provides 
evidence that significant regional differences in labor cost persist, and offers a ready-made 
replacement for legislative consideration, namely the Texas TCI.  

Because the non-labor components of a school district’s budget are unlikely to have the same 
geographic pattern as labor costs, the legislature may wish to embed the Texas TCI or the ACS-
CWIFT in a regional cost index. As discussed in Taylor (2015) a regional cost index can be 
constructed as a weighted average of the various price indices (here, the Texas TCI/ACS-CWIFT 
and APCI) where the weights are the shares of each input in the total budget of a typical district. 
Prior to HB3, the CEI was operationalized into Tier I of the funding formula in a way that was 
equivalent to a regional cost index with a labor weight of 0.71 (Taylor 2015b).  

Should the legislature choose to adopt the Texas TCI or APCI, it would be prudent to also adopt a 
process by which the indices would be updated, so that the indices would continue to perform as 
intended when economic conditions changed.  

Transportation Cost Adjustments: As an alternative to the TRCI, one could use the 
transportation cost function to derive cost-function based weights that can be applied to each of 
the uncontrollable cost factors and then added up to generate an adjusted allotment rate for regular 
program miles. This is similar in spirit to the use of weights to adjust the base allotment per pupil 
in determining the Tier I education allotment. For the three principal uncontrollable factors in the 
model—fuel price, labor price, and population density—we generated the estimated change in cost 
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from a small change in the designated cost factor (i.e., the marginal effect) holding all other factors 
constant at their statewide means.  

We then used the estimated marginal effects to generate a set of cost allotment adjustment factors 
for each of the three key cost factors. Using 2018-19 data, we first divided each cost factor into 
four or five groups.  The groups corresponded to quartiles for the input prices. Because of the large 
differences within the top density quartile, we further subdivided that quartile into the values above 
the 90th percentile and values below the 90th percentile. For each group, we then calculated a 
predicted percentage increase in cost per mile due to the higher fuel price, higher wage level, or 
higher population density, respectively. We end up with four fuel price adjustment factors, four 
wage level adjustment factors, and five density adjustment factors. The first quartile is the category 
with the lowest fuel price, the lowest wage level or the lowest population density. 

Table E-2: Transportation Regular Program Allotment Rate Adjustment Factors 
Quartiles Fuel index 

Adjustment 
Factor 

Wage level 
Adjustment 

Factor 

Population 
Density 

Adjustment 
Factor 

First Quartile 0.03 0.02 0.35 

Second Quartile 0.04 0.03 0.33 

Third Quartile 0.05 0.05 0.31 

Fourth Quartile up to 90th percentile  0.07 0.07 0.13 

Fourth Quartile above 90th percentile 0.07 0.07 0.00 

Source: Authors’ calculations. 

A district could be in the first quartile for the fuel index, the second for the wage and the third for 
population density (or vice versa). The total input cost factor adjustment to the basic transportation 
allotment would simply be the sum of the three adjustment factors for each district.   
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Glossary of Terms 

Auxiliary Personnel Cost Index (APCI): An APCI is a labor cost index that has been based on 
an analysis of auxiliary personnel compensation within the state. 

Control Function: A statistical technique used to control for bias generated by a potential 
correlation between an independent variable and the error term in a regression analysis. A control 
function is an alternative strategy for specifying an instrumental variables model. 

Comparable Wage Index (CWI): A CWI is a labor cost index that has been based on an analysis 
of nonteacher compensation. The basic premise of a Comparable Wage Index (CWI) is that one 
should be able to measure regional variations in the cost of hiring educators by observing variations 
in the earnings of comparable workers who are not educators. 

Core-Based Statistical Area (CBSA): A term used by the US Office of Management and Budget 
and US Census Bureau to refer collectively to all metropolitan and micropolitan areas. A 
metropolitan area is a county or cluster of counties with a central, urbanized area of at least 50,000 
people. A micropolitan area is a county or cluster of counties with a central city of at least 10,000 
people. Two counties are considered part of the same CBSA whenever commuting patterns 
indicate that the counties are part of the same integrated labor market area. In Texas, College 
Station-Bryan is a metropolitan area, and Nacogdoches is a micropolitan area. 

Cost Function: A mathematical description of the relationship between the inputs, outputs and 
costs of operating a fully efficient firm. In the educational context, a cost function describes the 
relationship between (efficient) school spending and student performance, given the price of 
educational inputs (such as teachers or school supplies), student characteristics, and other 
determinants of the educational environment such as school district size. 

Cost Function Analysis: The estimation of a cost function using statistics or some other data-
driven technique. 

Economies of scale: Economies of scale exist when it is possible to reduce per-pupil costs by 
increasing the size of the school or district. 

Educational Cost Index (ECI): To generate an ECI, one uses a cost function to predict the cost 
of producing a designated level of output in all jurisdictions. Here, the ECI is the ratio of the cost 
function’s predicted cost for the school district, divided by the state minimum predicted cost. 

Efficient: A school or district is efficient (i.e., behaving efficiently) when it is not possible to 
increase measured educational or transportation outputs without increasing expenditures on 
purchased inputs. 

Environmental Factors: Characteristics of the school district or location that influence the cost 
of education or the cost of transportation, but are neither purchased inputs nor outputs.  Common 
environmental factors include district size, student demographics and population density. 

Hedonic Wage Analysis: A regression-based analysis of the relationship between observed pay 
and variables representing worker characteristics, job characteristics and location characteristics.  



 

23 | P a g e  
 

Herfindahl Index: A measure of the amount of competition in a market. In the education context, 
it is defined as the sum of the squared local education agency (LEA) enrollment shares, where an 
LEA’s enrollment share is its own enrollment divided by the total enrollment in the CBSA. The 
Herfindahl index increases as the level of enrollment concentration increases (i.e., as the level of 
competition decreases). A Herfindahl index of 1.00 indicates a metropolitan area with a single 
LEA; a Herfindahl index of 0.10 indicates a metropolitan area with 10 LEAs of equal size. 

Inefficient: A school or district is inefficient when it is possible to increase measured educational 
or transportation outputs without increasing expenditures on purchased inputs. 

Inputs: The equipment, personnel or raw materials used to produce outputs/outcomes. 

Labor Cost Index: A labor cost index describes geographic variations in the prevailing wage for 
a designated type of worker. It is a measure of the price employers pay for labor, normalized 
relative to sum reference wage level, such as the state average wage or the state minimum wage 
for the worker type. 

Outputs/Outcomes: The goods or services produced. In the education context, the primary 
outcomes are some measure of student performance and the number of students served (the 
product of which yields total output). In the bus transportation context, the primary outcomes are 
bus miles and passenger trips. 

Stochastic Frontier Analysis (SFA): SFA is a statistical technique used to describe the best— 
as opposed to average—practice in the data. In this project, the cost function is estimated using 
SFA. Other statistical approaches to cost function estimation assume that, on average, school 
spending equals the cost of education. SFA explicitly allows for the possibility that spending 
could be systematically higher than cost. If school districts are behaving efficiently, SFA yields 
the same cost function estimates as other techniques. 

Teacher Cost Index (TCI): A TCI is a labor cost index that has been based on an analysis of 
teacher compensation within the state. 

Transportation Route Cost Index (TRCI): To generate a TRCI, one uses a cost function to 
predict the cost of producing a designated level of transportation output in all jurisdictions. Here, 
the TRCI is the ratio of the cost function’s predicted cost for the school district, divided by the 
state minimum predicted cost. 
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Introduction 

Expenditures vary from one school district to another for two main reasons: uncontrollable 
differences in the cost of education, and controllable differences in the choices school districts 
make.  

Some school districts spend more than other districts for reasons that are clearly outside of their 
control. For example, school districts that face high market prices for teachers due to the cost of 
living will tend to spend more than other districts just to be able to hire the same type of personnel. 
School districts that serve a student population that is particularly challenging, may need to offer 
higher salaries to recruit and retain effective teachers, and may need to employ more teachers per 
pupil than other districts. School districts with widely dispersed student populations may need to 
operate smaller, less cost-effective schools and may need to spend more per pupil on student 
transportation.  

On the other hand, some school districts spend more than other districts for reasons within their 
control. For example, a district may choose to provide educational services or enrichment activities 
that are not provided by other districts, or may make other operational decisions that tend to 
increase costs. Although such decisions may be motivated by the desire to achieve better student 
outcomes, in some cases the result may be a less efficient use of available resources.  

Separating uncontrollable causes of observed differences in spending from controllable causes is 
the fundamental challenge facing researchers and policymakers who are interested in comparing 
or equalizing the purchasing power of school districts. If the challenge is not met, high spending 
districts may be misinterpreted as high-cost districts, policymakers may misallocate scarce 
educational resources, and researchers may be misled about the relationship between school 
resources and educational outcomes. 

In accordance with House Bill 3 (section 48.012), 86th Texas Legislature, 2019, the Texas 
Education Agency entered a Memorandum of Understanding and Agreement with Texas A&M 
University to conduct a study on geographic variations in known resource costs and costs of 
education due to factors beyond the control of school districts; and school district transportation 
costs. This report presents the results of that study. Chapter 1 of this report describes geographic 
differences in the cost of education that arise from uncontrollable differences in wages and salaries. 
Chapter 2 describes variations in the cost of education that arise from uncontrollable differences 
in cost factors other than wage levels. Chapter 3 describes differences in the cost of student 
transportation. Chapter 4 concludes the report by describing strategies for adjusting the Foundation 
School Program to address the cost differences identified in the previous chapters.  

Findings indicate that there are significant variations in labor costs across the state that fall outside 
of school district control. There are also significant and uncontrollable differences in transportation 
cost. These findings indicate that districts in high-cost environments require additional funding to 
purchase the same resources available to other districts at a lower cost. As the state continues to 
grow and diversify, cost differences across school districts will widen. Failure to account for these 
cost differences in the school finance formula may lead to inequities in district purchasing power 
and, ultimately, student outcomes. Fortunately, adjustments for uncontrollable cost differences can 
be included in the Foundation School Program. This report presents the results of a study on 
geographic variations in the cost of education and recommends addition of a geographic cost 
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adjustment to the current school finance formula in order to more effectively meet real resource 
goals outlined by the Foundation School Program. 
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Chapter 1:  Geographic Variations in Wages and Salaries 

Differences in the cost of living and the availability of amenities can lead to geographic differences 
in the prices that school districts must pay for their most important resource—labor. The 
geographic labor cost indices developed in this chapter describe regional differences in the wages 
that must be paid to recruit and retain the same sort of high quality personnel in every school 
district. As such, they serve the same purpose as inflation indices: they reflect the real purchasing 
power of school districts when prices are different. 

The ACS-CWIFT 

The National Center for Education Statistics (NCES) recently collaborated with the US Census 
Bureau to publish a new index designed to measure regional variation in the cost of education—
the ACS-Comparable Wage Index for Teachers (ACS-CWIFT). 

The ACS-CWIFT is a labor cost index that was based on millions of responses to the American 
Community Survey (ACS). The ACS is a survey of US households conducted annually by the US 
Census Bureau. The ACS is the primary source of demographic information about the US 
population. It provides information about the earnings, age, occupation, industry, and other 
demographic characteristics for millions of US workers.  

The ACS-CWIFT measures geographic variation in the prevailing wage for college-educated 
workers who are not educators. This focus on non-educators ensures that the ACS-CWIFT is 
measuring variations in labor cost that are beyond school district control. The basic premise of the 
ACS-CWIFT is that all types of workers—including teachers and other educators—demand higher 
wages in areas where the cost of living is high or there is a lack of desirable local amenities (such 
as good climate, low crime rates, or access to beaches, museums, or fancy restaurants). As a result, 
it should be possible to measure most of the uncontrollable variation in educator pay by observing 
systematic, regional variations in the earnings of comparably educated workers who are not 
educators. Intuitively, if accountants in Austin are paid 5 percent more than the national average 
accounting wage; Austin engineers are paid 5 percent more than the national average engineering 
wage; Austin nurses are paid 5 percent more than the national average nursing wage; and so on, 
then a comparable wage index (CWI) like the ACS-CWIFT would predict that the wage level for 
Austin teachers is also 5 percent more than the national average teacher wage. 

The ACS-CWIFT was estimated at the county level using data from three consecutive years of the 
ACS. The most recent index was estimated from over one-million survey responses and covers the 
three-year period from 2016 through 2018. 

As a general rule, the ACS-CWIFT for a Texas school district is the ACS CWIFT for the 
corresponding county. However, some Texas districts span multiple counties. In those cases, the 
ACS-CWIFT for the district is a weighted average of the ACS-CWIFTs for each county in the 
district, and the weights reflect the shares of school-aged children in the district who live in each 
county. 

Figure 1-1 maps the geographic distribution of the ACS-CWIFT in Texas. Values range from 
0.712 in the lowest cost districts to 1.067 in the highest cost districts, implying that the cost of 
hiring college educated workers can differ by as much as 50 percent (1.067/0.712) from one part 
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of Texas to another. As the map illustrates, the ACS-CWIFT indicates that the cost of hiring 
college-educated workers is highest in the Houston metropolitan area, and lowest in rural west 
Texas.  

Figure 1-1: The ACS Comparable Wage Index for Teachers, 2018 

 
Source: National Center for Education Statistics. 

The TSS High School Comparable Wage Index 

Because school districts employ non-professional staff as well as professional staff, and the wages 
of workers without a college degree may have a different geographic pattern than do the wages of 
college graduates, the Texas Smart Schools research team used the publically available ACS data 
to estimate a CWI for high school graduates who do not have a bachelor’s degree. This High 
School CWI (HS-CWI) serves as the indicator for regional differences in the prices paid for non-
professional staff.  

The HS-CWI was modeled after the ACS-CWIFT. As such, the HS-CWI was also based on 
millions of responses from three consecutive years of the American Community Survey. However, 
unlike the ACS-CWIFT (which derived from survey responses from college-educated workers), 
the HS-CWI was estimated from the survey responses of workers who had at least a high school 
diploma but did not have a bachelor’s degree. Again, survey respondents who were employed in 
K-12 education were excluded, to ensure that the HS-CWI was measuring labor cost variations 
beyond school district control. (For more on the HS-CWI, see Texas Smart Schools, 2019). 

Because the HS-CWI was estimated from publically available data (and therefore some geographic 
information was suppressed to ensure privacy), it lacks some of the geographic detail available 
with the ACS-CWIFT. The HS-CWI was based on “place-of-work areas” as defined by the Census 
Bureau. Census place-of-work areas are geographic regions designed to contain at least 100,000 
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persons while not crossing state boundaries. In sparsely populated parts of a state, one place-of-
work could comprise multiple counties; in densely populated parts of a state, there could be 
multiple places-of-work within a single county. The geographic units used in the HS-CWI analyses 
were either single places of work, or a cluster of the places-of-work that comprise a metropolitan 
area. 

The predicted wage level in each labor market area captured systematic variations in labor earnings 
while controlling for worker demographics, industrial and occupational mix, and amount of time 
worked. Dividing each local wage prediction by the corresponding national average yielded the 
HS-CWI. The HS-CWI for a Texas school district is the HS-CWI for the corresponding place of 
work (either county or metropolitan area).  

Figure 1-2 maps the geographic distribution of the HS-CWI in Texas. Values range from 0.84 in 
the lowest cost districts to 1.10 in the highest cost districts, implying that the cost of hiring workers 
with a high school diploma can differ by as much as 31 percent (1.10/0.84) from one part of Texas 
to another. The tighter range on the HS-CWI (when compared with the ACS-CWI) likely arises 
from the more limited level of geographic detail in the HS-CWI. As the map illustrates, the HS-
CWI indicates that the cost of hiring college-educated workers is highest in Midland, Odessa, and 
the major Texas metropolitan areas, and lowest in rural areas outside of the panhandle of Texas.  

Figure 1-2: The HS-CWI, 2020 

 
Source: Texas Smart Schools. 
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Geographic Cost Adjustments in Other States 

Texas is not the only state to grapple with the challenges posed by geographic variation in labor 
cost. In an effort to level the playing field, so that all school districts can afford to hire high-quality 
teachers, a dozen states have incorporated regional cost adjustments into their school finance 
formulae (see Table 1-1).  

Table 1-1: Geographic Cost Adjustment Strategies, by State in 2018–2019 
State Name of Index Labor Cost Strategy 

Alaska District Cost Factor Teacher Cost Index 

Colorado Cost of Living Factor Cost of Living Index 

Florida District Cost Differential Comparable Wage Index 

Maine Regional Labor Market Area Adjustment Teacher Cost Index 

Maryland Geographic Cost of Education Index Teacher Cost Index 

Massachusetts Wage Adjustment Factor Comparable Wage Index 

Missouri Dollar Value Modifier Comparable Wage Index 

New Jersey Geographic Cost Adjustment Comparable Wage Index 

New York Regional Cost Index Comparable Wage Index 

Virginia Cost of Competing Adjustment Comparable Wage Index  

Washington Regionalization Factor Cost of Living Index 

Wyoming Regional Cost Adjustment Cost of Living Index and 
Teacher Cost Index  

Note: Sources listed in Appendix A. 

The most common strategy for regional cost adjustment has been the CWI. Six states—Florida, 
Massachusetts, Missouri, New Jersey, New York and Virginia—use some sort of CWI in their 
state funding formula. Most of the six estimate their CWI using data collected by their state 
agencies as part of the Bureau of Labor Statistics’ Occupational Employment Survey.  

Three states—Colorado, Washington and Wyoming—use a cost of living index for regional cost 
adjustments. A cost-of living index measures the cost of purchasing a designated basket of 
consumer goods—such as food, housing or clothing—in each locality. Researchers construct an 
educational cost-of-living index using the same basic methodology as is used in the construction 
of common inflation measures like the consumer price index (CPI). 

Finally, four states use a teacher cost index (TCI) to measure regional differences in labor cost. A 
TCI is based on an analysis of teacher compensation within the state. Researchers use regression 
analysis to separate the observed variation in teacher salaries into the part that is explained by 
school district decisions (such as teacher demographics or teaching assignments) and the part that 
is systematically related to factors outside of school district control (such as the cost of living, the 
degree of geographic isolation or student demographics). The researchers then use their regression 
model to predict the salary that each district would need to pay to hire a teacher with an identical 

http://en.wikipedia.org/wiki/Alabama
http://en.wikipedia.org/wiki/Arizona
http://en.wikipedia.org/wiki/Arkansas
http://en.wikipedia.org/wiki/California
http://en.wikipedia.org/wiki/Connecticut
http://en.wikipedia.org/wiki/Delaware
http://en.wikipedia.org/wiki/Georgia_(U.S._state)
http://en.wikipedia.org/wiki/Idaho
http://en.wikipedia.org/wiki/Iowa
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30 | P a g e  
 

set of characteristics. Finally, they construct a TCI as the local salary prediction divided by some 
reference salary (such as the state average prediction or state minimum prediction). 

A New Texas Teacher Cost Index 

There are a number of benefits to using a TCI to measure geographic differences in labor cost. 
While other models rely on indirect measures of labor cost, TCIs arise from regression analysis of 
existing teacher salaries. As such, TCIs are directly relevant measures of educational costs. In 
addition, TCIs can be measured at the school or school district level, allowing them to identify 
systematic cost differences across districts in the same labor market. 

On the other hand, TCIs can also have several disadvantages. Teacher characteristics are generally 
treated as controllable in such analyses, and a failure to adequately account for differences in 
teacher quality can lead to measurement errors that misidentify high spending districts as high cost 
districts (Goldhaber 1999; Rothstein and Smith 1997). TCIs have also been criticized as biased by 
noncompetitive teacher labor markets (Goldhaber, Destler, and Player 2010; Hanushek 1999), 
susceptible to school district manipulation (McMahon 1996) and vulnerable to errors of estimation 
(Taylor and Keller 2003).  

The Texas Cost of Education Index (CEI), which was an element in the Foundation School 
Program from 1991 until 2019, was a TCI that had been estimated using teacher salary data from 
the 1988–1989 school year. Although researchers updated the analysis many times over the 
intervening 25 years (e.g., Alexander et al. 2000, Taylor 2004, Taylor 2015a), the CEI remained 
unchanged until it was removed from the Foundation School Program by HB3.  

This report presents a new TCI for Texas. The salary model used in this analysis updated and 
extended the model used in Taylor, Gronberg, and Jansen (2017) and described the observed 
pattern of teacher salaries in Texas as a function of labor market characteristics, job characteristics, 
observable teacher characteristics, and unobservable teacher characteristics.1  

Using the model, one can predict how much each district must pay, each year, in order to hire a 
teacher with standard characteristics (i.e., a master’s degree and 10 years of experience, or a 
bachelor’s degree with zero years of experience). The TCI for each district (each year) is the 
predicted salary in that district for a teacher with a standard set of characteristics who was assigned 
to a standard campus, divided by a minimum predicted salary (for that year).2 Because teacher and 

 
1 Formally, the model can be expressed as: 

ln�𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� =  𝐷𝐷𝑖𝑖𝑖𝑖𝛽𝛽 +  𝑇𝑇𝑖𝑖𝑖𝑖𝛿𝛿 +  𝑀𝑀𝑖𝑖𝑖𝑖  + 𝜂𝜂𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

where the subscripts i, d, j and t stand for individuals, districts, labor markets and time, respectively, Widjt is the 
teacher’s full-time-equivalent monthly salary, Ddt is a vector of job characteristics that could give rise to compensating 
differentials, Tit is a vector of individual teacher characteristics that vary over time, Mjt is a vector of labor market 
characteristics, and the ηi are individual teacher random effects. The model was estimated assuming the individual 
random effects follow an autoregressive (AR(1)) time series process. 
2 The reference prediction used in the construction of the TCI is the prediction at the one-quarter percentile (so that 
only one quarter of one percent of the districts have a predicted wage below the reference wage). The TCI was set to 
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campus characteristics are standardized (i.e., held constant) in the construction of the TCI, the 
resulting index is purely a function of labor market characteristics and other uncontrollable cost 
factors. As such, it represents a measure of geographic variations in labor costs that arise from 
factors beyond school district control.  

Estimating a New Texas TCI 
Data used in this analysis came from the Texas Education Agency, the National Center for 
Education Statistics (NCES), the US Bureau of Labor Statistics, the National Weather Service, 
and the US Census Bureau. The analysis covered the six school years from 2014–2015 through 
2019–2020, and included all teachers with complete data who worked at least half time for a 
traditional public school district in a traditional classroom setting.3  

The data on teacher salaries, teaching assignments and individual teacher characteristics came 
from TEA’s Public Education Information Management System (PEIMS). Following Taylor, 
Gronberg, and Jansen (2017), this analysis used the log of total, full time equivalent (FTE) annual 
salary as the measure of teacher compensation.4 A focus on salary rather than salary and benefits 
is appropriate in this instance because the most important benefits—pensions and health 
insurance—do not vary for the vast majority of Texas school districts. All Texas school districts 
participated in the Texas Retirement System (TRS) and more than 92 percent of districts provided 
in health insurance through TRS (TRS 2018). Furthermore, Alexander et al. (2000) found that 
extending their salary analysis to include health insurance benefits had very little impact on the 
geographic pattern of salary predictions in Texas. 

Table 1-2 describes the factors (i.e., variables) included in the salary model to explain observed 
variations in FTE salaries. The controllable factors capture variations in salary that arise from 
differences in the teachers themselves and differences in the jobs their districts assign them to do; 
the uncontrollable factors capture differences in the places where they work and the students they 
serve. The New Texas TCI is a function of the uncontrollable cost factors in Table 1-2. 

  

 
1.00 for the handful of districts with predicted wages below the reference wage. This approach ensures that the 
reference wage is not an extreme outlier.  
3 Thus, data about teachers from open-enrollment charter campuses, virtual campuses, and alternative education 
campuses have been excluded. 
4 By definition, the FTE annual salary was the observed total salary divided by the percent FTE. FTE annual teacher 
salaries less than 90% of the state’s statutory minimum were deemed implausible and treated as missing data, as were 
FTE annual teacher salaries in excess of $200,000. 
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Table 1-2: Controllable and Uncontrollable Cost Factors from the Teacher Salary Model 
Controllable Cost Factors Uncontrollable Cost Factors 

Teacher Experience 

Teacher Educational Attainment 

New Hire Indicator 

Teaching Assignment 

− Subject Matter Assignment 
− Grade-level assignment 
− Campus Type 

Other Duties 

− Department Head 
− Administrator 
− Support Staff 

Working Conditions 

− Student Need 
− Social Security status 

Labor Market Conditions 

− ACS-CWIFT 
− Fair Market Rents 
− Unemployment Rate 
− Geographic Isolation 
− Climate 

County Type Indicators 

Note: Variable definitions provided in Appendix B. 

Controllable Cost Factors 

School districts clearly have a choice when it comes to the people that they hire, so teacher 
characteristics are controllable factors (at least in the long run). One of the keys to a successful 
TCI is the inclusion of sufficient controls for teacher characteristics. The salary model used in the 
construction of the Texas TCI included a particularly rich set of demographic controls, including 
measures of teacher experience (log of years of experience, log of years of experience squared, log 
of experience, cubed and an indicator for first year teaching); teacher training (indicators for 
whether the teacher held a master’s degree, doctorate degree, or did not hold at least of bachelor’s 
degree) and teacher years of service in the district (an indicator for whether the teacher is a new 
hire).5  

School districts also controlled the jobs to which teachers were assigned. Therefore, the salary 
model included indicators for subject-matter assignment (elementary subjects, language arts, 
mathematics, science, social studies, health and physical education, foreign languages, fine arts, 
computers, technical/vocational, special education, and tested subjects or grades) and grade-level 
assignment (elementary or secondary, non-graded, pre-kindergarten, or kindergarten). Teachers 
could have multiple teaching assignments or serve multiple grade levels. For example, if an 
individual taught both science and math, or kindergarten and pre-kindergarten students, both of 
their assignments were recorded in the analysis. 

School districts controlled the schools to which teachers were assigned, and some types of schools 
were conceivably more attractive to teachers than other assignments. Therefore, the model also 

 
5 The inclusion of multiple controls for teacher experience and educational attainment improves the flexibility of the 
salary model, thereby improving the extent to which the model controls for district choices about teacher 
characteristics. This approach is standard in the literature. See, for example, Taylor (2020).  
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included indicators for school type (elementary, middle, multi-grade, large high school, or other 
high school). 

Finally, school districts controlled whether or not teachers were assigned other duties in addition 
to teaching. Therefore, the model included indicators for whether or not the teacher served as a 
department head, a school administrator, or a member of the support staff. 

Clearly, there are other factors within the control of school districts that influence the attractiveness 
of a teaching position. Workplace culture can have considerable impact on teacher job satisfaction, 
as can the quality of principal supervision or the availability of high quality mentoring (e.g., 
Nguyen et al. 2020; Bogler, 2001; Borman and Dowling, 2008; Ingersoll, 2001; Tillman and 
Tillman, 2008). Unfortunately, reliable data on such factors were not available for this analysis. 
Given the richness of the salary model and the goodness-of-fit between the model predictions and 
the observed teacher salaries (see below) it is unlikely that omitting these difficult-to-measure 
controls has led to significant bias in the new Texas TCI. 

Uncontrollable Cost Factors 

A substantial literature suggests that student demographics are factors outside of school district 
control that can have a significant influence on the attractiveness of a teaching position (e.g., Loeb, 
Darling-Hammond, and Luczak, 2005; Borman and Dowling, 2008; or Erichsen and Reynolds, 
2019) and therefore on the salaries that districts must pay to attract and retain high quality 
personnel. The underlying premise is that teaching is more difficult where student needs are 
greater, so salaries must be higher to compensate for the increased difficulty.  

Previous work using data on nonrural teachers in Texas (Taylor, Gronberg and Jansen 2017) found 
that teacher salaries were higher in campuses with a higher percentage of English Language 
Learners (ELLs) or special education students, but—contrary to expectations—lower in campuses 
with a higher percentage of economically disadvantaged students. The multidimensional 
correlation between local labor market conditions and student poverty likely explains this 
counterintuitive result. 

In order to construct a reliable TCI, it was crucial that the measures of student demographics be 
outside of school district control. In Texas (as in other states), a student’s ELL status is a function 
of his or her academic performance, and districts clearly influence academics. Students who pass 
the English reading/ English Language Arts STAAR® test are, by definition, no longer ELL 
students. Any student who succeeds academically (at least in this dimension) is subsequently 
removed from the category of ELL students, making the percentage of ELL students subject to 
school district influence. Therefore, rather than rely on the percentage of students who were ELL, 
the researchers constructed a measure of student need that was clearly outside of school district 
control—the percentage of students in the district who had ever been considered English Language 
learners (ELL). Using data from the Education Research Center at the University of Texas at 
Dallas, the research team traced each student’s academic history to identify those students who 
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had been ELL at some point during their experience in Texas schools (EverELL).6 On average 
during the analysis period, 30% of Texas students were EverELL. 

Preliminary analysis of the salary model suggested that teacher salaries were higher where the 
percentage ELL was higher for both metropolitan and nonmetropolitan school districts in Texas. 
However, the preliminary model also indicated that the relationship between teacher salaries and 
the percentage economically disadvantaged or the percentage special education was 
counterintuitive. In other words, estimated labor costs were lower where student need was higher. 
Because the goal of the analysis was an intuitive, reliable TCI, and the resulting TCI was generally 
insensitive to the inclusion or exclusion of the measures of student socio-economic status and 
special education status, the final specification did not include the percentage special education or 
the percentage economically disadvantaged. 7 

Another uncontrollable factor likely to influence labor cost was whether or not the district’s 
teachers participated in the Social Security System. Most district do not participate, relying on the 
TRS to protect teachers in their retirements. However, a small number of Texas districts participate 
in Social Security, not just for their auxiliary workers but also for their teachers. Teachers in those 
districts pay Social Security taxes on their earnings, and will be eligible for partial Social Security 
benefits upon retirement. (Federal rules limiting Social Security benefits for individuals with a 
government pension prevent those teachers from receiving full benefits from the Social Security 
system.) Unlike other districts, the districts that participate in the Social Security system for 
teachers are also required to pay the employer’s share of social security taxes, making their labor 
costs higher than other districts for reasons beyond their control.8 Therefore, the salary model 
included an indicator for social security status. 

The model also included a number of variables designed to capture local variation in labor market 
conditions. The ACS CWIFT reflected the prevailing wage for college graduates.9 The US Bureau 
of Labor Statistic’s measure of the county unemployment rate captured additional information 
about job prospects outside of teaching. 

Previous work by Taylor, Gronberg, and Jansen (2017) suggests that teacher wages are not as high 
as nonteacher wages in metropolitan locations with relatively high housing costs. Therefore, the 
analysis included the US Department of Housing and Urban Development’s estimate of Fair 
Market Rents for a two-bedroom apartment in the county (and the interaction between the fair 
market rents and the ACS-CWIFT). The HUD data indicated that rents in the Austin metropolitan 

 
6 This analysis uses the term EverELL to refer to students who had ever been designated as Limited English Proficient 
(LEP) in the PEIMS data collection. To avoid the statistical noise associated with anomalous blips in student 
demographics, a three-year moving average of the percentage EverELL was used in the estimation and construction 
of the new TCI.  
7 The correlation between the TCI derived from a model including the percentages of economically disadvantaged and 
special education students, and the TCI derived from a model excluding those variables was 0.998. 
8 For purposes of estimation, the salaries in districts where teachers participate in the social security system were 
adjusted upward to reflect the employer’s share of Social Security taxes (6.2 percent). 
9 The ACS-CWIFT is only available for four of the six years of the analysis period. The 2018 values (which correspond 
to the 2018–19 school year) were used to fill in for the 2019–20 school year. The 2015 values were used to fill-in for 
the 2014–15 school year. 
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area were the highest in the state in 2020, and more than 90 percent higher than rents in the rural 
counties with the lowest rents.  

Climate influences the cost of living because of its influence on energy costs (particularly air 
conditioning costs). It could also be a component of the general attractiveness of a locale. 
Therefore, following Alexander et al. (2000), this analysis included a measure of the 30-year 
average total number of cooling-degree days at the three weather stations that are closest to each 
teacher’s primary campus.10 

Geographic isolation can influence the salaries teachers are willing to accept in various locations. 
Therefore, following Alexander et al. (2000) we incorporated two measures of geographic 
isolation (measured at the school level). The first was the distance to the nearest approved educator 
preparation program; the second was the distance to the center of the nearest metropolitan area (in 
miles). In both cases, distances were measured as the crow flies using data on latitudes and 
longitudes.11 In addition, the model included a series of categorical variables based on county-type 
(rural, micropolitan, outlying metropolitan, and central metropolitan) and county population 
density (sparse and very sparse).  

Previous work has suggested that the relationship between teacher characteristics and teacher 
salaries is different in metropolitan parts of Texas than it is elsewhere in the state (Alexander et al. 
2000). Therefore, the salary model allowed for different estimated coefficients in metropolitan and 
nonmetropolitan areas (as defined by the US Census Bureau).  

Estimation Results 

Appendix C presents the coefficient estimates and robust standard errors for two alternative 
specifications of the salary model. The first model is a teacher fixed effects model. The fixed 
effects methodology adjusts for any variation in salaries that might arise from persistent, but 
unmeasured, teacher characteristics such as intelligence or verbal ability. As such, it does the best 
possible job of controlling for differences in salary that could be attributed to school district 
choices about their employees. Unfortunately, in so doing, it may over-control for the variation in 
cost that is driven by stable characteristics of school districts. Stable district characteristics—such 
as geographic remoteness or a persistently high cost of living—will only register for teachers who 
change districts. If teachers who change districts are not representative of the teaching population 
as a whole, the fixed-effects model can be misleading. During the period of analysis, inexperienced 
teachers who did not have an advanced degree were more likely than other teachers to move 
between districts, and more than 80 percent of teachers did not move at all, suggesting that mobile 
teachers may be systematically different from teachers who do not move. 

The second model is an autoregressive (AR) random effects model. Like the fixed effects model, 
the AR random effects model incorporates all of the information in the data and (partially) adjusts 

 
10 The number of cooling degrees for any given day is the number of degrees that a day's average temperature is above 
65 degrees Fahrenheit. Climate was measured as the average number of cooling degree days per year during the 30-
year period from 1981–2010. 
11. Where available, latitude and longitude information for campuses came from the National Center for Education 
Statistics’ Common Core Database. The remaining campuses were assigned latitudes and longitudes according to their 
street address or (if necessary) the zip codes at their street address. 
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for persistent but unmeasured differences in teacher quality. Unlike the fixed effects model, the 
AR random effects model captures the influence of cost factors that are relatively stable over time 
using data from all teachers, not just the teachers who move between districts. Here, the random 
effects model has been estimated allowing the residuals to follow the autoregressive pattern found 
in the data. (An autoregressive pattern to teacher salaries means that if a teacher earns more than 
the model predicts in one year, she will probably earn more than the model predicts the next year 
too.) The autoregressive error structure further augments the model’s ability to control for 
unobservable teacher characteristics.12 

Both models did a very good job of capturing variations in teacher salaries. Including the individual 
teacher effects, either model explained more than 94 percent of the variation in teacher salaries in 
Texas. Furthermore, the two models yielded very similar predictions about the salary needed to 
hire in each school district, and therefore very similar TCIs. (The TCIs generated by the two 
models had a Pearson correlation of 0.99.) Given the importance of largely time-invariant cost 
factors (like climate and geographic isolation) in the construction of a TCI and the likelihood that 
teachers who move between districts are systematically different from those who do not, the AR 
random effects model represents the preferred specification, and was used to generate the new 
Texas TCI. 

Geography of the New Texas TCI 
The Texas TCI for 2019–20 ranged from 1.00 to 1.37, meaning the cost of hiring teachers was 
37% higher in highest-cost districts than the lowest-cost districts. As Figure 1-3 illustrates, the 
Texas TCI was highest in the Houston metropolitan area, and lowest in a district on the outskirts 
of the El Paso metropolitan area (i.e., a place where teachers have easy access to urban amenities 
while enjoying a relatively low cost of living).  

 
12 The Wooldridge test for autocorrelation indicated significant autocorrelation, having generated an F-statistic of 
9,536.59 and a probability of a greater F-statistic less than 0.0001. 
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Figure 1-3: The New Teacher Cost Index for Texas, 2019–20 

 
Source: Authors’ calculations. 

Figure 1-4 illustrates the responsiveness of the TCI to the various uncontrollable cost factors. For 
indicator variables, the figure shows the change in the TCI from switching the indicator on or off. 
For continuous variables, the figure shows the impact of a one standard deviation increase in the 
cost factor, holding all other cost factors constant at their statewide means. The baseline is the TCI 
for a rural county where all continuous variables are at the state mean and all indicator variables 
are switched off.  

As Figure 1-4 illustrates, working conditions outside of school district control have a large 
influence on labor cost. All other things being equal, the TCI is 9 percentage points higher in 
central metropolitan counties than in rural counties, and 7 percentage points higher in other 
metropolitan counties than in rural counties. However, labor costs are lower in very sparsely 
populated metropolitan counties (such as Crosby or Clay) than they are in micropolitan counties.  

Teacher wages were systematically higher in locations where nonteacher wages were also higher. 
A one standard deviation increase in the ACS-CWIFT was associated with a 5 percentage point 
increase in the TCI in metropolitan areas. The effect was much smaller in nonmetropolitan areas. 
On the other hand, the positive impact of higher fair market rents on labor costs was stronger in 
nonmetropolitan counties than in metropolitan counties.  

Districts that participate in the social security system face higher labor costs because they must 
pay the employers share of the social security taxes (6.2 percent). However, the TCI is only 3.5 
percent higher in nonmetropolitan districts where teachers participate in social security than in 
otherwise equal nonmetropolitan districts where teachers do not participate, suggesting that 
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teachers perceive a modest, partially offsetting benefit from participating in the social security 
system.  

Locations where the air conditioning runs all the time have systematically higher labor costs. For 
both metropolitan and nonmetropolitan locations, a one standard deviation increase in the number 
of cooling degree days increases the TCI by between 1 and 2 percent. 

Districts in nonmetropolitan counties that are far from a metropolitan area have lower wages, but 
nonmetropolitan districts that are far from an accredited educator preparation program must pay a 
substantial premium.  

Districts with higher student needs also have systematically higher labor costs. A one standard 
deviation increase in the percentage of students who have ever been designated as ELL is 
associated with a 2 percentage point increase in the TCI. 

Figure 1-4: The Influence of Uncontrollable Cost Factors on the New Texas TCI 

Note: Asterisks indicate indicator variables. Source: Authors' calculations. 
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A Cost Index for Auxiliary Personnel (APCI) 

As the previous section demonstrates, there is substantial geographic variation in wages that school 
district must pay in order to be able to hire highly qualified teachers. There undoubtedly are also 
geographic differences in the wages that school districts must pay to hire other school district 
personnel. The wages for administrators, counselors and other certified personnel are likely to be 
highly correlated with those of teachers. However, the wages of auxiliary personnel—those 
holding jobs that do not typically require a professional license or other form of certification such 
as bus drivers, clerical workers or cafeteria staff—may follow a different geographic pattern. In 
this section, we examine the geographic pattern in wages for auxiliary personnel. 

Figure 1-5 illustrates the wide variety of school district employees who are auxiliary workers. As 
the figure illustrates, the largest fractions of auxiliary personnel work in child nutrition, clerical, 
custodial, or transportation service positions. The “other auxiliary” category includes an array of 
job types such as business office clerks, computer technicians, plumbers, electricians, HVAC 
personnel, warehouse workers, and safety/security workers. 

Figure 1-5: Composition of Employment among Auxiliary School District Personnel 2019–20 

 
Source: PEIMS. 

Obviously, there are important differences between computer technicians and transportation 
workers. The hedonic wage model used in this analysis accommodates those differences using 
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the state average wage for clerical workers, the wages of an individual maintenance worker are 
compared to the state average wage for maintenance workers, and so on. Because the geographic 
patterns captured by the Auxiliary Personnel Cost Index (APCI) reflect differences in these 
occupationally adjusted wages, it does not matter that wages for computer technician are higher 
than the wages for custodians, or that one district might have more computer technicians than 
another. The APCI describes geographic differences that arise when all types of workers in a 
district earn more (or less) than the state average for their occupations.  

Estimating the New APCI 
Data used in this analysis came from the Texas Education Agency, the National Center for 
Education Statistics (NCES), the US Bureau of Labor Statistics, the National Weather Service, 
and the US Census Bureau. The analysis covered the three school years from 2017–2018 through 
2019–2020, and included all auxiliary workers with complete data who worked at least half time 
for a traditional public school district 13 The auxiliary wage analysis only covers the last three 
years because the data needed to incorporate fixed effects for occupation were only available for 
the most-recent three years. 

The data on worker characteristics came from TEA’s Public Education Information Management 
System (PEIMS). This analysis used the log of the full time equivalent (FTE) daily wage as the 
measure of worker compensation.14 Data on individual worker benefits were not available so (as 
with the above analysis of teacher salaries) the auxiliary wage analysis did not include benefits.  

Table 3 describes the factors (i.e., variables) included in the wage model to explain observed 
variations in FTE daily wages. The controllable factors capture variations in wages that arise from 
differences in the workers themselves and differences in the jobs they held; the uncontrollable 
factors capture differences in the places where they worked. 

  

 
13 Data from open-enrollment charter schools have been excluded. Auxiliary employees categorized as “Other Non-
Exempt Auxiliary” were also excluded because the category includes non-exempt auxiliary volunteers and there were 
concerns about the quality of the wage data for those volunteers. 
14 The full-time-equivalent daily wage was calculated as the observed total salary divided by the effective number of 
days worked, where the effective number of days worked was the number of days employed times the percent day 
worked. Thus, a person who worked 14 days for 50% of the day had the same number of effective work days as a 
person who worked seven days for 100% of the day. Daily wages below $58 (the federal minimum for an eight hour 
day) were deemed implausible and treated as missing data. 
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Table 1-3: Controllable and Uncontrollable Cost Factors from the Analysis of Auxiliary 
Personnel Wages 
Controllable Cost Factors Uncontrollable Cost Factors 

Worker Potential Experience 

Worker Educational Attainment 

New Hire Indicator 

Time Worked per year 

− Days per year 
− Percent time per day 

Job category fixed effects 

Working Conditions 

− Social Security status 
− K8 District Indicator 
− Large District Indicator 
− Large Footprint Indicator 

Labor Market Conditions 

− HS-CWI 
− Fair Market Rents 
− Unemployment Rate 
− Geographic Isolation 
− Climate 

County Type Indicators 

 

Controllable Cost Factors 

School districts clearly have a choice when it comes to the people that they hire, so worker 
characteristics are controllable factors (at least in the long run). Unfortunately, the PEIMS data 
contain only limited demographic data on auxiliary personnel. In particular, the PEIMS data do 
not include a direct measure of experience for auxiliary personnel. Because experience is such an 
important determinant of earnings, a proxy must be used. The best available proxy for worker 
experience is the worker’s potential years of experience. Therefore, following the approach taken 
by NCES in the construction of the ACS-CWIFT, the model included the age of the worker (and 
its square). To allow for the possibility that age was a better measure of experience for men than 
for women (because women frequently interrupt their careers to have children, which leaves them 
with fewer years of work experience than a man of the same age) the model also included the sex 
of the worker and the interaction between worker sex and the age variables.  

In addition to the control for potential experience, the wage model also controls for worker 
educational attainment (an indicator whether the individual held a college degree) and tenure in 
the district (an indicator for whether the worker had worked in the district the previous year).  

School districts also controlled the jobs to which personnel were assigned. Therefore, the salary 
model included measures of the time worked (the number of days employed per year and percent 
time per day) as well as indicators for the type of auxiliary position (Business/Finance, Campus 
Office/Clerical, Central Office/Clerical, Child Nutrition, Human Resources, Information 
Technology, Campus Technology Specialist, Custodial, Maintenance, Plumber, Painter, HVAC, 
Electrician, Warehouse, Safety/Security, or Transportation). 

As was the case for teachers, there are clearly other factors within school district control that affect 
the attractiveness of the position. Workplace culture and the quality of supervision are likely to be 
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at least as important for workers in auxiliary positions as they are for teachers. Unfortunately, 
reliable data on such factors were not available for this analysis. To the extent that these omitted 
controllable factors were positively correlated with the uncontrollable factors in the model (so that, 
for example, bosses are better behaved in locations where their employees have lots of job 
alternatives) then the ACPI probably somewhat understates the geographic variation in wages for 
auxiliary workers.  

Uncontrollable Cost Factors 

The uncontrollable factors used in this analysis described working conditions outside of school 
district control and local labor market conditions.  

The first aspect of working conditions was an indicator for whether or not the district participated 
in the Social Security system for some or all of their employees. Unlike other districts, the districts 
that participate in the Social Security system are required to pay the employer’s share of social 
security taxes, making their labor costs higher than other districts for reasons beyond their 
control.15 A district can participate for some of their employees even if they do not participate for 
teachers. 

The second aspect of working conditions was an indicator for whether or not the district served 
high school grades. Including this cost factor in the model allowed for the possibility that school 
districts that only serve students in grades K¬8 could be more (or less) attractive to auxiliary 
workers than other districts. 

The final aspect of working conditions was a pair of indicators for school district size. The first, 
an indicator for whether or not the district had more than 5,000 students in fall enrollment, was 
included to capture the relative attractions of a district where auxiliary personnel were likely to be 
able to specialize rather than wear many hats. The second, an indicator for whether or not the 
district’s geographic footprint covered at least 400 square miles, was included to capture the 
relative complexity of working for a district where campuses are likely to be highly dispersed.  

The model included two variables designed to capture local variation in labor market conditions: 
the county unemployment rate and the number of potential employers in the vicinity. Theory 
suggests that school district jobs would be more difficult to fill (and therefore that upward pressure 
on wages would be stronger) in locations with low unemployment rates and many alternative 
employers.  

The HS-CWI was included in the model to reflect the prevailing wage for high school graduates. 
The US Department of Housing and Urban Development’s estimate of Fair Market Rents for a 
two-bedroom apartment in the county and the interaction between the fair market rents and the 
HS-CWI were also included to further capture differences in amenities and the cost of living. 

Climate influences the cost of living because of its influence on energy costs (particularly air 
conditioning costs). It could also be a component of the general attractiveness of a locale. 
Therefore, this analysis included a measure of the 30-year average total number of cooling-degree 

 
15 For purposes of estimation, the salaries in districts where auxiliary personnel participate in the social security system 
were adjusted upward to reflect the employer’s share of Social Security taxes (6.2 percent). 
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days at the three weather stations that are closest to each teacher’s primary campus and the average 
number of heating degree days at those same sites.16 

As was the case with teachers, geographic isolation could influence the wages that auxiliary 
employees would be willing to accept in various locations. Here, the analysis incorporated the 
average distance to the center of the nearest metropolitan area (in miles), and a series of categorical 
variables based on county-type (rural, micropolitan, outlying metropolitan, and central 
metropolitan) and county population density (sparse and very sparse).17 

Appendix D presents the coefficient estimates and robust standard errors for the auxiliary wage 
model. The model was estimated as an autoregressive (AR) random effects model and, including 
the individual random effects, explained more than 97 percent of the variation in auxiliary wages. 

Geography of the APCI 
The APCI is the ratio of the predicted auxiliary wage for each district, divided by a state minimum 
predicted auxiliary wage (for that year).18 The APCI for 2019–20 ranged from 1.00 to 1.36, 
meaning the cost of hiring auxiliary workers was 36% higher in highest-cost districts than the 
lowest-cost districts. As Figure 1-6 illustrates, the APCI was highest among K¬8 districts in 
Brewster, Duval, and Williamson Counties, and lowest in Hale, Lamb, Sabine, and Starr Counties.  

 
16 The number of cooling degrees for any given day is the number of degrees that a day's average temperature is above 
65 degrees Fahrenheit. Climate was measured as the average number of cooling degree days per year during the 30-
year period from 1981–2010. 
17. Where available, latitude and longitude information for campuses came from the National Center for Education 
Statistics’ Common Core Database. The remaining campuses were assigned latitudes and longitudes according to their 
street address or the zip codes at their street address. 
18 As with the TCI, the reference prediction used in the construction of the APCI is the prediction at the one-quarter 
percentile (so that only one quarter of one percent of the districts have a predicted wage below the reference wage). 
The TCI was set to 1.00 for the handful of districts with predicted wages below the reference wage. This approach 
ensures that the reference wage is not an extreme outlier.  
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Figure 1-6: The Auxiliary Personnel Cost Index for Texas, 2019–20 

 
Source: Authors’ calculations. 

Figure 1-7 illustrates the responsiveness of the APCI to the various uncontrollable cost factors. 
For indicator variables, the figure shows the change in the APCI from switching the indicator on 
or off. For continuous variables, the figure shows the impact of a one standard deviation increase 
in the cost factor, holding all other cost factors constant at their statewide means. The baseline is 
the APCI for a rural county where all continuous variables are at the state mean and all indicator 
variables are switched off. 
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Figure 1-7: The Influence of Uncontrollable Cost factors on the APCI 

Note: Asterisks indicate indicator variables. Source: authors’ calculations. 

As Figure 1-7 illustrates, working conditions outside of school district control have a large 
influence on the cost of hiring auxiliary workers. All other things being equal, the APCI is 3 
percentage points lower in metropolitan counties than in rural counties, and 11 percentage points 
higher in very sparsely populated nonmetropolitan counties than in rural counties. On the other 
hand, most sparsely populated nonmetropolitan counties were far from the center of a metropolitan 
area, and the APCI fell as the miles to a metro center increased.  

The APCI was systematically higher in locations where general wage levels were also higher. A 
one standard deviation increase in the HS-CWI was associated with a 3 percentage point increase 
in the APCI. Higher fair market rents also increased the value of the APCI.  

The APCI was lower in districts that were large in either respect, suggesting that such locations 
are relatively attractive to auxiliary personnel. On the other hand, the APCI was sharply higher in 
K¬8 districts than in districts that served a full range of grades, suggesting that auxiliary positions 
are less attractive in those districts and a K¬8 school district must pay a premium to attract high 
quality auxiliary personnel.  

On average, districts that participate in the social security system face a labor cost differential that 
exceeds the employer’s share of the social security tax. This pattern suggests that, on average, 
auxiliary workers prefer to work at a school district that does not participate in social security. 
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Implications for School Districts 

The TCI and APCI clearly demonstrate that the cost of hiring varies significantly from one Texas 
district to another. School districts in some parts of the state must pay up to 36 percent more than 
other districts, just to be able to hire comparable personnel.  

Hiring is not the only dimension affected by such differences, however. Regional differences in 
wage levels also affect district costs associated with teacher turnover and retention.  

Although some turnover is undoubtedly beneficial (Billingsley, 1993; Ingersoll and Smith, 2003; 
Roseman, 1981; Smith and Ingersoll, 2004), most researchers have concluded that, on net, turnover 
imposes costs on schools. Those costs include the administrative costs of employee separation, as 
well as the costs associated with employee search, recruitment, and induction. Pinkovitz, Moskal, 
and Green (1997) emphasized the intangible costs of turnover such as “the uncompensated 
increased workloads other workers assume due to vacancies, the stress and tension turnover causes, 
declining employee morale, and decreased productivity due to loss of work group synergy” (p. 
71). In addition, new hires frequently takes months to get up to speed in their new environment, 
leading to lower classroom effectiveness among new hires. Synar (2010) calculated that lost 
productivity represented nearly 41% of the total costs of teacher turnover.  

Rough rules of thumb based on analyses by the US Department of Labor suggest that the cost of 
teacher turnover equals 30 percent of the leaver’s salary (e.g., Nweke et al., 2006; Alliance for 
Excellent Education, 2004). As a result, turnover represents a significant source of cost for Texas 
school districts.  

Districts where wages are high relative to the TCI are locations where teacher pay is higher than 
needed to attract and retain the typical Texas teacher. As such, those districts are expected to have 
either below-average teacher turnover or above-average teacher quality (or both). Similarly, 
districts where wages are low relative to the TCI are expected to have either higher levels of 
turnover or lower levels of teacher quality. 

An analysis of the relationship between the TCI and teacher quality was beyond the scope of this 
report. However, a simple analysis of the relationship between teacher turnover and the TCI 
strongly suggested that districts where salaries were below those implied by the TCI had elevated 
turnover rates during the period from 2014–15 through 2018–19. (Data on turnover for the last 
year of the salary analysis, 2019–20, were not available, so the turnover analysis included one 
fewer year than the teacher salary analysis.)  

Table 1-4 compares the turnover rates for districts where salaries were high relative to the TCI 
with the turnover rates for districts where salaries were low relative to the TCI.19 As the table 
illustrates, turnover rates were substantially higher for districts where salaries were low relative to 
the TCI. The differential was particularly large for beginning teachers, where the districts with the 
lowest salaries, relative to the TCI, had an average annual turnover rate that was nearly 50% higher 
(i.e., 7.4 percentage points higher) than the districts with the highest salaries, relative to the TCI.  

 
19 Relative salaries were determined by comparing the district salary level to the salary implied by the TCI. The district 
salary level was determined by estimating the hedonic wage index using ordinary least squares after replacing all of 
the controllable cost factors with district-by-year fixed effects.  



 

47 | P a g e  
 

Table 1-4: Teacher Turnover for Districts with High and Low Salaries, Relative to the TCI, 
2014–15 through 2018–19 

Salary Quintiles 

Overall 
Turnover 

Rate 

Beginning 
Teacher 

Turnover Rate 

Experienced 
Teacher 

Turnover Rate 
Observed Turnover Rates    

Lowest Relative Salary Quintile 15.8% 23.5% 13.6% 
Low Relative Salary Quintile 13.9% 20.7% 12.0% 
Average Relative Salary Quintile 12.9% 18.4% 11.3% 
High Relative Salary Quintile 12.8% 17.2% 11.3% 
Highest Relative Salary Quintile 12.4% 16.1% 11.0% 

 
Demographically Adjusted Turnover Rates    

Lowest Relative Salary Quintile 13.4% 19.0% 12.1% 
Low Relative Salary Quintile 13.2% 19.0% 11.7% 
Average Relative Salary Quintile 12.7% 18.4% 11.2% 
High Relative Salary Quintile 12.3% 17.4% 10.9% 
Highest Relative Salary Quintile 11.8% 16.5% 10.5% 

Note: To avoid confusing normal retirement patterns with other sources of turnover, this analysis has been restricted 
to teachers who are no more than 65 years old. Beginning teachers have fewer than 3 years of professional 
experience; experienced teachers have at least 3 years of experience. Demographically adjusted turnover rates were 
determined using a Probit analysis, wherein turnover was the dependent variable, and the independent variables 
were the district salary level and teacher characteristics (i.e., the uncontrollable characteristics in Table 1-2 plus sex, 
race, age, and age squared). 

One might wonder if the pattern above simply reflected higher retention rates where teacher 
salaries were generally high, not just high relative to the TCI. The second set of turnover estimates 
in Table 1-4 indicate the turnover rates adjusted for teacher demographics (the uncontrollable 
characteristics from Table 1-2 plus sex, race, age, and age squared) and the district average salary 
levels. Although the differentials narrow, the evidence still suggests that districts where salaries 
were low relative to the TCI had significantly higher turnover than average, and districts where 
salaries were high relative to the TCI had significantly lower turnover than average.20 In other 
words, the evidence suggests that a failure to pay salaries consistent with the TCI has had real 
consequences for the ability to retain high quality teachers.  

Conclusions 

In the past, Texas has incorporated geographic cost adjustments into the school finance formula. 
For the 27 years from 1991–92 through the passage of House Bill 3, the Cost of Education Index 
(CEI)—which was a teacher cost index similar in spirit to the new TCI—was used to enhance the 
purchasing power of school districts in high labor cost areas, and thereby enhance the equity of 
Texas’ Foundation School program.  

This analysis suggests that adjustments for differences in the price of labor are needed in Texas. 
Such adjustments level the playing field so that all school districts can recruit and retain the same 

 
20 The differences among the quintiles are statistically significant at the 1-percent level in all three cases. 
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sort of high quality personnel despite local conditions that make some districts more attractive to 
teachers than others. All other things being equal, regions with a high cost of living are less 
attractive to teachers than regions with a low cost of living, so districts in high cost of living areas 
must pay higher wages if they want to attract and retain highly qualified teachers. Similarly, 
regions that have a lot of natural beauty or other local amenities are more attractive to teachers 
than other regions, so districts without such amenities may need to offer a salary premium to attract 
teachers. Just as inflation adjustments allow the state to equalize school district purchasing power 
over time, regional cost adjustments allow the state to equalize purchasing power across locations.  

Addition of a geographic cost adjustment in the state funding formula can advance the equity and 
adequacy goals of the Foundation School Program. Incorporating a geographic cost adjustment 
into the current funding formula is feasible and can be accomplished through the use of either the 
CWIFT or the TCI. Through cost adjustments, the Texas legislature can direct additional funding 
to districts in high-cost environments to ensure all districts can afford the same caliber of teachers 
regardless of uncontrollable costs.  
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Chapter 2:  Geographic Variation in Costs of Education other than Wages 

Schools can provide education services without providing transportation services, and 
transportation services can be provided apart from education services. The Texas school funding 
formula addresses transportation service funding separately from funding of education services. 
Much of the literature on estimating the cost of education services abstracts from transportation 
service costs either explicitly or implicitly. Our work studies these two components of school 
services in separate chapters. This chapter focuses on operating costs of providing non-
transportation education services. Chapter 3 will address the cost of providing transportation 
services to and from the location of education services. 

 

The school funding and finance literature has identified three main drivers of uncontrollable 
variation in educational cost: input prices, student needs, and economies of scale. All three of these 
drivers can vary geographically. As the previous chapter indicates, differences in the cost of living 
and the availability of amenities can lead to geographic differences in the wage level. The 
percentage of students needing compensatory education services can also differ from one district 
to the next, as can the percentage of students who are English language learners or in need of 
special education services. Per pupil, smaller districts are more expensive to operate than larger 
districts for a variety of reasons, and many small districts are located in rural areas. In addition, 
rural districts can face costs arising from the lack of population density. Sparsely populated 
districts tend to operate smaller schools than other districts of comparable size, leading to a lack 
of economies of scale at the school level to higher operating costs in such areas. 

The literature has also identified two broad approaches to measuring the impact of geographic 
differences on the cost of education: bottom-up strategies and top-down strategies. Bottom-up 
strategies start with the construction of prototype schools and then ask how the characteristics of 
those schools might vary with school size or student need. As a general rule, bottom-up strategies 
rely on professional judgement (either that of the researcher or that of local practitioners) to make 
ad hoc geographic or demographic adjustments to the prototypes. The final step in a bottom-up 
analysis is to calculate the cost of replicating their prototype schools given the observed, 
geographic variation in input prices. 

Top-down strategies start with the observed inputs and outputs of schools in various locations, and 
then examine the extent to which differences in circumstance explain differences in expenditures 
or outcomes. Top-down strategies use statistical analysis to identify the appropriate adjustments 
for geographic differences in prices, demographics, or economies of scale. The final step in a top-
down analysis is to use the statistical model to predict the cost of producing a desired outcome 
given the observed, uncontrollable characteristics of school districts.  

Cost-function analysis is the strategy best suited to an examination of geographic differences in 
the cost of education, and is the method used here. A cost function is a top-down strategy that 
estimates the relationship between educational inputs that are purchased (such as teachers, 
administrators, software, and air conditioning) with an array of environmental factors that are not 
purchased (such as student abilities) to produce educational outcomes (such as test scores). (For 
more on the cost function methodology, see Appendix E.) 
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Previous Analyses of Educational Cost Functions  

Cost functions have been widely studied in evaluating the cost of education and in evaluating 
school funding formulas including possible economies of scale and the cost implications of other 
differences across educational units.  

Many researchers have used cost function analysis to examine educational economies of scale, 
frequently in the context of potential school district consolidation.21 Andrews, Duncombe, and 
Yinger (2002) surveyed 10 cost studies that were published between 1985 and 1999, and concluded 
that per-pupil cost was very high for school districts with fewer than 500 students, lowest for 
school districts in the 2,000 to 5,000 student range, and somewhat higher for school districts with 
more than 5,000 students. More recent cost-function analyses have reached similar conclusions 
about the high cost of operating small districts (e.g., Imazeki and Reschovsky, 2006, and Eom et 
al., 2014). Researchers using Texas data have found evidence that many of the apparent economies 
of scale at the district level actually arise from substantial economies of scale at the campus level 
(e.g., Taylor et al., 2017, and Gronberg, Jansen, and Taylor, 2017).  

In addition to economies of scale, researchers have also used cost function analyses to explore the 
additional costs associated with variations in student need. As discussed in Golebiewski (2011), 
Rumberger and Gandara (2008), and Baker, Taylor, and Vedlitz (2008), cost function estimates of 
the cost associated with serving economically disadvantaged students varied widely. Some of the 
studies they surveyed found that no additional funding would be needed (Downes and Pogue, 
1994) while other studies suggested that economically disadvantaged students require more than 
twice the funding of students who are not disadvantaged (Duncombe and Yinger, 2005a).  

Many cost-function researchers have estimated the additional funding needed to achieve the same 
level of performance with English language learners (ELL) as with students who are already 
proficient in English. Recent reviews of the literature include Jimenez-Castellanos and Topper 
(2012), Golebiewski (2011), and Rumberger and Gandara (2008). They all found that the estimated 
range of costs is even wider for ELL students than for economically disadvantage students. For 
example, Duncombe and Yinger (2005b) estimated that the cost of serving an ELL student in 
Kansas was a statistically significant, but tiny, 0.14 percent higher than the cost of serving a student 
who was not ELL. At the other end of the spectrum, Duncombe and Yinger (1997) estimated that 
the cost of serving an ELL student in New York was four times the cost of serving a student who 
was not ELL. Taylor et al. (2014) and Taylor, Gronberg, and Jansen (2017) found that in Texas 
the cost of serving a student who had ever been identified as ELL was between 9 percent and 13.5 
percent higher than the cost of serving a student who had never been identified as ELL. 

A large literature has developed regarding the cost of serving special education students. Recent 
reviews of the literature include Golebiewski (2011) who notes that there is little consensus as to 
how to measure the extent of student disabilities, and even less consensus regarding the associated 
costs. A number of researchers have found that costs were systematically higher for students with 
more profound disabilities. For example, Gronberg et al. (2004) and Imazeki and Reschovsky 
(2004) found that the cost of serving students with speech and learning disabilities were much 

 
21 For example, see Dodson and Garrett (2004); Duncombe, Miner and Ruggiero (1995); Zimmer, DeBoer and Hirth 
(2009); Gronberg et al. (2015); Taylor et al. (2014); or Karakaplan and Kutlu (2019). 
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lower than the costs of serving other special education students, although they were still 
significantly higher than the costs of serving students in regular education programs. 

The Educational Landscape in Texas 

Size is the most important dimension over which Texas school districts vary. Table 2-1 provides 
information on the remarkable variation in district enrollments, district operating expenditures per 
pupil, and transportation expenditures per pupil.  

Table 2-1: Total Operating Expenditures per Pupil and Transportation Expenditures per Pupil 
for Traditional Public School Districts, All Funds, 2018–19, by Enrollment Size Category 
Fall Enrollment  Number of 

Districts 
Total Operating 

Expenditures 
per Pupil  

Transportation 
Expenditures 

per Pupil 

Transportation 
as a Share of 

Total Operating  

10,000 and Above 111 $9,800 $307 3.15% 
5,000 to 9,999 70 $9,804 $333 3.40% 
1,000 to 4,999 332 $10,365 $327 3.17% 
500 to 999 194 $11,532 $320 2.78% 
Less than 500 315 $13,965 $426 3.01% 

Source: Authors’ calculations from Texas Education Agency (2020). 

There are important features of school districts in Texas that are related to enrollment. Table 2-1 
shows that as size increases, both operating expenditures per pupil and transportation expenditures 
per pupil tend to decrease. This is especially apparent for small districts. There are a large number 
of districts in Texas with fewer than 500 students. To put this in perspective, many larger districts 
in Texas have more than 500 students in a single campus, yet 315 districts in Texas—just under 
one-third of our sample—have fewer than 500 students enrolled. These districts have high 
operating expenditures per pupil, and high transportation costs per pupil. If we move to districts 
with enrollment between 500 and 1000, operating expenditures per pupil drop by over $2,400 per 
pupil, or by over 17% of the value for districts with fewer than 500 students enrolled. 
Transportation costs fall by $106 per pupil, or by 25%. 

The largest districts in Texas, those having enrollments between 5,000 and 10,000 students, and 
those very large districts with enrollments over 10,000, have the lowest operating costs per pupil 
and the lowest transportation costs per pupil. The very large districts have average operating costs 
per pupil nearly identical to the average for districts with enrollment between 5,000 and 10,000, 
but even at that, their operating costs are just over $4,100 per pupil lower, 30% lower, than the 
operating costs of the smallest districts. Moreover, the very large districts have average 
transportation costs per pupil that are $119, or 28%, lower than the average transportation costs 
per pupil of the smallest districts. 

The decline in operating costs per pupil continues as enrollment increases up to that 5,000–10,000 
student range, and then holds constant as we move to those districts with enrollment above 10,000 
students. This flattening in per pupil spending at the largest districts suggests that there may be 
limits to the economies of scale as district enrollments increase. 
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Transportation costs per pupil are quite high for the smallest districts. The decline as we move to 
districts with enrollments of 500–1,000 is steep, but then costs per pupil change little up to districts 
of size 5,000–10,000. They decline again for the largest districts with over 10,000 students, 
indicating some possibility of continuing economies of scale, or a change in the fraction of students 
receiving transportation services. 

It is important to note that the smallest districts and the largest districts vary in many dimensions 
other than just enrollment. The smallest districts also tend to be in sparsely populated and remote 
areas where school choice is limited. These geographic differences cannot be addressed by simple 
consolidation, so proposals to consolidate very small districts in order to lower cost per pupil may 
be ineffective and could conceivably result in higher, not lower, costs (Taylor et al., 2014 & 2017).  

This wide dispersion in district size, especially enrollment, always raises issues about possible 
economies of scale, and how operating expenditures per pupil varies with district size. There are 
well-recognized economies of scale in education, and the per-pupil cost of operating a very small 
district is much more than the cost of operating a larger district. Information on this issue can be 
gleaned, on an initial pass, by looking at Figure 2-1, which plots total operating expenditures per 
pupil against district size. Smaller school districts in Texas clearly tend to spend more per pupil 
on operations than larger ones. This is also shown in Table 2-1, as total operating expenditures per 
pupil are lowest (on average) for districts with at least 5,000 students, and highest (on average) for 
districts with fewer than 500 students. In 2018–19, the smallest district in the state, San Vicente 
Independent School District, spent more than four times as much per pupil as did the largest district 
in the state, Houston Independent School District (ISD). (See Figure 2-1). 

Figure 2-1: Total Operating Expenditures per Pupil for Traditional Public School Districts, All 
Funds, 2018–19 

  
Source: TAPR and PEIMS. 
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A Cost Function for Educational Services. 

Cost function analysis has been widely used in a wide variety of contexts for over half a century, 
and in the education context for at least the last three decades. When properly specified and 
estimated using stochastic frontier analysis (SFA), the education cost function is a theoretically 
and statistically reliable method for estimating the relationship between the cost of education and 
various cost drivers, both those that are under the control of school districts and those that are 
considered uncontrollable by school districts. The cost drivers include measures of enrollment and 
measures of density such as population per square mile. Other cost drivers that vary by geography 
include labor costs, materials costs (as proxied by distance from the nearest metro area), and 
insurance costs (as proxied by distance from the coast). See Gronberg et al. (2015) and Taylor et 
al. (2014) for a discussion of the use of cost functions within a SFA. 

The key components of the cost function analysis are summarized in Table 2-2 and described in 
the sections below. For a technical description of the cost function analysis, see Appendix F. 

Table 2-2: Key Components of the Educational Cost Function 
Component Measured by 
Units of Analysis All Standard Campuses in Traditional Public School Districts  

Five Most Recent School Years (2014–15 through 2018–19) 
Expenditures Operating Expenditures Excluding Food and Transportation 
Outcomes Average Conditional NCE Scores on State Assessments 

Campus Number of Students Enrolled 
Input Prices Teacher Cost Index 

Auxiliary Personnel Cost Index? 
Distance to the Center of the Nearest Metropolitan Area 

Environmental 
Factors 

% Economically Disadvantaged 
% Ever Limited English Proficient (Ever-ELL) 
% Special Education 
% High-Needs Special Education 
Campus Type (high school, middle school, multi-grade school) 
K–8 District Indicator 
Metropolitan and Micropolitan Area Indicators 
County Population Density (sparse and very sparse indicators) 
High Windstorm Risk County Indicator 

Controls for 
Inefficiency 

Stochastic Frontier Analysis 
Degree of Educational Competition 

 

Units of analysis 
This study looks at individual campuses within a district as the main unit of analysis. The data 
covers a time period ranging from 2014–15 through 2018–19. 
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To develop the best possible estimates of the size-cost relationship, the cost-function analysis 
includes all standard accountability campuses in traditional public school districts.22,23 Standard 
accountability campuses are subject to all the rules and regulations pertaining to the Texas 
Accountability Rating System and therefore share a similar set of goals, objectives, and 
educational processes (TEA, 2014). Alternative Education Accountability (AEA) campuses (e.g., 
juvenile justice campuses, disciplinary education campuses, residential campuses, and all other 
alternative education campuses) have been excluded because they are subject to different 
accountability requirements and may have different cost structures than other campuses. Because 
they operate under a different set of rules and regulations than traditional public school districts 
and consolidation does not imply deregulation, open-enrollment charter schools have also been 
excluded from the data set. 

Expenditures 
The educational cost function seeks to explain variations in educational expenditures using data 
on educational outcomes, input prices, and environmental factors. Here, educational expenditures 
are measured as operating expenditures per pupil, excluding food and student transportation 
expenditures. It is customary to exclude food and transportation expenditures from the measure of 
expenditures used in cost function analyses because those categories of expenditures are unlikely 
to be explained by the same factors that explain student performance, and therefore add 
unnecessary noise to the analysis.24  

The actual expenditures data come from the Public Education Information Management System 
(PEIMS) and have been adjusted to account for school districts that serve as a fiscal agent for 
another school district or group of districts.25 All expenditures have also been adjusted to account 
for the fact that districts differ in the percentage of their total spending they attribute to specific 
campuses. Some districts provide maintenance services centrally, for example, whereas other 
districts assign maintenance personnel to specific buildings. To ensure that all of the educational 
resources in a district are accounted for, school district expenditures that were not associated with 
a specific campus have been allocated to the district’s campuses on a per pupil basis.26 Thus, for 

 
22 Although many Texas school districts cross county lines, TEA officially associates each school district with a single 
county. Those official designations have been used to identify Core Based Statistical Area (CBSA) locations for 
campuses in traditional public school districts, using the July 2015 CBSA definitions developed by the US Office of 
Management and Budget and published by the US Census Bureau. A metropolitan area is a county or cluster of 
counties with a central, urbanized area of at least 50,000 people. A micropolitan area is a county or cluster of counties 
with a central city of at least 10,000 people. Two counties are considered part of the same CBSA whenever commuting 
patterns indicate that the counties are part of the same integrated labor market area. In Texas, College Station-Bryan 
is a metropolitan area, and Nacogdoches is a micropolitan area.  
23 Virtual campuses and campuses that lack reliable data on student performance (such as elementary education 
campuses that serve no students in tested grades, or very small campuses) have also been excluded. 
24 For examples, see Gronberg, Jansen, and Taylor (2011a, 2011b), Gronberg, Jansen, Taylor, and Booker (2004, 
2005); or Imazeki and Reschovsky (2006).  
25 Fiscal agents collect funds from member districts in a shared service agreement, and make purchases or pay salaries 
with those shared funds on behalf of the member districts. As a result, spending of fiscal agents is artificially inflated 
while the spending by member districts is artificially suppressed. See Appendix F.  
26 Taylor et al. (2014) and Gronberg et al. (2012) also followed this approach. 

http://www.census.gov/population/www/metroareas/metroarea.html
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example, if Little Elementary serves 20% of the students in its district, it is presumed to be 
responsible for 20% of the unallocated spending. 

Figure 2-2 illustrates the distribution of operating expenditures per pupil for the standard 
accountability campuses used in this analysis.27 Note that because these operating expenditures 
exclude food and transportation services, and have been adjusted both for shared service 
agreements and differences in the percentage of spending attributed to campuses, they may not 
align with what TEA publishes on TXschools.gov. 

As the figure illustrates, operating expenditures in 2018–19 ranged from $5,000 to more than 
$20,000, per pupil. Expenditures per pupil were significantly higher for multi-grade campuses 
(those that could not be classified as elementary, middle, or high schools) than for any other type 
of campus, largely because this category includes a number of small, single campus districts such 
as Harrold ISD in the Vernon, Texas, micropolitan area.28 On average, spending was significantly 
higher in high schools (where the mean in 2018–19 was $10,716) than in elementary schools 
(where the mean was $9,132) or middle schools (where the mean was $9,160). The difference in 
average spending between elementary and middle schools was not statistically significant.  

 
27 Per-pupil operating expenditures less than $3,500 or more than $33,000 were deemed implausible and treated as 
missing in this analysis. 
28 Throughout this report, the term “significantly” indicates something that is statistically significant at the 5% level, 
meaning that there is less than a 5% chance that the difference is due to chance alone. 
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Figure 2-2: Operating Expenditures per Pupil for Standard Accountability Campuses by School 
Type, 2018–19 

 
Source: PEIMS. 

Outcomes 
Educational outcomes have both a quantity and a quality dimension. Quantity is measured using 
the number of students in fall enrollment at the campus. In 2018–19, campus enrollment in the 
estimation sample ranged from 41 to 5,098 students; the average campus had 696 students (Figure 
2-3). On average, elementary schools were significantly smaller than middle schools which in turn 
were significantly smaller than high schools. Typically, multi-grade schools were the smallest type 
of all, but there were a few exceptions to this rule. For example, Benbrook Middle/High School in 
Fort Worth ISD (which serves Grades 6–12) was a multi-grade campus with an enrollment above 
1,700 in 2018–19. 
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Figure 2-3: Campus Enrollment for Standard Accountability Campuses, by School Type, 2015–
16 

 
Source: TAPR. 

The quality measure used in this analysis captures differences in average student performance in 
reading and mathematics. This measure is based on student performance on the required State of 
Texas Assessments of Academic Readiness (STAAR®) Grades 3–8 and end-of-course (EOC) 
exams.29 Although schools clearly produce outcomes that may not be reflected in mathematics and 
reading test scores, these are performance measures for which districts are held accountable by the 
state, and the most common measures of school district outcome in the literature.30 Therefore, they 
are reasonable outcome measures for cost analysis. 

STAAR® Grades 3–8 and EOC scores can be difficult to compare across grades, years or testing 
regimes. Therefore, the various test scores have been transformed into conditional normal curve 
equivalent (NCE) scores.31 A conditional NCE score describes a student’s performance relative to 
what would have been expected given his or her prior test score (i.e., conditional on the prior test 

 
29 Only state-mandated assessments in reading and mathematics are included. 
30 For example, see Gronberg et al. (2011a, 2011b); Grosskopf et al. (2013); Grosskopf, Hayes, and Taylor (2014); or 
Imazeki and Reschovsky (2006). 
31 For more on the construction of conditional NCE scores, see Appendix F. 
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score). A conditional NCE score of 50 indicates that the student performed at the 50th percentile 
(i.e., exactly as expected given his or her prior test performance) and a conditional NCE score of 
90 indicates that the student performed as well or better than 90% of his or her academic peers. 
The average conditional NCE score in mathematics and reading for each campus is the quality 
measure used in this analysis. 

Figure 2-4 illustrates the distribution of average conditional NCE scores in 2018–19. As the figure 
illustrates, the distribution of average conditional NCE scores is bell-shaped, with most standard 
accountability campuses in CBSAs having average conditional NCE scores between 40 and 60.32 

Figure 2-4: Campus Average Conditional NCE Scores for Standard Accountability Campuses in 
Core Based Statistical Areas, by School Type, 2018–19 

 
Source: Authors’ calculations; PEIMS. 

Input Prices 
One key to estimating an educational cost function is identifying a measure of the price schools 
must pay for their most important inputs—educators. This analysis uses the new Texas TCI as the 

 
32 In the interests of statistical reliability, campuses with fewer than 25 students for whom a conditional NCE could 
be calculated were excluded from the analysis.  
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price index for profession staff (i.e., teachers, administrators and professional staff) and the APCI 
as the price index for other staff (i.e., auxiliary personnel and instructional aides).  

Ideally, the analysis would also include direct measures of local prices for instructional equipment 
and classroom materials. Unfortunately, such data are not available. However, prices for pencils, 
paper, computers, and other instructional materials are largely set in a competitive market (and 
therefore unlikely to vary across schools), and prices for nonprofessional labor or building rents 
are largely a function of school location (and therefore likely to be highest in the central cities and 
lowest in the suburbs or the micropolitan areas). Therefore, as in in Gronberg et al. (2015) and 
Taylor et al. (2014) the cost analysis includes the distance to the center of the nearest metropolitan 
area as a proxy for differences in the cost of non-labor inputs.33 

Electricity is another important input to the educational process, and energy prices have clearly 
been a source of volatility over the five years included in the cost analysis. However, despite 
significant year-to-year changes in energy prices, there is little evidence that electricity prices vary 
geographically within Texas. Recent work by Woerman (2018) found that all of Texas basically 
faces one price for electricity—especially during the months of the traditional academic school 
year. Therefore, differences in energy prices are unlikely to lead to significant geographic 
differences in the cost of education—although they do contributed to significant geographic 
differences in transportation costs (see Chapter 3).  

Environmental Factors 
There are several environmental factors that influence the cost of education but are not purchased 
inputs. One such factor is the size of the school district. As Figure 2-1 and Table 2-1 illustrate, 
district enrollment for the campuses used in this analysis ranges from fewer than 1,000 students to 
more than 200,000 students. The median school district in the analysis sample has fewer than 1,700 
students and three quarters of the districts have fewer than 5,000 students. 

Another such factor is the grade range of the school district. Some Texas school districts serve 
only elementary grades. Although this analysis was conducted at the school level, there might still 
be systematic differences between K–12 districts and K–8 districts that influence the cost of 
education. A district without a high school could specialize more than other districts of similar 
size, for example, which could lead to lower overall costs. Therefore, this analysis included an 
indicator for whether or not the district served only elementary grades. (The one traditional public 
school district that does not serve elementary grades, South Texas ISD, has been excluded from 
the analysis.) 

Population density and metropolitan status are factors that constrain district choices about campus 
size and could influence other aspects of the educational technology. For example, districts in 
sparsely populated counties cannot take advantage of the school-level economies of scale available 
to other districts of similar size because their populations are so dispersed. Instead, such districts 
must operate smaller schools than other districts, which drives up costs. In addition, districts in 
metropolitan areas may incur costs (such as school security costs) that are not incurred by districts 
in other parts of the state. Therefore, this analysis includes indicators for whether or not the district 

 
33 Miles to the center of the nearest metropolitan area was calculated as-the-crow-flies for each campus using latitude 
and longitude information.  
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is located in a metropolitan or micropolitan county, and indicators for whether or not the district 
is located in a sparsely or very sparsely populated county.34 

Another geographic cost factor is insurance risk. The Texas Department of Insurance designates 
14 Texas counties along the gulf coast as potential windstorm catastrophe areas.35 Districts in those 
counties (and in the cities of Morgan’s Point, La Porte, Shoreacres, Pasadena, and Seabrook) have 
elevated risk of damage from a hurricane or tropical storm, and therefore face higher costs to 
purchase insurance or self-insure. Therefore, this analysis included an indicator for whether or not 
the district was in a designated catastrophe area. 

The other factors identified as influencing the educational environment are student need and school 
type. To capture variations in cost that derive from variations in student need, the analysis includes 
three measures of student demographics—the percentages of students who were identified as 
economically disadvantaged, special education, or ever identified as English language learners 
(EverELL).,36 In addition, because previous work by Gronberg et al. (2005) suggested it was 
important, the analysis also included the percentage of special education students in the district 
with relatively high needs.37 To capture differences in the cost of education that arise from 
differences in mandatory class sizes, or the scope of instruction, the analysis also includes 
indicators for high schools, middle schools, and multi-grade schools.(Elementary schools were the 
baseline against which the other school types were measured.) 

Controlling for Inefficiency 
If schools are behaving efficiently, then increases in educational outcomes will require increases 
in educational expenditures…but there is no guarantee that all school districts are behaving 
efficiently. This analysis relies on SFA because, unlike other statistical techniques, SFA explicitly 
allows for the possibility that spending could be systematically higher than cost. If schools are 
behaving efficiently, then SFA generates the same cost function estimates as other estimation 
techniques. Therefore, SFA can be thought of as a more general approach.  

When the educational cost function is estimated using SFA, school spending is presumed to depend 
not only on the direct determinants of educational cost (outcomes, input prices and environmental 
factors) but also designated factors that could lead one school district to behave more efficiently 
than another. Previous analyses of Texas data have found that school districts in communities 

 
34 A sparsely populated county has a population density of fewer than 20 persons per square mile; a very sparsely 
populated county has a population density of fewer than 10 persons per square mile.  
35 The First Tier Counties are: Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Jefferson, Kenedy, 
Kleberg, Matagorda, Nueces, Refugio, San Patricio, and Willacy. The cities of Morgan’s Point, La Porte, Shoreacres, 
Pasadena, and Seabrook are also considered part of the designated catastrophe area. 
36 For statistical reasons, the measure of ELL status used in this analysis includes not only students who are currently 
ELL, but also any students who have ever been identified as ELL by the Texas school system. The percentage of 
students who have ever been identified as ELL greatly exceeds the percentage of students currently identified as ELL 
in some campuses.  
37 Following Gronberg et al. (2005), high needs special education students are special education students who have 
any classification other than learning disability or speech-language disability. Due to privacy concerns, these data are 
not available at the school level. 
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where parents have more choice about their educational providers tend to behave more efficiently 
(e.g., Taylor et al. 2014 and 2017). Therefore, the model included a common measure of 
educational competition—the Herfindahl index—as a possible determinant of school district 
efficiency. 38 To fully reflect the public school choices available to parents, both traditional public 
school districts and open-enrollment charter schools were included in the calculation of the 
Herfindahl index.  

Cost Function Results  
As detailed in Appendix F, the cost function analysis yields a reasonable picture of the educational 
process in Texas. According to the cost function estimates, all else equal, increases in average 
student performance require increases in educational expenditures. Campuses with a higher Texas 
TCI have a higher cost of education, as do campuses with a higher APCI. Students with greater 
needs are more costly to educate, K–8 districts are less costly to operate than school districts of 
similar size that serve the full grade range, and districts in very sparsely populated counties are 
much more costly to operate than districts in other parts of the state.  

Findings on Economies of Scale 

The analysis revealed significant economies of scale for both campuses and districts. As a general 
rule, increases in campus size led to decreases in the cost of education. For example, the cost 
function indicated that, all other things being equal, a 200-student campus cost 4% more to operate 
than a 400-student campus, which in turn costs 2.5% more to operate than an 800 student campus. 
Costs per pupil were minimized at a campus size of 1,500 students. However, the economies of 
scale at the campus level were largely exhausted once campus enrollment reached 1,000. The 
difference in per-pupil cost between a campus of 1,000 students and a campus of 1,500 students 
was only 0.3%.  

The relationship between district enrollment and predicted cost was more complicated, and easiest 
to understand with the aid of a picture. Figure 2-5 presents predicted per-pupil cost, holding all of 
the inputs, outputs and environmental factors except campus and district enrollment constant at 
their sample means. Because it is not possible for a district with 500 students to have an average 
campus size of 700 (roughly the sample mean), the figure could not credibly be constructed at the 
sample mean of campus size. It was even less plausible that a district with 500 students could have 
a campus size of 1,470 (the cost minimizing campus size). Therefore, for the purposes of this 
illustration, it was assumed that each campus in the district had the average campus-level 
enrollment for that district. The red line through the middle of the data cloud represents a nonlinear 
approximation of the combined effect of both campus and district size. 

 
38 A Herfindahl index is defined as the sum of the squared local education agency (LEA) enrollment shares, where an 
LEA’s enrollment share is its own enrollment divided by the total enrollment in the metropolitan area, micropolitan 
area or rural county.  
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Figure 2-5: The Estimated Relationship between Per Pupil Cost and School District Enrollment 

 
Source: Authors’ calculations. 

As the figure illustrates, costs are highest for very small districts. A district with 300 students, for 
example, is predicted to cost 15% more to operate than a district with 1,000 students. Similarly, a 
district with 1,000 students is predicted to cost 10% more to operate than a district with 5,000 
students. As district size increases, costs tend to fall until the log of district enrollment reaches a 
value of 9.8 (or 18,000 students), at which point it becomes essentially flat. The variation in 
predicted costs among districts with more than 18,000 students is less than one percent, all other 
things being equal. Thus, there are clear economies of scale in Texas education, but consistent 
with the literature discussed above, the cost savings from increases in district size are largely 
exhausted at relatively modest levels of district enrollment.  

Findings on Input Prices 

Because education is such a labor-intensive process, geographic differences in the wage level were 
expected to have a large impact on the cost of education. And, that was indeed the case. Figure 2-
6 graphs the impact of the Texas TCI on cost per student, holding all other district characteristics 
constant. As the figure illustrates, increases in teacher salaries had a positive impact on cost per 
student throughout the relevant range. On average, a 10% increase in teacher salaries is associated 
with a 6.6% increase in cost per pupil. 



 

63 | P a g e  
 

Figure 2-6: The Estimated Relationship between Per-Pupil Cost and the Teacher Cost Index 

 
Source: Authors’ calculations. 

Changes in the wage level for auxiliary personnel had a much more modest predicted impact on 
cost per student. On average, a 10% increase in the APCI was associated with a 0.5% increase in 
the cost of education (holding everything else constant).  

Geographic remoteness (as measured by the distance to the nearest city center) had a statistically 
significant, but relatively modest impact on the cost of education. With the exception of campuses 
within 5 miles of a city center, the model predicted that the cost of education rose with distance. 
On average and holding all other characteristics constant, the cost of education in a district 100 
miles from the center of a metropolitan area was 2.3 % higher than the cost of education in a district 
20 miles from the center of a metropolitan area.  

Findings on Other Environmental Factors 

There are several other environmental variables, including the percentage of students classified as 
Economically Disadvantaged, the percentage of students who have ever been classified as ELL, 
the percentage of special education students, and the percentage of special education students who 
had high needs. Increases in each of these four environmental variables all served to increase per 
student cost.  

For example, the analysis indicates that the cost of educating an economically disadvantaged 
student was, on average, 18% higher than was the cost of educating a student who was not 
economically disadvantaged. However, the estimated effect was not linear. As Figure 2-7 
illustrates, the marginal cost of serving an increased percentage of economically disadvantaged 
students was sharply higher (i.e., the slope was steeper) for campuses that already had a high 
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percentage of economically disadvantaged students. Among campuses with very low percentages 
of economically disadvantaged students (which represent less than 10% of the public school 
campuses under analysis) the marginal cost of serving an additional student who was economically 
disadvantaged was negative.  

Figure 2-7: The Estimated Relationship between Per-Pupil Cost and the Percentage 
Economically Disadvantaged Students 

 
Source: Authors’ calculations. 

This pattern of increasing intensity leading to sharply increasing cost was also observed for 
students who had ever been identified as ELL (see Figure 2-8). A district where 100 percent of the 
students had ever been identified as ELL had predicted costs that were 6.5% above the minimum, 
all other things being equal.39 

 

 
39 This marginal effect is not strictly comparable to the Foundation School Program weight for students in bilingual 
education/English as a second language. The cost function models marginal cost as nonlinear (meaning that the 
implied funding formula weights are different for different campus configurations), the estimated marginal effect is 
based on the percentage of students who have ever been designated as ELL, not the percentage of students currently 
receiving services. 
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Figure 2-8: The Estimated Relationship between Per-Pupil Cost and the Percentage of Students 
Who Had Ever Been Identified as English Language Learners 

 
Source: Authors’ calculations. 

An increase in the percentage of high needs special education students was associated with a 
percentage increase in per student costs of 1.12 times the increase in the percentage of special 
education students. In other words, for a campus with average characteristics, the estimated cost 
of educating a special education student was more than double (112% higher than) the cost of 
educating a student who was not in the special education program. 

Findings on Efficiency 

The analysis also found clear evidence that expenditures exceeded what would be expected if 
campuses were operating efficiently. Figure 2-9 illustrates the distribution of campus cost 
efficiency for the 2018–19 school year. On average, the cost efficiency score was 0.93, indicating 
that campuses were producing 93% of their potential output. Given that inefficiency in this context 
means unexplained expenditures, not necessarily waste, and that many campuses may have been 
producing outcomes that were not reflected in test scores, the average efficiency level was quite 
high. On the other hand, efficiency was measured relative to the best practice in Texas, and best 
practice may still fall short of the ideal. In addition, the minimum efficiency scores were below 
50%, suggesting that some campuses spent much more than could be explained by measured 
outcomes, input prices or student need. 

As a general rule, campuses were more efficient in locations where competition for enrollments 
was more intense. Increases in the Herfindahl index (which measures increases in market 
concentration with respect to both traditional public schools and open enrollment charter schools) 
were associated with increase in campus inefficiency.  



 

66 | P a g e  
 

Figure 2-9: The Distribution of Campus Cost Efficiency, 2018–2019 

 
Source: Authors’ calculations. 

The Educational Cost Index 
Once the educational cost function has been estimated, it can be used to summarize how much 
more or less it costs to produce educational outcomes from one district to the next. Essentially, 
one uses the cost function to predict how much each district must spend, each year, in order to 
produce a standard level of output, assuming it was making cost-minimizing choices about campus 
size. The Educational Cost Index (ECI) is the ratio of the predicted cost for the district, divided by 
the state minimum predicted cost. 40 

As is customary in the literature, the level of output was set at the state average (or in other words 
a Conditional NCE score of 50). Campus size was set at the cost minimizing level for each district. 
For the other cost factors, which were treated as uncontrollable, the cost model was evaluated at 
the actual value for these factors in each district. For purposes of this exercise, each district was 
assigned the average level of efficiency obtained by school districts in Texas. 

The index values so generated provide a measure of the cost in a district due to its uncontrollable 
factors relative to the cost in a district with the most cost-favorable characteristics for the 
uncontrollable factors. For example, an index value of 1.5 indicates that a district is predicted to 
require 50 percent more per pupil to produce the standardized output levels than the minimum cost 

 
40 As with the construction of the Texas TCI, the reference prediction used in the construction of the ECI is the 
prediction at the one-quarter percentile (so that only one quarter of one percent of the districts have a predicted wage 
below the reference wage). The ECI was set to 1.00 for the handful of districts with predicted costs below the reference 
level. This approach ensures that the reference level was not an extreme outlier.  
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district. Other normalizations are, of course, possible. For example, the reference cost level could 
be the predicted cost of producing the standardized outputs for a district with the average values 
of the uncontrollable cost factors. 

Figure 2-10 illustrates the relationship between district size and the ECI for 2018–19. As the figure 
illustrates, the ECI ranges from 1.00 to 4.74. In other words, the cost model predicted that the per-
pupil cost of producing an average level of academic performance in the highest-cost district—
San Vincente ISD with its total enrollment of 13 students—was more than 4.7 times the cost of 
producing the same level of performance in the district with the lowest cost of education.  

Figure 2-10: The Relationship between the ECI and District Enrollment (log), 2018–19 

 
Source: Authors’ calculations. 

Figure 2-11 illustrates the frequency distribution of the ECI. The median of the ECI was 1.29, so 
given their district-specific uncontrollable factors, half of the districts had to spend more than 29% 
above the minimum just to provide the state average level of educational output. The ECI 
distribution is rather heavily skewed, with a long right tail of districts with ECI values greater than 
2.00. Still, these extreme values of the ECI distribution are outliers. More than 95% of districts 
had an index value less than 1.80. 
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Figure 2-11: The Distribution of Educational Cost, 2018–19 

 
 

Table 2-3 provides another perspective on the ECI. As the table illustrates, the average ECI was 
higher in rural counties than in metropolitan or micropolitan areas. The average rural district had 
an ECI of 1.46 while the average metropolitan district had an ECI of 1.28, suggesting that the 
generally lower wages in rural areas were more than offset by the district size adjustments built 
into the ECI. The average high poverty district had an ECI that was more than 16 percentage points 
higher than the average low poverty district. Districts in sparsely populated counties had higher 
ECIs than districts in more populous counties.  
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Table 2-3: The Educational Cost Index, by Location and School District Type, 2019–20 

School District Type 
Number of 

Districts Mean Minimum Maximum 
Metropolitan 493 1.283 1.000 2.410 
Micropolitan 200 1.350 1.000 3.837 
Rural 329 1.462 1.151 4.736 

 
Very Sparsely Populated County 165 1.608 1.099 4.736 
Sparsely Populated County  110 1.405 1.061 1.913 
Other County 747 1.290 1.000 3.315 

 
Small district 640 1.444 1.000 4.736 
Midsized district 201 1.219 1.010 1.783 
Large district 181 1.185 1.000 1.586 

 
Highest Poverty Quintile 205 1.439 1.061 2.950 
Lowest Poverty Quintile 204 1.277 1.000 4.736 

Source: Authors’ calculations from Appendix F 

Conclusions 

The overarching takeaway from this analysis of the educational cost function is that the cost of 
education in Texas is far from uniform. Wages differ by up to 37% from one district to another 
and those differences drive significant differences in educational cost. On average, the cost of 
education in high-poverty districts is 44 percent above the state minimum. A lack of economies of 
scale drives up costs for small districts, and small districts in sparsely populated counties are 
particularly costly to operate.  

Educational costs are higher in some parts of the state because the prices those districts must pay 
for educational resources—like teachers—are particularly high. But the cost function analysis 
suggests that other external cost drivers—namely student need, sparsity, and a lack of economies 
of scale—require some districts to use real resources more intensively than others. Thus, the 
analysis suggests the need for adjustments to the funding formula in all three dimensions. 
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Chapter 3:  Geographic Variations in Transportation Cost 

On the transportation cost front, this study will examine the relationship of transportation costs to 
staff salaries, to district geographic size and density, to measures of the available road network in 
the district or county, to the number of campuses and their geographic distribution within the 
district, and to county disparities in diesel prices. Districts face direct costs to providing student 
transportation, such as the cost of providing buses, fuel, and drivers to transport students. 
Transportation costs may vary between districts based on a number of factors outside of district 
control, including district size and location. Districts that are sparsely populated, for example, may 
have to transport fewer students across long distances, thus generating large per-pupil 
transportation costs. On the other hand, densely populated urban districts may face lower per-pupil 
transportation costs if they transport many students across a short distance. This analysis will 
provide estimates of geographic variation in transportation costs between school years 2014–2015 
and 2018–2019.  

The Literature 

The academic journal literature on the economics of education has paid surprisingly little attention 
to the study of school transportation costs. There are only two small school transportation research 
strands. One set of papers focuses upon the potential of cost advantages to district size and the 
second set of papers looks at the potential for cost savings from privatization of the school 
transportation function. 

A few researchers have estimated a cost function for transportation as a byproduct of their primary 
focus on economies of scale in the total operating costs for school districts (Duncombe, Miner, 
and Ruggiero, 1995; Dodson and Garrett, 2004; and Zimmer, DeBoer, and Hirth, 2009). The 
distinguishing feature of these papers is that each one disaggregates total operating expenditures 
into its major subcomponents, including transportation, and then estimates separate cost functions 
for each subcomponent. The explanatory cost factors in the transportation cost function estimation 
are identical to those used in the total cost function estimation, meaning that the outputs are 
measures of student performance and the major input price is a measure of teacher salaries. 

The obvious shortcoming in this strand of the literature is that the empirical models are, 
fundamentally, not developed as transportation cost function models. Only Zimmer, DeBoer, and 
Hirth (2009) includes a direct transportation output (bus miles) in addition to number of pupils and 
pupil achievement outputs. None of the papers included appropriate input prices for a 
transportation cost study. The only labor price is teacher salaries, even though the principal labor 
price for a transportation cost function study should be bus driver salaries. Fuel prices are not 
included. As a result, this strand of the literature has limited usefulness for understanding 
geographic differences in the cost of delivering student transportation services. 

The school bus privatization literature, on the other hand, does include papers that estimate 
credible school transportation cost function models. Lazarus and McCullough (2005) estimated a 
model of school transportation costs using the number of pupils transported as the measure of 
transportation output. Their model included prices for bus drivers and for fuel, and controls for the 
number of miles of road in the district and the number school buses (separating small and large). 
The percentage of special transportation needs riders was also included in the model to allow for 
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potential differential transportation costs for these rider types. Thompson (2011) expanded the 
model to include bus miles/student transported as a second output, and make other refinements to 
the estimation. The main conclusion of both of these papers is that contracting out did not lead to 
reductions in the cost of pupil transportation services relative to in house provision.  

In a pair of papers, Hutchinson and Pratt (1999, 2007) explored the relative cost of contracting out 
versus in-house production of school bus transportation. The same basic empirical cost function 
model is used in both of these papers. The cost model assumes two outputs: the average number 
of students transported daily and the number of one-way bus miles driven, and two input prices: 
average annual bus driver salary and cost per gallon for fuel. Fixed inputs include the number of 
Type I and Type II buses and the district population density. Again, the focus of these studies is 
on the comparative cost of in-house and contracted transportation institutions. Hutchinson and 
Pratt found that in-house was cheaper in Louisiana but that contracting out was cheaper in 
Tennessee. 

Although the academic literature on school bus transportation functions is sparse, there is a robust 
academic literature on the costs of municipal bus transit. As discussed in Berechman and Giuliano 
(1985) some researchers have focused on vehicle-based or technical output measures, such as bus 
miles or bus-hours; whereas other researchers have focused on passenger-based or demand-based 
output measures, such as passenger-trips or passenger-hours. However, all of the modern bus 
transit cost studies have included measures of the price of labor and the price of fuel in their cost 
function. 

In addition to labor and fuel, the third critical input to producing bus services is bus capital. The 
majority of the transit studies treat the rolling stock of buses as being fixed, and thus the cost 
function estimates are interpreted as short run bus variable operating cost functions. The number 
of buses is usually included as an explanatory variable. Some studies include average age of the 
buses as a measure of capital quality. 

An Overview of Student Transportation in Texas 

There are three primary service models utilized by school districts in the United States to transport 
students to and from school. The most common model is district-provided yellow bus service. 
Under the second most common model, districts contract with private providers for yellow bus 
service. The third approach is reliance on public transit. District involvement usually comes in the 
form of district subsidization of fares for student riders. This is a much less common approach that 
is primarily used in large urban districts that can tap into extensive public transit systems. Across 
the United States, about two-thirds of all yellow school buses are owned by districts and around 
one-third of all yellow buses are owned by private contractors. 

In Texas, district-provided transportation service is the strongly dominant model. In 2019, over 
90% of traditional public school districts reported that they managed transportation in-house. In a 
pure district-run system, the district makes all the key student transportation decisions. The district 
handles the route logistics, buys and manages the maintenance of the buses, and is in charge of all 
human capital management decisions. Under the private contracting out model, the district turns 
the system management control and responsibility, over both fleet and human resources, to the 
contractor. Districts can, of course, stipulate service output and input requirements in the 
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contracting process. Under the public transit model, the school district is not involved on the supply 
side, but may choose to help out students/parents on the demand side. 

In addition to the pure models, there are varieties of hybrid-type arrangements as well. Some 
districts contract out a portion of their student transportation services while providing other 
transportation services internally. There are also intergovernmental, as opposed to public-private 
partnership, contracting arrangements. Prominent examples include the (now defunct) Dallas 
County Schools public transportation agency, which provided student transportation services to a 
large number of school districts in Dallas County and as well as in neighboring counties, and the 
Bowie County Schools Transportation Department, an independent governmental unit that 
provides transportation services to the thirteen school districts in Bowie County. 

In 2015, The Mackinac Center for Public Policy surveyed school districts in Texas and four other 
states to assess the degree of privatization of non-instructional services, including transportation 
(LaFaive and Hohman 2015). Only 3.7% of traditional public school districts in Texas used 
privatized transportation services. At 1.7%, Georgia was even less privatized, and Ohio (at 6.5%) 
was also low on the transportation contracting scale. At the other end of the privatization spectrum, 
Pennsylvania contracted out at a 66.4% rate. A little over a quarter (26.6%) of Michigan school 
districts contracted out for school transportation services in 2015, which was slightly more than 
double the privatization rate in 2011. 

Student Transportation Services Supplied 
There are five major types of student transportation services provided. Regular route services 
transport regular program students to and from school as well as to and from alternative academic 
instruction during the school day. Special route services transport special program students to and 
from school (regular school year), auxiliary services (during regular school year) and ESY 
(extended school year) services. The CTE route services transport regular or special-program 
students to attend a TEA-approved Career and Technology course. Private route services provide 
to-and-from school transportation, using private or commercial transport, for students facing 
extreme transportation hardships. Districts also spend considerable resources transporting students 
for extracurricular and cocurricular activities and events, as well as field trips. It is important to 
note that only first the four types of district route service miles are eligible, i.e., “count”, in 
determining State transportation funding support.  

For transportation purposes, students are classified as one of two types. Special-program students 
are those students with a disability who meet the requirements for specialized transportation 
services. All other students are classified as regular-program students. School districts are only 
required to provide transportation to special-program students. They may choose to provide 
transportation services to regular-program students. 

A key institutional feature for regular route services is that only a subset of regular-program 
students are eligible to be counted as riders for State transportation funding purposes. The two 
most critical (from a number of riders impact standpoint) eligibility criteria are (1) a student rider 
who lives two or more miles from the student’s campus of regular attendance is eligible to be 
counted (2) a student rider who lives in a hazardous traffic or a high risk of violence area that is 
within two mile of the student’s campus of regular attendance is eligible to be counted. The two-
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mile radius threshold creates an incentive for school districts to restrict their to-and-from school 
bus stops to only picking up student riders who live outside the two-mile boundary. 

The common perspective of the principal role for the yellow bus system is home to school 
transport. For the majority of school districts, the largest percentage of bus miles are, indeed, route 
services miles. The median of the distribution of route service bus mile shares across school 
districts is 73%. As shown in the frequency distribution graph below, however, the route share 
does vary considerably. Alternatively stated, the variation in the share of bus miles devoted to 
extracurricular/cocurricular and other trips is nontrivial. 

Figure 3-1: Route Services Mileage Share across Districts, 2018–19 

 
The median proportion of total bus miles that are associated with route services varies across the 
three district groups—Rural, Micropolitan and Metropolitan. As shown in the bar graph in Figure 
3-2 below, the median of the route share miles for the rural districts is considerably lower than the 
share for both micropolitan (by over 7 percentage points) and metropolitan (by over 12 percentage 
points). The average extracurricular trip lengths (rather than number of trips) are likely greater for 
rural districts than for metropolitan and micropolitan districts.  
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Figure 3-2: Route Services Mileage Shares by District Type, 2018–19 

 
Source: Texas Education Agency (2019). 

Choices about Travel Modes 
Students travel to school by four different modes: school buses, personal vehicles, walking/biking, 
or public transit. According to the National Household Travel Survey (2017), roughly a third of 
children ages 5–17 travel to school on a school bus. The majority (roughly 54%) travel to school 
in personal vehicles.  

In Texas, approximately 32% of the students ride from home to school on the school bus. The 
eligible ridership share roughly matches the national share. There is, however, considerable 
variation in ridership share across the school districts in Texas. The frequency distribution for rider 
share is shown in Figure 3-3 below. The median of the distribution is 35.2%. The rider share is 
24% at the 25th percentile and 50% at the 75th percentile. 

We would note that the reported eligible ridership share is a downward-biased measure of home 
to school bus ridership. Districts are allowed to pick up and transport non-eligible students who 
live inside of the two-mile “funding radius” for their campus. These are not necessarily free riders, 
as districts can charge parents a fee for the seats.  
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Figure 3-3: Route Ridership Share Distribution across Districts, 2018–19  

 
 

The ridership share distributions for rural, micro, and metro school districts are quite similar, and 
the medians of the district share distributions differ by less than 1 percentage point. 

Figure 3-4: Median Ridership Share by District Type 2018–2019 

 
Source: Authors’ calculations, 2019; Texas Education Agency Transportation Route Service. 
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The Transportation Funding Allotment, 2014–15 through 2018–19 
School districts receive funding support for their transportation expenditures in the form of a 
transportation allotment. The size of these allotments is determined by statute and by the current 
biennium’s General Appropriations Act. Across the country, states have different formulae for 
reimbursement of public school transportation expenditures. The three major funding categories 
are mileage-based reimbursement, cost-based reimbursement, and per student reimbursement 
(often with a cost factor adjustment). Texas utilizes a mileage-based funding formula approach.  

The Texas transportation allotment for a district is equal to the sum of the funding for each of the 
four categories of the district’s route services: regular, special, CTE, and private. The funding per 
category is determined by multiplying the total eligible mileage for the category by the per-mile 
rate for the category. 

During our 2015–2019 study period, the calculation of funding for regular route services is the 
most complex. The eligible mileage includes both two-or-more-mile-only miles and hazardous-
traffic/high risk of violence area miles, but the funding for hazardous-traffic and high risk of 
violence area mileage is capped at 10 percent of the total funding for two-or-more-mile service. 
The per-mile funding rate varies according to the district’s effective linear density. The effective 
linear density is calculated as the average number of riders (who live two or more miles from 
campus) per mile for the school year. The mapping between district linear density and the district 
funding rate per mile comes from the following schedule, which was established by the Texas 
Legislature in 1984. The funding rate is increasing in rider density. The linear density funding 
model has been replaced by a flat rate per mile model under House Bill 3. We consider some of 
the implications of that model change later in this report. 

Table 3-1: Rate per Mile for Linear Density Groups, 2018–19 
Linear Density Rate per Mile of Approved Route 
2.400 or above $1.43 
1.650 – 2.399 $1.25 
1.150 – 1.649 $1.11 
0.900 – 1.149 $0.97 
0.650 – 0.899 $0.88 
0.400 – 0.649 $0.79 
Up to 0.399 $0.68 

Source: Texas Education Agency Transportation Route Services Report, 2019. 

We display the distribution of districts by linear density category in Table 3-2 below. The 
distribution is right-skewed, with 40% of the districts in the two lowest allotment rate categories 
and less than 10% of the districts in the two highest linear density/rate allotment bins.  



 

77 | P a g e  
 

 

Table 3-2: Distribution of Districts by Linear Density Group, 2018–2019 
Linear Density 

Group 
Allotment Per Mile 
of Approved Route 

Number of Districts 
Per Group 

Percentage of 
Districts Per Group 

2.40 and above $1.24 31 3% 

1.65 to 2.40 $1.15 59 6% 

1.15 to 1.65 $1.07 145 15% 

0.90 to 1.15 $0.99 147 15% 

0.65 to 0.90 $0.89 214 22% 

0.40 to 0.65 $0.79 193 20% 

Up to 0.40 $0.68 200 20% 

 

The regular route funding allotment is then calculated by multiplying a district’s total eligible 
regular-route-service mileage by its linear-density based per-mile rate for regular route services. 

The funding for special route services is calculated by multiplying the district’s total eligible 
special route mileage by the lesser of a State-determined rate per mile ($1.08 in 2018) or the 
expenditure per mile for regular route services for the preceding year.  

The funding for CTE route services is calculated by multiplying the district’s total eligible CTE-
route-service mileage by its expenditure per mile for regular route services for the preceding year. 

The funding for private route services is calculated by multiplying the district’s total eligible 
private-route-service mileage by a State-determined rate per mile ($0.25 in 2018), with a maximum 
reimbursement cap ($816/eligible student rider in 2018). 

We have obtained data on the FSP Transportation Allotments by district for our sample period 
2014–15 through 2018–19. As shown in Table 3-3 below, the State increased transportation 
allotment spending by a little over 11% during the period. The majority, over 60%, of the allotment 
spending is for the Regular Program, although that share declined over the period. The Special 
Program allotments and Career and Technical Education allotments increased significantly during 
the period. The Special Program allotments increased by nearly $14 million (over 14% increase) 
and the Career and Technical Allotments increased by almost $16 million (greater than 75% 
increase). 
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Table 3-3: Transportation Allotment by Program, 2015–2019 
Program 2014–15 2015–16 2016–17 2017–18 2018–19 

Regular  $212,118,720  $214,435,712  $215,277,936  $213,341,056  $218,867,808  

Special $97,394,616 $99,426,192 $100,249,232 $101,651,264 $111,314,768 

Career and 
Technical Education 

$21,145,720 $26,394,934 $29,466,602 $31,481,640 $37,106,500 

Private $92,546 $99,079 $69,949 $104,542 $86,324 

 

As shown in Table 3-4 below, for our sample of 980 TPS districts, the Transportation Allotment 
totaled $367.38 million in 2019 and funded 23% of the Total district expenditures. The percentage 
of expenditures funded decreased from 27% to 23% over the five-year period. 

Table 3-4: FSP Transportation Allotment and Local Expenditures for Public School 
Transportation in Millions, School Years 2014–2015 to 2018–2019 

School Year FSP Transportation 
Allotment Entitlement 

ISD Transportation 
Expenditures 

FSP Transportation 
Allotment as a Percentage of 

Expenditures 

2014–15 $330.75 $1,233.47 27% 

2015–16 $340.36 $1,277.58 27% 

2016–17 $345.06 $1,348.82 26% 

2017–18 $346.58 $1,442.53 24% 

2018–19 $367.38 $1,565.73 23% 

Source: Texas Education Agency’s PEIMS actual financial data. PEIMS annual transportation expenditures are 
calculated as the total reported expenditures in PEIMS actual financial data, Function 34, object codes 6100–6499 
for each ISD.  

When initially rolled out, under the linear density funding model the State provided 70 to 80 
percent of total transportation costs. According to a 2013 Legislative Budget Board Brief, The 
Foundation School Program Transportation Allotment funded between 27% and 30% of total ISD 
and charter school annual expenditures for transportation during school year period 2006–07 
through 2010–11. The percentage of expenditures funded by the FSP transportation allotment fell 
throughout the last decade. 

We can also use these data to study the distribution of allotments and allotment funding shares 
across districts. We show the frequency distribution of the allotment funding shares for 2019 in 
Figure 3-5 below. The median district funding share is 26.3%. There is a concentration of share 
values in the middle of the distribution, but there is considerable variation across districts. The 
10% percentile district funding share is 15.4% and the 90th percentile district funding share is 
44%. 
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Figure 3-5: Transportation Allotment Funding Shares across Districts: 2018–19 

 
 
As a group, rural districts receive a higher transportation funding share than do metropolitan and 
micropolitan districts. As shown in Figure 3-6 below, the median district allotment share among 
rural districts is 3 percentage points higher than the metro district median and 2.5 percentage points 
higher than the micro district median share value. 

Figure 3-6: Allotment Shares by District Type, 2018–19 

 
Source: Authors’ calculations, 2019; Texas Education Agency Division of School Funding and Public Education 
Information Management System, 2019. 

Source: Texas Education Agency Division of School Funding and Public Education Information Management System, 2019.
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The average percentage of transportation expenditures covered by the transportation allotment also 
differs by district size as measured by enrollment. We show the relationship between the average 
allotment/expenditure coverage by nine district enrollment size categories in Figure 3-7 below. 
For districts with fewer than 500 students, the transportation allotment covered an average of 33 
percent of district expenditure. The allotment share falls fairly steadily across the size categories, 
with the lowest average percentage coverage at 22% for the largest enrollment district group.  

Figure 3-7: Districts by Total Student Count Average Percentage of Total Transportation 
Expenditure Covered by State Allotment, 2018–2019 

 
Source: Authors’ calculations, 2019. 

The Transportation Funding Allotment after HB3 
During the 2015–2019 time period, the Regular program allotment was determined using the linear 
density-based formula described earlier in this section. The formula for determining the regular 
transportation allotment was amended under House Bill 3 (HB 3) in June 2019. Under HB 3, the 
regular program allotment will be determined based on a flat rate per mile to be set by the 
Legislature in the General Appropriations Act (GAA). The rate adopted for 2020–21 under the 
current GAA is $1 per mile. 

The switch to the $1 per mile rate will change the aggregate level of regular program funding 
support as well as the distribution of support across districts. We can get a sense of the direction 
of impact on funding by simulating the distribution of regular program allotments across our 
sample of traditional public districts that would have been obtained had the $1 per mile rate been 
in place for the 2018–19 allotment determination. In 2019, the State actual total regular allotment 
spending was $218,867,808. We calculate that the State total regular allotment under the HB3 rate 
would have been $226,630,000. In the aggregate, the State subsidy for school regular program 
transportation would have been increased by just under $8 million, an increase in spending of 
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around 3.5%. There will be redistributive effects associated with a switch to the uniform $1 per 
mile rate as well. The 219 districts who were funded at more than a $1 per mile under the pre-HB 
3 rate schedule would realize a decrease in their funding allotment (holding miles fixed at the 2019 
values). The remaining 761 districts would receive an increase in allotment funding. The average 
impact across rural, metro, and micro district types is shown in Figure 3-8 below. 

The Rural districts would have received the biggest average increase, just over $14K per district. 
The Micropolitan district average increase would have been a little over $10K per district, while 
the Metropolitan districts would have enjoyed the smallest average funding gain of a little over 
$2800 per district. 

Figure 3-8: Average Transportation Allotment by District Type, 2018–19 

 
Although the total regular program allotment funding would be higher, the percentage of total 
regular program expenditures covered remains modest. The portion of transportation expenditures 
not funded by the transportation allotment must be covered out of general revenues. The strong 
crowd-out of uncovered transportation expenditures for instructional expenditures does create 
strong incentives for efficiency in transportation operations. The magnitude of the crowd-out is, 
however, potentially higher in Texas than in several other states. In New York, for example, the 
state contribution covers over half of the district cost of transportation. Increased funding for 
school transportation in Texas will free up general district revenues for investment in educational 
enrichment activities and initiatives. Given the current low proportion of regular program 
expenditures funded by the regular transportation allotment, there is room for substantial increases 
in transportation allotment funding without significantly weakening the efficiency incentives for 
transportation operations. The marginal returns to developing strategies to reduce student 
transportation costs per mile remain intact—a dollar saved on transportation is a dollar available 
for instruction. 

District Transportation Expenditures 
School districts in Texas report produce an annual Transportation Operations Report (TOR) that 
provides information on the expenditures (direct and indirect) incurred providing transportation 
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services for the school year. Expenditures are reported under five object code expenditure 
categories: Salaries and Benefits, Purchased and Contracted Services, Supplies and Materials, 
Annual Depreciation and Other Operating Expenses, and Debt Service. The expenditures are 
subdivided into expenditures attributable to transporting regular-program students and 
expenditures attributable to transporting special-program students (with both excluding students 
who were provided private route services). 

School districts in Texas also report their expenditures on student transportation in their annual 
district financial report. In order to maintain consistency with our estimation of instructional costs, 
we will use district financial data on transportation outlays from the Public Education Information 
Management System (PEIMS). Within the TEA reporting system, we will use the data on Student 
(Pupil) Transportation Expenditures that is recorded under function code 34 in PEIMS. 

The Texas Education Agency Financial Accounting System Reporting Guide instructs districts 
that “Your district must use function code 34, Student Transportation, to account for only the cost 
of transporting students to and from school for the regular instructional day.” Districts are allowed 
to use district buses to transport students for other purposes, e.g., extracurricular events and class 
field trips. The transportation expenditures on these alternative uses should, however, be allocated 
to the relevant alternative function codes, e.g., Extracurricular Activities (function code 36) and 
Instructional (function code 11). 

The key point here is that the function code 34 expenditures are intended to capture only the outlays 
associated with the Route Services supplied by the school districts. This point has two implications 
for our analysis. First, we need to identify and measure our cost variables in the context of a Route 
Services cost function. Second, we need to be careful when referencing data from the 
Transportation Operating Reports. For example, the TOR operating cost data are aggregate costs 
that include expenditures incurred from non-Route services, e.g., extracurricular transportation of 
students. 

A key issue in many school policy discussions is the relationship between district cost and district 
size or scale. Texas is a state with huge variation in district size. An important empirical question 
is whether or not there are expenditure advantages/expenditure economies to size. In the school 
transportation context, the two obvious candidates for measuring operating size would be bus miles 
produced or district student rider demand serviced. We can provide some rough suggestive 
evidence of the transportation expenditure-size relationship by plotting expenditure per mile 
against total bus miles and expenditure/rider against total number of riders by district using PEIMS 
data for 2019. 

Figure 3-9 below shows expenditure per mile against the log of total miles (for route miles only). 
The scatterplot reveals a general slightly increasing relationship between average expenditure per 
mile and number of bus miles supplied for most of the district routes.  

 



 

83 | P a g e  
 

Figure 3-9: Transportation Expenditure/Route Mile against Log of Total Route Services Miles, 
2018–19 

 
 

Figure 3-10 displays a plot of expenditure/rider against total (log) riders. The scatterplot reveals 
some decline in the relationship between average expenditure per rider and number of route riders 
served by the district transportation system for a few very small ridership districts. This suggests 
the potential existence of cost economies with respect to ridership size, but these cost reductions 
occur among districts with an average number of riders per day between 1 and 300 riders. The 
expenditures per rider are fairly constant beyond 300 riders/day up to around 5,000 riders per day. 
They decline slightly again for ridership greater than 5,000, indicating the possibility of additional 
economies of scale available to very high rider demand districts.  
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Figure 3-10: Transportation Expenditure/Rider against Log of Number of Route Riders, 2018–
19 

 
 

The potential ridership size economies story in Figure 3-10 matches up reasonably well with the 
possible transportation cost economies to enrollment size discussion in Chapter 2. The average 
transportation expenditure per pupil in Table 2-1 showed declining average costs for districts up 
to size 1,000, fairly constant average expenditures for districts with enrollment between 1,000 and 
10,000, and an additional decline for the largest districts with over 10,000 students. With an 
average ridership share of around 31 percent, there is a general consistency to the rider and 
enrollment potential size economy evidence. The consistent relationship between the 
expenditure/rider to number of riders and expenditure/pupil to number of pupils in the raw data 
can be seen by comparing Figure 3-10 above to Figure 3-11 below. 
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Figure 3-11: Expenditure/Pupil against Log of Number of Pupils, 2018–19 

 
 

A recent public policy report on school transportation from the Urban Institute (Chingos and Blagg 
2017) argues, based upon published evidence, that “Transportation expenditures can also be driven 
by changes in policy on the provision of transportation for students with special needs, which are 
governed by federal law as well as state and local policy” (op.cit. p.4). School districts in Texas 
are required to provide separate reporting of regular program miles and expenditures from special 
program miles and expenditures in their Transportation Route Reports and Transportation 
Operating Reports. As noted earlier, we are using the PEIMS financial report transportation 
expenditure data, and those data do not distinguish between regular and special program 
expenditures. We estimated the regular and special program transportation PEIMS expenditures 
by assuming that the program expenditure shares were proportional to the route mile shares. So, if 
a district’s Function 34 PEIMS expenditures were $1 million, and if the 90% of the district route 
miles were regular program miles and 10% were special program miles, we assumed that regular 
program expenditures were $900K and that special program expenditures were $100K. We then 
divided the estimated program expenditures by the number of program route riders to generate 
separate estimates of the expenditure per rider for regular and special program riders for each 
district. We display the distribution of the expenditures per rider by program type in Figures 3-12 
and 3-13 below. 
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Figure 3-12: Regular Program Expenditure per Regular Program Rider against Log of Total 
Regular Route Riders, 2018–19 

 

Figure 3-13: Special Program Expenditure per Special Program Rider against Log of Special 
Route Riders, 2018–19 
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The median district special program expenditure per rider ($3598) is more than three times the 
median district regular program expenditure per rider ($987). 

We can also look for evidence of differences in the expenditures associated with producing regular 
program and special program miles. We display the distributions of expenditures per mile against 
miles for the two program types in Figures 3-14 and 3-15.  

Figure 3-14: Regular Program Expenditure per Mile against Log of Regular Program Miles, 
2018–19 
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Figure 3-15: Special Program Expenditure per Mile against Log of Special Program Miles, 
2018–19 

 
 

The median expenditure per mile for regular program miles is $2.78 and for special program miles 
is $2.02. The mean regular-special expenditures per mile differential is $0.49. There are 233 
districts that have 0 special program miles. There are also several extremely high per mile special 
program expenditures. 

The cost of producing transportation services can also vary by the density of demand for bus seats. 
We can take a simple correlative look at the cost-density relationship by plotting district 
expenditure per mile and expenditure/pupil against district population/density.  

Figure 3-16 graphs expenditure per mile against population density. There is an upward-sloping 
relationship, which is consistent with the linear density rate per mile schedule used for calculating 
the regular route transportation allotment. 

Figure 3-17 graphs expenditure per rider against population density. Here there is a concentration 
of very high expenditure per rider values associated with extremely low population density 
districts. On both graphs there is an outlier observation for one high cost and high-population-
density district, Highland Park ISD. 
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Figure 3-16: Expenditure per mile against Log of Population Density, 2018–19 

 

Figure 3-17: Expenditure/Rider against Log of Population Density, 2018–19 

 
Given the relationship between rider density and expenditures per rider shown above, it is not 
surprising that average (and median) expenditures per rider are higher among rural districts than 
among metro districts. The average expenditures per rider for micropolitan districts sits between 
the average values for rurals and metros, and the median expenditure/rider for micro districts is 
very similar to the rural median. 
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Figure 3-18: Expenditure per Rider by District Type, 2018–19 

 
Source: Authors’ calculations, 2019; Texas Education Agency Transportation Operations Report, 2019. 

The school bus system utilizes the publicly-provided road infrastructure to transport students 
within the district (home to school trips) and across districts (extracurricular trips). The quality of 
the public road infrastructure is expected to impact the cost to the school district of providing 
student transportation. We can take a preliminary look at the relationship between school 
transportation expenditures and road system quality using data provided by the Texas A&M 
Transportation Institute. Figures 3-19 and 3-20 plot route expenditure per mile and route 
expenditure per rider against a measure of roadway utilization (vehicle miles traveled per lane 
mile, VMTperLM). Higher values indicate greater road system congestion. 

Figure 3-19 indicates that the expenditure per mile for school buses is positively related to the 
measure of total roadway utilization/congestion. This relationship matches a priori expectations. 
Figure 3-20 shows the expenditure per rider as being slightly higher in districts with very low 
roadway utilization rates. 
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Figure 3-19: Expenditure per Mile against Log of Vehicle Miles Traveled per Lane Mile, 2018–
19 

 

Figure 3-20: Expenditure per Rider against Log of Vehicle Miles Traveled per Lane Mile, 2018–
19 

 
It is important to note that, although the series of figures above provide an interesting first look at 
several relationships in the data, these are all just descriptive correlations. They do not represent 

Source: Authors' calculations; Texas Education Agency Transportation Operations Report, 2019; Texas Transportation Institute, 2019.
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information on causal relationships. The cost function model will allow us to estimate the marginal 
causal effects of the multiple factors that impact district costs of transporting their students. 

Student Transportation Cost Function Model 

The underlying assumption of our cost function analysis is that school districts produce 
transportation outputs—quantity and quality—using a production process (a technology) that 
combines input factors that are purchased (for example, bus drivers and fuel) with environmental 
input factors that are not purchased (for example, the system of roads in the district). Thus, school 
district transportation costs are a function of the outputs produced, the prices of inputs, and other 
features that influence the production of transportation services, such as the spatial distribution of 
student riders and the school transportation regulatory environment. 

By definition, the cost function represents the minimum cost of producing outputs, given prices of 
input choices and given various exogenous environmental conditions. (For more on the cost 
function methodology, see Appendix E.) There exists a sizeable literature which finds that school 
districts do not all operate in an efficient, cost-minimizing fashion in producing educational 
outcomes within schools, and that the degree of inefficiency varies considerably across districts. 
It seems reasonable to assume that school districts may also not operate efficiently in production 
transportation services. We will use a stochastic frontier cost function model to address this 
potential for inefficiency. 

An important modeling decision for any researcher is the choice of functional form for the cost 
function. Hutchinson and Pratt (1998, 2007) adopt a translog specification for their school 
transportation studies. In the bus transit literature, the translog cost function is also the go-to 
specification in many of the published studies. The translog cost function is a local second-order 
approximation to an arbitrary cost function. Thus, up to a second order, the translog can serve to 
approximate any number of possible cost function specifications. Therefore, as in Chapter 2, a 
translog cost function was used here. 

Key components of any cost function analysis are the units of analysis, the measure of 
expenditures, outcome measures, input prices and environmental factors. We discuss each in turn. 

Unit of Analysis 
Texas is a district-run transportation system, and districts control all elements of school 
transportation production. Our cost function is developed and estimated at the district level of 
aggregation. We will estimate the cost function using a pooled sample of a cross-section of 
traditional public school districts for the five-year time period 2015–2019.  

Expenditures 
The dependent variable in our analysis is district variable operating expenditures on student 
transportation. We exclude depreciation, debt service payments, and capital purchase outlays. We 
use the PEIMS financial report expenditure data, which reports district expenditures on student 
transportation under Function Code 34. As pointed out earlier, student transportation expenditures 
under Function 34 are limited to Route transportation services only. Thus, we are not considering 
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the costs of extracurricular and other non-Route transportation services that districts provide for 
their students. 

Outputs 
The definition of outputs is critical to any cost function analysis. In the case of school bus 
transportation, there are two relevant measures of output. One measure is bus miles. The second 
output measure is number of student trips. As discussed in our review of the literature on bus 
transit, bus miles is a vehicle-based or technical output measure. The number of student trips is a 
passenger-based or demand-based output measure. Cost is, fundamentally, a producer or supplier 
type concept. In the school transportation context, school districts are suppliers of bus miles. 
Districts combine labor (bus drivers, fleet maintenance staff, professional staff), materials (utilities 
services, oil and fuel) and capital (bus fleet, bus barn, road infrastructure) to produce bus miles. 
The costs that are reported in the PEIMS Student Transportation Function are the expenditures on 
all of the purchased inputs used to supply Route service bus miles. 

Bus miles are, however, best considered an intermediate output. The bus miles are used to transport 
district students to and from home for the regular instructional day. The student passenger trips or 
the student passenger miles are the final output. 

As argued by Berechman and Guiliano (1984), bus miles represents a measure of output capacity, 
while passenger trips represent the intensity of utilization of that capacity. When measured with 
respect to the supply of bus miles, economies of size then measure the change in total cost with 
respect to a change in capacity. When demand for trips is used, economies of size measures the 
change in total cost with respect to the density of utilization of capacity.  

In our analysis, we will estimate a cost function with both bus miles and student passenger trips as 
output measures. This approach is similar to that used by Tauchen, Fravel, and Gilbert (1983) in a 
study of the US intercity bus industry, by Windle (1988) in a study of the US urban bus transit 
industry, and by Harmatuck (2005) in his cost function study of Midwest bus transit systems. The 
school transportation cost function privatization studies by Hutchinson and Pratt (1998, 2007) also 
include bus miles and student trips as their measures of output. A preferred measure would be 
passenger miles, as used by Windle (1988) in his study of the US urban bus transit industry. 
Average trip lengths will vary across districts, and this will captured in the passenger mile measure. 
We do not, however, have data on passenger miles for school districts in Texas. We will include 
bus miles directly as an output, and include passenger trips measured as riders per mile. This 
specification matches the most recent published school bus cost specification by Thompson 
(2011). This specification also measures output in the two dimensions, total miles and linear rider 
density, which were used in the transportation allotment formula in place during the 2015–19 time 
period. Given the restrictions on PEIMS Student Transportation Expenditures noted above, we 
restrict the bus miles to Route miles and the student passenger trips to Route trips.  

One issue in defining our outputs is the potential need to separate regular student transportation 
and special student transportation. The current system of reporting transportation mileage and costs 
in the district Transportation Route Reports and Transportation Operation Reports maintains this 
division. If the resource requirements for transporting special-program students are different than 
for transporting regular-program students, then treating special program outputs as distinct from 
regular program outputs is appropriate. The PEIMS transportation cost data do not provide a 
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separate cost accounting for regular program and special program student transportation 
expenditures. We will, therefore, use total bus miles and total student passenger trips as our output 
measures. We will also include the percentage of riders classified as special program riders and 
the percentage of miles classified as special program miles to help control for potential differences 
in the costs of transporting special program students. This is similar to the approach taken by 
Tauchen, Fravel, and Gilbert (1983) to explore potential differences in costs for different types of 
municipal bus transit services.  

There is also an output measurement issue for student passenger trips. The average number of 
eligible, i.e., eligible for State funding, students riding to and from school per day is reported in 
the Transportation Route Services Report. School districts can, however, choose to make district 
bus service available to non-eligible regular program students. A district can charge a fee for 
busing the non-eligible students. We do not have data on the average number of non-eligible Route 
riders. Our measure of the average number of regular Route riders is, therefore, an undercount for 
some districts. We do not know the number of districts involved nor the magnitude of the 
undercounting. We may be able to mitigate the potential ridership measurement error problem by 
instrumenting for the number of riders, using total student enrollment as the instrumental variable.  

A more general issue for our outputs is the potential for endogeneity bias. In all of the school and 
transit bus literature, passengers and miles are treated as being exogenous variables in the 
transportation cost estimation. In the theory of cost functions, the output is also an exogenous 
variable. But in the data generating process, both riders and miles could be viewed as choice 
variables. Potential endogeneity concerns are common in the instructional educational cost 
function literature. We will follow Gronberg et al. (2015) and Gronberg, Jansen and Taylor (2017) 
and utilize a control function approach to address the potential endogeneity of these output 
variables.  

Ideally, we would include measures of output quality. The two obvious candidates are trip time 
and safety. Unfortunately, we do not have data on these two important dimensions of trip quality. 
Trip time will, however, be related to the number of bus routes. All else equal, increasing the 
number of routes will decrease the average time kids spend on the bus. We do not have a measure 
of the number of routes that a district uses to transport its students to and from school. The number 
of buses may, however, serve as a sound proxy for this missing output-type of bus network quality 
measure in our estimation. The Transportation Operations Report provides data on the number and 
type of buses and other student transport vehicles as well as information on the vintage of the 
rolling stock of buses. We will include the number of buses as an output quality measure and 
include the percentage of newer buses as a quality characteristic of that output. 

Input Prices 
Labor costs are the lion’s share of bus system operating costs. For the set of districts that run their 
own student transportation operation, i.e., do not contract out their transportation services, salary 
and benefit costs are around 80% of their variable operating costs. Variations in the price that 
districts must pay to hire their transportation employees is thus expected to be a key driver in 
variations in transportation costs across districts. Given the anticipated pivotal role of labor price 
differences in understanding operating cost differences, we devote special attention to constructing 
a sound measure of transportation labor price variation. Our wage index approach is spelled out 
earlier in Chapter 1 of this report. 
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Fuel costs are a second important component of annual transportation costs. We will include a 
measure of district diesel fuel prices to account for variation in this crucial input price. 
Unfortunately, we do not have data on the prices that districts are paying to fuel up their buses and 
other student transport vehicles. We purchased a dataset from Oil Price Information Services 
(OPIS) of average annual diesel fuel prices by county in Texas for the 2015–19 time period. These 
data are collected by OPIS on a daily basis from a sample of reporting suppliers. The OPIS data 
are retail prices, which include federal and state diesel taxes. In Texas, during the sample period 
the state tax on diesel was 20 cents/gallon and the federal tax was 24.4 cents/gallon. Since school 
districts are exempt from these taxes, we subtracted 44.4 cents from the average county diesel fuel 
prices reported in the OPIS data.  

We recognize that these tax-adjusted retail prices are imperfect measures of the actual prices paid 
by districts. We expect that districts purchase fuel under a variety of contracting arrangements with 
fuel suppliers, many/most of which are with wholesale suppliers. Contract lengths likely vary, and 
districts may band together to negotiate better contracting terms. We are assuming that the 
underlying exogenous market conditions that generate the quite persistent retail diesel price 
differences across counties in Texas, e.g., transportation/distribution cost differentials, lead to 
matching exogenous variation in the wholesale contract prices at which districts actually transact. 

Environmental Factors 
It is important to account for exogenous factors that impact the transportation cost decision 
environment. From a cost function estimation perspective, it is important to control for these 
environmental differences in order to generate valid estimates of the impacts of outputs and input 
prices on transportation costs from the cross-sectional observations across districts. From a funding 
policy perspective, it is important to have estimates of the role of differences in these 
“uncontrollable” factors in determining observed differences in costs across districts. 

The decision problem facing school transportation suppliers includes fundamental spatial 
dimensions that make the problem inherently complex. One key spatial element is the locational 
distribution of students in the district. The best routing strategies for school transportation suppliers 
will depend upon the density of student riders in their districts. We will include district population 
density as an environmental control variable in our cost function analysis. This consideration is 
consistent with the linear density approach to adjusting rate per mile in the funding formula for 
regular route services. 

The routing choices for school transportation will also depend upon characteristics of the road 
network system in the district. As discussed above, we will include total vehicle miles per lane 
mile as a measure of road network quality for each district. The vehicle miles per lane mile is 
included as a measure of roadway utilization (a congestion proxy). This measure was provided for 
use in our study by the Texas A&M Transportation Institute. The measure was developed at the 
county level. Many school districts overlap more than one county boundary. We assign each 
district the road measure for the district’s primary county. 

Estimation Results 
As discussed in Appendix G, the cost function analysis provides a quite reasonable picture of the 
supply of route student transportation services. Costs are increasing in outputs and in input prices. 



 

96 | P a g e  
 

Differences in the density of the distribution of potential riders and in the congestion features of 
the district road system also impact the costs of hauling kids from home to school. The negative 
relationship between density and cost matches the finding in Hutchinson and Pratt (1999) from 
their study of school transportation costs in Tennessee, but is opposite of their finding for school 
transportation costs in Louisiana (2007). 

Figure 3-21 graphs the impact of changes in log miles on predicted cost. The figure is generated 
by varying miles, while holding all other cost variables at their sample mean values. The slope of 
the graph is the marginal effect, and the shape of the graph indicates that there are diseconomies 
in producing bus miles, holding riders per mile and bus capital constant. Since this exercise holds 
the number of buses, which proxies the number of bus routes, fixed, the increased miles here are 
generated by increased miles/bus, i.e., either longer average routes or additional bus runs per route. 

Figure 3-21: The Estimated Relationship between Cost per Mile and Total Bus Miles 

 
Source: Authors’ calculations from Appendix G. 

As an alternative exercise, we can ask what the effect of scaling up all dimensions of the bus supply 
process, i.e., increasing the number of buses/routes proportional to the increase in miles (and 
riders). The estimated first-order marginal effect at the mean of a 1% increase in route miles, riders, 
and buses/routes is a 0.0048% increase in cost per mile. This is a very small per mile cost effect, 
implying nearly constant returns to scale (when evaluated at sample means). 

The analysis finds evidence that districts are spending more than what would be expected if they 
were operating efficiently. The extent of the estimated inefficiency is, however, quite modest. The 
average degree of estimated inefficiency is only 5.6%, i.e., the average spending only exceeds the 
estimated minimum frontier cost by 5.6%. The estimated inefficiency is only 10% at the 5th 
percentile. The relatively strong efficiency estimates are not altogether surprising. A potential 
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benefit of the low level of state support for school transportation is the strong incentive for districts 
to run their transportation operations efficiently. It is also the case that the technology for 
producing bus miles is relatively straightforward and well-known. 

The Transportation Route Cost Index 
Once the transportation cost function has been estimated, transportation cost indices can be 
generated. These cost indices indicate how much more or less it costs to produce bus miles in 
Houston than in Hutto. The development of the indices involves several steps. For the three output 
measures in our cost function, the objective is to evaluate districts at common output levels. This 
effectively holds these cost factors constant across school districts. The usual convention in 
constructing such indices is to use the state sample average values as the common output levels. 
For the other cost factors, which are treated as uncontrollable, the cost model is evaluated at the 
actual value for these variables in each district. 

We estimated the cost index for each district by dividing the predicted spending level for each 
district by the minimum predicted spending level among the sample population of districts. The 
index values so generated provide a measure of the cost in a district due to its uncontrollable factors 
relative to the cost in a district with the most cost-favorable characteristics for the uncontrollable 
factors. For example, an index value of 1.5 indicates that a district is predicted to require 50 percent 
more dollars per mile to achieve the standardized output levels than the minimum cost district. 
This normalization implies that the base allotment would only be adjusted upwards. This choice 
of normalization is motivated by our observation above that Texas currently funds a relatively 
small share of school transportation costs and that the funding share has fallen significantly over 
time. Other normalizations are, of course, possible. For example, the reference cost level could be 
the predicted cost of producing the standardized outputs for a district with the average values of 
the uncontrollable cost factors. The index values would then range from below one to above one, 
and some districts would have their regular allotments reduced relative to their allotments under 
the uniform base rate alternative. 

Figure 3-22 illustrates the frequency distribution of the normalized-to-minimum cost index, 
labeled the Transportation Route Cost Index or TRCI. The graph illustrates the range of the 
resulting cost index, which is from 1.00 to 7.80. The median of the TRCI is 1.29, so half of the 
district values of costs per mile, given their district-specific uncontrollable factors, were between 
100 percent and 129 percent of the minimum estimated district cost per mile of achieving the 
standardized level of educational outputs. The TRCI distribution is rather heavily skewed, with a 
long right tail of districts with TRCI values greater than 2.00. Still, these extreme values of the 
TRCI distribution are outliers. More than 85% percent of districts have an index value less than 
2.00, and only five percent of the values are more than 3.00. 
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Figure 3-22: Normalized-to-Minimum Transportation Route Cost Index 

 
 

Table 3-5 provides an additional perspective on the TRCI. As the table illustrates, the average 
TRCI is highest in rural districts and higher in micropolitan districts than in metropolitan districts. 
Small districts have higher average TRCI values. Transportation systems in districts located in 
sparsely populated counties had higher TRCIs than districts in more populous counties. 

Table 3-5: The Transportation Route Cost Index, by Location and School District Type, 2019–20 
 Number of 

Districts 
Mean Minimum Maximum 

Metropolitan 475 1.23 1.01 3.05 
Micropolitan 190 1.52 1.00 5.75 
Rural 315 2.03 1.10 7.80 

 
Very Sparsely Populated County 152 2.84 1.28 7.80 
Sparsely Populated County 106 1.70 1.16 2.50 
Other County 722 1.25 1.00 2.00 

 
Small District 603 1.73 1.00 7.80 
Midsized District 198 1.32 1.00 3.80 
Large District 179 1.18 1.00 1.78 

 
Highest Poverty Quintile 195 1.61 1.00 6.68 
Lowest Poverty Quintile 196 1.46 1.00 7.80 

Source: Authors’ calculations from Appendix G 
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Conclusions 

This chapter develops and estimates a model of the costs to school districts of transporting students 
to and from school. The model is grounded in the academic literature on bus transportation, both 
school bus services and municipal transit services. The cost of producing school bus miles depends 
on the number of miles the buses are covering, the cost of bus mile inputs (such as labor prices 
and fuel prices), the number and spatial distribution of student riders, and upon the environment 
in which the bus miles are being produced (such as features of the road infrastructure). Cost is an 
efficiency-based concept, and the observed expenditures on school transportation may deviate 
from the minimum cost of delivering the level of services provided due to inefficient decision-
making practices. We adopt a stochastic frontier translog cost function approach to identifying the 
role of the various cost factors, including factors that are inherently outside of a district’s control 
in determining district transportation costs while also estimating the degree to which observed 
district transportation expenditures deviate from best practice minimum costs. 

Our cost function estimates well organize the data and provide plausible characterizations of the 
role of various cost factors in determining the variation across districts in the cost per mile of 
transporting students to and from school. The characterization of the efficiency—or inefficiency—
of the provision of transportation services across districts also seems plausible.  
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Chapter 4:  Strategies to Address Geographic Cost Differences 

The analyses in Chapters 1 through 3 demonstrate clearly that there are large geographic 
differences in the cost of providing educational and transportation services in Texas. Those 
differences arise from a lack of population density and economies of scale in rural Texas, higher 
labor costs in urban Texas, and district-by-district differences in uncontrollable cost factors like 
student need.  

The cost function analyses also generated cost indices that could be used to adjust the Foundation 
School Program (FSP) and the transportation allotment for those differences.  

Uncontrollable Cost Adjustment Using the ECI 

The ECI could be used as an adjustment for the basic allotment in the FSP. If the legislature chose 
to go that route, the ECI would replace the small and midsized allotments, the compensatory 
education allotments, the dyslexia allotment and the special education allotments, as well as the 
bilingual/ESL allotment in Tier I of the funding formula. Because those allotments largely define 
weighted average daily attendance (WADA), the ECI would also largely redefine WADA in Tier 
II of the FSP.  

The impact on the FSP allocations is best understood by comparing the ECI to the weights implied 
by WADA. A district’s WADA ratio (i.e., WADA divided by ADA) is calculated by dividing the 
sum of the school district’s Subchapter B & C allotments (i.e., the regular program allotments, 
small and mid-size allotment, special education adjusted allotment, dyslexia allotment, 
compensatory education allotment, bilingual education allotment, career and technology 
allotment, early education allotment and a number of smaller allotments) by the district’s basic 
allotment. In 2019–20, that WADA ratio ranged from 1.12 to 11.26, indicating that one district in 
the state (San Vicente ISD with its ADA of 10.8 and WADA of 121.1) received nearly 11 times 
as much allotment funding per pupil as the district at the other end of the spectrum (Highland Park 
ISD with its ADA of 6549.9 and WADA of 7334.8).  

Rebasing the WADA ratio to start at 1.00 allows for a direct comparison with the ECI.41 Excluding 
the extreme outliers in the WADA ratio, the ECI and the WADA ratio were reasonably well 
correlated.42 (See Figure 4-1.) The median ECI (1.30) was lower than the median rebased WADA 
ratio (1.50), so adopting the ECI as a replacement for most of the allocations that lead to the 
WADA ratio would imply a substantial, offsetting increase in the basic allotment. As a general 
rule, geographic adjustments using the ECI rather than the WADA ratio would reduce the 
differential for district size, but lead to higher relative funding for districts in counties with very 
low population density and districts in counties with high labor costs.  

 
41 Rebasing the WADA ratio means dividing the WADA ratio by the lowest value (in this case, 1.12). 
42 There were six districts with a WADA to ADA ratio greater than 4 in 2019–20. In addition to San Vicente ISD, 
those outlier district were Dell City ISD, Divide ISD, Doss Consolidated CSD, Marathon ISD, and Valentine ISD. 
The largest of these six districts had an ADA of 50.1. The correlation between the ECI and the rebased WADA ratio 
was 0.779 excluding these seven districts, and 0.785 including them. 
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Figure 4-1: A Comparison between the ECI and the WADA Weights, 2019–20 

Source: Authors’ 

calculations; PEIMS 2019. 

Uncontrollable Cost Adjustment Using the TRCI 

Similarly, the TRCI could be used to adjust the transportation allotment for geographic differences 
in the cost of education. During the 2014–15 through 2018–19 time period, the regular program 
allotment was determined using a linear density-based formula that provided a higher rate per mile 
for districts with a larger number of riders per mile. The formula for determining the regular 
transportation allotment was amended under House Bill 3 (HB 3) in June 2019. Under HB 3, the 
regular program allotment will be based on a flat rate per mile to be set by the Legislature in the 
General Appropriations Act (GAA). The rate adopted for 2020–21 under the current GAA is $1 
per mile. 

The TRCI could be used directly to adjust the base allotment rate per mile for the estimated 
differential costs associated with the different uncontrollable cost environments facing district 
transportation planners. A district with an estimated TRCI of 1.29 (i.e., the median district) would 
be assigned a regular program allotment rate of 1.29 times the base allotment rate per mile. 
Assuming no change in the base allotment, then at the median the current HB3 rate of $1 per mile 
would be increased to $1.29/ mile.  

We illustrate the potential application of the TRCI for adjusting the base transportation allotment 
rate and identify the potential funding implications. For each district in our sample, we multiply 
the district TRCI times the $1 per mile base allotment to generate adjusted allotment rates by 
district. For our application exercise, we assume that the TRCI is capped at 2.0 for allotment 
funding purposes. The maximum adjusted allotment will be $2.00/ mile. We then calculate the 
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adjusted regular program allotments for 2018–19 for our sample districts. The State funding for 
the regular program transportation allotment would be $276,216,992. The cost factor adjustments 
would increase State transportation regular allotment spending by $49,586,992 relative to funding 
at the flat $1 per mile HB3 rate, a 21.88 % spending increase. 

We show the distributive effect of the increased transportation funding under the TRCI adjusted 
funding approach in Figure 4-2 below.  

Figure 4-2: Allotment Comparison: HB3, TRCI Adjusted HB3 and Actual Average Regular 
Allotment 

 
The cost index adjustment would provide a substantial boost to the average allotments for districts 
of all three types. The Metropolitan districts would benefit the most from use of the TRCI-adjusted 
allotment rates relative to the flat rate. The average regular allotment funding would be bumped 
up by almost $62,000 per Metropolitan district. 

Of course, the legislature could also use its discretion to make a revenue-neutral, downward 
adjustment to the base allotment per mile. A base allotment of $0.82 per mile multiplied by the 
TRCI would have the same predicted impact on the state’s total transportation allotment as the flat 
$1 per mile under HB3. Under a TRCI-driven model, relatively more transportation funding would 
flow to the districts where uncontrollable transportation costs are higher. 

Long-term Implementation of the ECI and TRCI 

One key to successful long-term implementation of either the ECI or the TRCI would be the 
development of a strategy for regularly updating the indices. Although many of the factors that 
drive differences in the costs of education and transportation are unlikely to change over time, 
other factors—such as wage levels outside of education, fuel costs and student enrollments—are 
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sensitive to changing economic and socioeconomic conditions. To ensure that the cost indices are 
functioning as intended, the ECI and TRCI should be updated regularly, either by using the 
estimated cost models to generate new cost predictions corresponding to new values for the various 
cost factors, or by re-estimating the cost models themselves.   

Uncontrollable Cost Adjustment Using Individual Cost Factor Adjustments  

While it would be straightforward and analytically sound to use the ECI and TRCI as black-box 
cost adjustments, the legislature may instead choose to use the information provided herein to 
refine key components of the two funding models. For example: 

The Compensatory Program Allotments:  
HB3 instructed the Commissioner of Education to develop new measures of student 
socioeconomic status. The new measures were to be based on the demographics of the Census 
block where each educationally disadvantaged student resides. The funding formula weight was 
increased by 2.5 percentage points for economically disadvantaged students who live in Census 
blocks that were the least disadvantaged; and increased by 7.5 percentage points for economically 
disadvantaged students who live in severely disadvantaged Census blocks.  

The cost function estimates suggest that the concentration of poverty in the school –not just the 
concentration of poverty in the student’s neighborhood—can have a significant impact on the cost 
of education. The higher the percentage of economically disadvantaged students, the higher the 
increase in cost associated with an additional disadvantaged student. The legislature may wish to 
consider adding an intensity adjustment, perhaps modeled after the concentration grants or the 
targeted assistance grants that are part of the Title 1 program (Baker et al. 2015).  

The Small and Midsized Allotments:  
HB3 replaced the small and midsized adjustments in the funding formula with small and midsized 
allotments. This change treated the scale adjustments in a manner analogous to the allotment for 
compensatory education. “Instead of flowing funds to small and mid-size districts as an adjustment 
that occurs before other funding adjustments, the funding now flows as an allotment under Tier I 
at the same time as other funding adjustments, such as the compensatory education allotment and 
the bilingual allotment” (TEA 2019). As a result, the small and midsized adjustments no longer 
have a multiplicative effect on the other allotments, such as the compensatory or bilingual program 
allotments. This change reduced the funding differential for small and midsized districts. 

The cost function estimates suggest that the small and midsized allotments still overstate the 
relationship between school district size and the cost of education for all but the smallest districts. 
Figure 4-3 compares the small and midsized allotments expected under HB3 (as a percentage of 
the funding for an otherwise identical district that was not eligible for the size adjustments) to 
those implied by the cost function analysis. (The dashed lines at the far left indicate the 
supplemental allotment provided to districts with fewer than 300 students when the district is the 
only one in the county.) There are two alternatives for the FSP—one in which all the students are 
economically disadvantaged and live in a severely disadvantaged Census block, and one in which 
none of the students are economically disadvantaged. As the figure illustrates, the cost function 
estimates indicate that a district with 300 students costs 25% more per pupil to operate than a 



 

104 | P a g e  
 

school district with 5,000 students, whereas the funding formula provides an additional 35% to 
44% per pupil, depending on the percentage of economically disadvantaged students. The gap 
between the FSP and the cost function-based estimates is even wider for districts with between 
300 and 1,000 students. 

Figure 4-3: Two Perspectives on Economies of Scale 

 
Source: Authors’ calculations from the FSP and Appendix F.  

The Cost of Education Index:  
HB3 removed the Cost of Education Index (CEI) that had been part of the FSP since 1991. The 
CEI was a labor cost index that ranged from 1.02 to 1.20, indicating that the cost of labor was 18% 
higher in some parts of the state than it was in others. The CEI adjusted both Tier I and Tier II of 
the FSP, although the adjustment to Tier II was only half as large as the adjustment to Tier I, by 
formula. Every school district received some adjustment under the formula to compensate for 
uncontrollable variations in labor costs.  

While the CEI was clearly outdated, Chapter 1 of this report provides evidence that significant 
regional differences in labor cost persist, and offers a ready-made replacement for legislative 
consideration, namely the TCI. The TCI ranged from 1.00 to 1.37, indicating that the regional 
differences in labor cost are even wider now than they were 25 years ago, when the CEI was 
developed.  

Because the non-labor components of a school district’s budget are unlikely to have the same 
geographic pattern as labor costs, the legislature may wish to embed the Texas TCI or the ACS-
CWIFT in a regional cost index. As discussed in Taylor (2015) a regional cost index can be 
constructed as a weighted average of the various price indices. 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶 𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅𝐼𝐼 = 𝑃𝑃1𝑆𝑆1 + 𝑃𝑃2𝑆𝑆2 + 𝑃𝑃3𝑆𝑆3 …𝑃𝑃𝑛𝑛𝑆𝑆𝑛𝑛 

where P1 is the relative price a district must pay for its most important input and S1 is the share of 
the budget devoted to that input, P2 is the relative price for a second type of input and S2 is the 
share of the budget devoted to that second input, and so on. Prior to HB3, the CEI was 
operationalized into Tier I of the funding formula as if it were embedded in a regional cost index 
with a labor weight of 0.71 (Taylor, 2015b).  

On average over the period from 2014–15 through 2018–19, Texas school districts allocated 72 
percent of their current operating expenditures to salaries and benefits for teachers and other 
professionals, 14 percent of their spending to support personnel and the remaining 14 percent of 
their spending to non-labor expenses.43 Assuming that the prices of non-labor inputs do not vary 
geographically, a regional cost index for Texas could be constructed as:  

𝑅𝑅𝐶𝐶𝐼𝐼𝑖𝑖 = 𝑇𝑇𝐶𝐶𝐼𝐼𝑖𝑖 ∙ 0.72 + 𝐴𝐴𝑃𝑃𝐶𝐶𝐼𝐼𝑖𝑖 ∙ 0.14 + 0.14, 

where TCIi is the TCI for school district i and APCIi is the APCI for school district i. (Of course, 
the ACS-CWIFT and/or HS-CWI could be used as alternative price indices in the construction of 
the geographic cost of education index.) The resulting regional cost index for 2020 would range 
from 1.00 to 1.29, with a median of 1.10. Such a regional cost index could then be multiplied by 
the basic allotment in Tier I of the funding formula, and (unlike the CEI) be fully incorporated into 
the calculation of WADA.  

Should the legislature choose to adopt the Texas TCI or APCI (either individually or as part of a 
regional cost index) it would be prudent to also adopt a process by which the indices would be 
updated, so that the indices would continue to perform as intended when economic conditions 
changed. As with the ECI and TRCI, the Texas TCI and APCI could be updated either by using 
the estimated models to generate new indices based on updated values of the uncontrollable labor 
cost factors, or by re-estimating the wage models themselves.  A hybrid approach, with annual 
updates to the uncontrollable cost factors and periodic updates to the analysis could be a 
particularly useful strategy (and could be easily implemented by the TEA or some other state 
agency).  

A commitment to regular studies—as opposed to regular updates—is likely to be less effective, as 
illustrated by previous experiences with TCIs in Texas and Wyoming. Texas did not updated the 
CEI for 25 years, despite multiple studies demonstrating that the geographic pattern of labor costs 
had changed (e.g., Alexander et al. 2000; Taylor 2004 & 2015a) and Wyoming has not updated 
the Hedonic Wage Index used in its school funding formula for more than 15 years, despite a 
similar series of legislatively commissioned studies also demonstrating changes in the geographic 
pattern of labor costs (e.g., Taylor 2010, 2015c & 2020). 

 
43 The budget shares were calculated for school district operating expenditures, excluding food and transportation 
services as in the calculation of the ECI. 
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Transportation Cost Adjustments: 
Just as the educational cost function can provide useful insights into the design of funding formula 
adjustments, the transportation cost function can provide useful insights into appropriate 
adjustments to state’s transportation allotments.  

For each of the uncontrollable cost factors in the transportation cost model, one can estimate the 
percentage change in cost per mile due to a one percent change in value of the cost factor, holding 
the value of all other cost factors fixed (at the statewide mean). For example, Figure 4-4 graphs 
the relationship between the log of population density and cost per mile (relative to the minimum 
predicted cost per mile). As the figure illustrates, holding all other cost factors constant, the cost 
per mile was sharply higher for districts in very sparsely populated parts of the state than it was 
for districts in more densely populated areas.  

Figure 4-4: The Estimated Relationship between Cost per Mile and Population Density 

 
Source: Authors’ calculations from Appendix G. 

The cost function analysis suggested that three uncontrollable, transportation cost factors were 
particularly important—fuel costs, labor costs and population density. Therefore we used the 
estimated marginal effects to generate a set of cost adjustment factors for each of these three key 
cost factors.  

To simplify implementation, we divided the cost factor data into quartiles for each cost factor, and 
then calculated the appropriate adjustment for the median of the quartile (relative to the minimum 
input price) to yield a predicted percentage increase in cost per mile. (See Appendix G.) We then 
treated the predicted percentage cost increase as a transportation allotment cost adjustment factor 
for all districts in that quartile.  
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For example, the first quartile of the diesel fuel price in our 2018–19 sample ranged from the 
sample minimum of $2.106 per gallon to $2.253 per gallon. The median quartile fuel price of 
$2.229 per gallon is 5.8% higher than the minimum price. That 5.8% higher fuel price is estimated 
to increase cost per mile by $0.027, so the fuel price adjustment factor assigned to districts in the 
first quartile is 0.03. This fuel price adjustment would increase the regular program allotment rate 
to $1.03 for these districts. We repeated this process for the other three fuel price quartiles, and 
ended up with four fuel price adjustment factors, one for each of the quartile fuel price ranges. We 
applied the same process to generate four quartile adjustment factors for the transportation labor 
wage index, the other key exogenous input price cost factor. The input price adjustment factors 
are given in Tables 4-1 and 4-2. 

Table 4-1: Transportation Regular Program Allotment Rate Adjustment Factor for Fuel Index 
Quartile Value Range Adjustment Factor 

First Quartile 2.106 – 2.253 0.03 

Second Quartile 2.254 – 2.296 0.04 

Third Quartile 2.297 – 2.345 0.05 

Fourth Quartile 2.346 – 2.921 0.07 

 

Table 4-2: Transportation Regular Program Allotment Rate Adjustment Factor for Wage Index 
Quartile Value Range Adjustment Factor 

First Quartile 1 – 1.068 0.02 

Second Quartile 1.069 – 1.108 0.03 

Third Quartile 1.109 – 1.166 0.05 

Fourth Quartile 1.167 – 1.363 0.07 

 

For population density, the key environmental cost factor, we modified the adjustment factor 
generating process slightly. Population density in Texas ranged widely, from a minimum density 
of 0.6 persons per square mile to a maximum of 2,718 persons per square mile.44 The population 
density distribution is also highly skewed, with over half of the densities below 50, and a 75th 
percentile value of only 209.5. Furthermore, the estimated marginal effect of population density is 
negative, so higher population density represents a more advantageous cost environment. 
Therefore, we subdivided the top quartile into two parts—those above and those below the 90th 
percentile of population density (i.e., a population density of 769.9 persons per square mile)—and 
used that 90th percentile as the reference point for cost adjustments.  This approach assigned a zero 
density adjustment factor to all districts in the top decile of the population density distribution. The 
density adjustment factors are given in Table 4-3. 

 
44 Population density was measured at the c 
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Table 4-3: Transportation Regular Program Allotment Rate Adjustment Factor for Population 
Density 
Quartile Value Range Adjustment Factor 

First Quartile 0.6 – 19.4 0.35 

Second Quartile 19.5 – 47.2 0.33 

Third Quartile 47.3 – 209.5 0.31 

Fourth Quartile, Up to 769.9 209.6 – 769.9 0.13 

Fourth Quartile, 770 and above 770 – 2,718 0.00 

 

A district could be in the first quartile for the fuel index, the second for the wage and the third for 
population density (or vice versa). The total input cost factor adjustment to the basic transportation 
allotment would simply be the sum of the three adjustment factors for each district.  

The histogram for the distribution of the cost factor adjusted regular program transportation 
allotment rates across our sample districts is given in Figure 4-5 below. The three groupings are 
driven by the jumps in the density adjustment—all of the districts with cost-factor adjustments 
above 1.3 are in the first three quartiles of the density adjustment. The median adjustment is 1.40, 
or 140% per mile. 

Figure 4-5: Cost Factor Adjusted Regular Program Transportation Allotment Rates 
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If we use these per mile allotment rates to calculate the regular program allotments based upon 
2018–19 regular mileage, the State funding for the regular program transportation allotment would 
be $281,873,792. The cost factor adjustments would increase State transportation allotment 
spending by $55,243,792 relative to funding at the flat $1 per mile HB3 rate. This is more than a 
$5.5 million dollar increase from the projected allotment spending that our Transportation Cost 
Index adjustment would have generated.  

The distributional effects of replacing the flat allotment rate with the cost factor adjusted rates by 
district type are shown in Figure 4-6 below. The average cost factor adjusted allotments are less 
generous than the TRCI adjusted allotments for rural districts and more generous than the TRCI 
adjusted allotments for metropolitan counties. The average allotments for districts in micropolitan 
counties are almost identical for the two alternative adjustment experiments.  

Figure 4-6: Distributional Effects of Replacing the Flat Allotment Rate with the Cost Factor 
Adjusted Rates 

 
We can also calculate the transportation allotment funding shares that would be generated under 
our two alternative allotment rate cost-adjustment simulations. We report those generated funding 
shares in Figure 4-7. There are two main takeaways from this figure. First, the average gain in 
transportation allotment funding share under the two cost adjustment approaches is decreasing in 
district size. The smallest districts would realize the largest average jump in funding share if the 
regular program allotment rate were adjusted for differences in uncontrollable costs under 
adjustment simulations. Second, the average percentage of transportation costs covered by the 
cost-adjusted allotments would remain well below 50% for the majority of districts. The incentives 
for districts to seek cost-reducing strategies for their transportation operations would remain 
strong. 

Source: Authors' calculations; Texas Education Agency Division of School Finance, 2019.
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Figure 4-7: Transportation Allotment Funding Share Simulation 

 

Conclusions 

We demonstrate how the estimated cost functions could be meaningfully used in the context of the 
FSP and the school district transportation allotment. Our basic approach was to use cost function 
analysis to examine geographic variations in the costs of education and transportation due to 
factors beyond the control of school districts. The generated Transportation Route Cost Index 
(TRCI) captures the relative cost of supplying the same transportation outputs in a tough input 
environment relative to a more favorable input environment; the Educational Cost Index (ECI) 
similarly captures the relative cost of supplying the same educational outputs in various 
educational environments. Both the ECI and the TRCI could be used directly to enhance the Texas 
school funding models by modifying key allotments in the funding formulas. However, since the 
ECI and TRCI are complicated functions of the cost factors, we also provide more simplified, i.e., 
more linearized, and alternative cost index approaches. Either approach offers a way to adjust the 
transportation cost allotment and the FSP for relevant uncontrollable cost factors. 
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The Maryland State Department of Education by Jennifer Imazeki, Picus Odden & 
Associates. http://marylandpublicschools.org/Documents/adequacystudy/APA-POA-GCEI-
Report-Rev-11232015.pdf  

Massachusetts:  

 Massachusetts Department of Elementary and Secondary Education (2018, September). 
School Finance: Chapter 70 Program, FY19 Chapter 70 Aid and Required Contribution 

https://education.alaska.gov/SchoolFinance/pdf/Funding-Overview.pdf
https://education.alaska.gov/SchoolFinance/pdf/Funding-Overview.pdf
https://lba.akleg.gov/download/publications/school2015.pdf
https://www.cde.state.co.us/cdefinance/fpphandbookfy19-20
http://www.fldoe.org/core/fileparse.php/7507/urlt/Fefpdist.pdf
https://www.bdb.org/clientuploads/Research/0-2020_Data/Consumer%20Price%20Index/2018fpli.pdf
https://www.bdb.org/clientuploads/Research/0-2020_Data/Consumer%20Price%20Index/2018fpli.pdf
https://www.maine.gov/doe/sites/maine.gov.doe/files/inline-files/History_Overview_School_Funding_Model_July2018_revMay2019_JLA_1.pdf
https://www.maine.gov/doe/sites/maine.gov.doe/files/inline-files/History_Overview_School_Funding_Model_July2018_revMay2019_JLA_1.pdf
https://www.maine.gov/doe/sites/maine.gov.doe/files/inline-files/EPS%20Regional%20Adjustment_11.27.19.pdf
https://www.maine.gov/doe/sites/maine.gov.doe/files/inline-files/EPS%20Regional%20Adjustment_11.27.19.pdf
http://www.marylandpublicschools.org/about/Documents/DBS/BudgetRes/2018/FY19StateAidPreliminaryDraftCalculations011918.pdf
http://www.marylandpublicschools.org/about/Documents/DBS/BudgetRes/2018/FY19StateAidPreliminaryDraftCalculations011918.pdf
http://marylandpublicschools.org/Documents/adequacystudy/APA-POA-GCEI-Report-Rev-11232015.pdf
http://marylandpublicschools.org/Documents/adequacystudy/APA-POA-GCEI-Report-Rev-11232015.pdf
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Calculations. http://www.doe.mass.edu/finance/chapter70/fy2019/chapter-19-
whitepaper.docx  

Missouri:  

 Missouri Department of Elementary & Secondary Education. Dollar Value Modifier by 
Year. https://dese.mo.gov/sites/default/files/sf-Complete-DVM-List.pdf  

New Jersey:  

 State of New Jersey Department of Education. Geographic Cost Adjustment (GCA) Update 
FY2014. https://www.nj.gov/education/sff/gca2014.pdf found at 
https://www.nj.gov/education/sff/ 

New York:  

 New York State Education Department. 2018–19 State Aid Handbook. 
http://www.oms.nysed.gov/faru/PDFDocuments/Primer2018-19.pdf found at 
https://stateaid.nysed.gov/generalinfo/  

Virginia:  

 Virginia Department of Education (2018, September). Overview of Virginia K–12 Funding 
Formulas and Formula Approaches to Recognize Student Need. 
http://www.doe.virginia.gov/boe/meetings/2018/work-session/09-sep/overview-of-virginia-
k12-funding-formulas.pptx  

 Lou, Cary and Kristin Blagg (2018, December). School District Funding in Virginia: 
Computing the Effects of Changes to the Standards of Quality Funding Formula. Urban 
Institute. https://www.urban.org/research/publication/school-district-funding-virginia  

Washington:  

 Washington State Legislature, Senate Ways and Means Committee. 2020 Citizen’s Guide 
to K–12 Finance. 
http://leg.wa.gov/LIC/Documents/EducationAndInformation/Citizens%20Guide%20to%20
K-12%20Finance.pdf  

 Washington Office of Superintendent of Public Instruction (2017). EHB 2242 Guidance. 
https://www.k12.wa.us/policy-funding/school-apportionment/instructions-and-tools/ehb-
2242-guidance  

Wyoming:  

 Wyoming Legislature (2020, March). State of Wyoming School Foundation Program Flow 
Chart. https://wyoleg.gov/docs/SchoolFinance/SchoolFoundationBlockGrantFlowChart.pdf  

  

http://www.doe.mass.edu/finance/chapter70/fy2019/chapter-19-whitepaper.docx
http://www.doe.mass.edu/finance/chapter70/fy2019/chapter-19-whitepaper.docx
https://dese.mo.gov/sites/default/files/sf-Complete-DVM-List.pdf
https://www.nj.gov/education/sff/
http://www.oms.nysed.gov/faru/PDFDocuments/Primer2018-19.pdf
https://stateaid.nysed.gov/generalinfo/
http://www.doe.virginia.gov/boe/meetings/2018/work-session/09-sep/overview-of-virginia-k12-funding-formulas.pptx
http://www.doe.virginia.gov/boe/meetings/2018/work-session/09-sep/overview-of-virginia-k12-funding-formulas.pptx
https://www.urban.org/research/publication/school-district-funding-virginia
http://leg.wa.gov/LIC/Documents/EducationAndInformation/Citizens%20Guide%20to%20K-12%20Finance.pdf
http://leg.wa.gov/LIC/Documents/EducationAndInformation/Citizens%20Guide%20to%20K-12%20Finance.pdf
https://www.k12.wa.us/policy-funding/school-apportionment/instructions-and-tools/ehb-2242-guidance
https://www.k12.wa.us/policy-funding/school-apportionment/instructions-and-tools/ehb-2242-guidance
https://wyoleg.gov/docs/SchoolFinance/SchoolFoundationBlockGrantFlowChart.pdf
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Appendix B: Variable Definitions and Sources 

Variable Name Definition and Source 
Teacher Experience Years of teaching experience (PEIMS) 
First Year Teacher A variable that takes on the value of 1 if the teacher 

has zero years of teaching experience, and zero 
otherwise (PEIMS) 

No Degree A variable that takes on the value of 1 if the 
individual does not have at least a bachelor’s degree, 
and zero otherwise (PEIMS) 

Master’s Degree A variable that takes on the value of 1 if the 
individual holds a master’s degree, and zero 
otherwise (PEIMS) 

PhD or EDD A variable that takes on the value of 1 if the 
individual holds a doctoral degree, and zero 
otherwise (PEIMS) 

Assigned Multiple Campuses  A variable that takes on the value of 1 if the 
individual teacher was assigned to work at multiple 
campuses, and zero otherwise (PEIMS) 

New Hire Indicator A variable that takes on the value of 1 if it is the 
teacher’s first year of service in the district, and zero 
otherwise (PEIMS) 

Subject Matter Assignment A variable that takes on the value of 1 for the subject 
taught by the teacher (e.g., elementary, math, 
science), and zero otherwise (PEIMS) 

Grade-level Assignment A variable that takes on the value of 1 for the grade-
level taught by the teacher (e.g., elementary, pre-K), 
and zero otherwise (PEIMS) 

Campus Type A variable that takes on the value of 1 for school 
type (e.g., elementary, middle), and zero otherwise 
(TAPR) 

Department Head A variable that takes on the value of 1 if a person is 
a department head, and zero otherwise (PEIMS) 

Administrator A variable that takes on the value of 1 if a person is 
a school or district administrator, and zero otherwise 
(PEIMS) 

Support Staff A variable that takes on the value of 1 if a person is 
support staff, and zero otherwise (PEIMS) 

Percentage EverELL Percentage of students in the school ever considered 
Limited English proficient or English learners 
(PEIMS data housed at the Educational Research 
Center at the University of Texas at Dallas)  
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Variable Name Definition and Source 
Social Security for All A variable that takes on the value of 1 if a district’s 

teachers participate in the social security system, and 
zero otherwise (Texas Classroom Teachers 
Association and authors’ analysis of PEIMS 
financial data) 

Social Security for Some or All A variable that takes on the value of 1 if at least 
some of the district’s employees participate in the 
social security system, and zero otherwise (Texas 
Classroom Teachers Association and authors’ 
analysis of PEIMS financial data) 

ACS-CWIFT Prevailing wage for college graduates in the county 
(NCES) 

Fair Market Rent Index Fair market rent for a two-bedroom apartment in the 
county, as a percentage of the state average fair 
market rent (US Department of Housing and Urban 
Development) 

Midsized District A variable that takes on the value of 1 if district 
enrollment is between 1,600 and 5,000 students, and 
zero otherwise (TAPR) 

Large District A variable that takes on the value of 1 if district 
enrollment is greater than 5,000 students, and zero 
otherwise (TAPR) 

Distance to Nearest EPP Distance in miles from campus to the nearest 
accredited educator preparation program (EPP) 
(Authors’ calculation from data provided by NCES 
and TEA) 

Distance to Nearest Metropolitan Area Distance in miles from campus to the center of the 
nearest metropolitan area (Authors’ calculation from 
data provided by NCES and the US Census Bureau) 

Central Metropolitan County A variable that takes on the value of 1 if at least half 
of the population resides within areas of 10,000 or 
more population, and zero otherwise (US Census 
Bureau) 

Outlying Metropolitan County A variable that takes on the value of 1 if the county 
meets Census Bureau requirements of commuting to 
or from central counties, and zero otherwise (US 
Census Bureau) 

Micropolitan County A variable that takes on the value of 1 if a county 
has a central city with a population of between 
10,000 and 50,000 residents, and zero otherwise (US 
Census Bureau) 
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Variable Name Definition and Source 
Rural County A variable that takes on the value of 1 if a county is 

not considered a metropolitan or micropolitan area, 
and zero otherwise (US Census Bureau) 

Sparsely Populated County A variable that takes on the value of 1 if county 
population per square mile in 2020 was less than or 
equal to 15 and greater than 10, and zero otherwise 
(US Census Bureau) 

Very Sparsely Populated county  A variable that takes on the value of 1 if county 
population per square mile in 2010 was less than or 
equal to 10, and zero otherwise (US census Bureau)  

Unemployment rate County unemployment rate (US Bureau of Labor 
Statistics) 

Cooling Degree Days The average number of cooling degree days per year 
during the 30-year period from 1981–2010 at the 
three weather stations that are closest to campus 
(authors’ calculations from data provided by NCES 
and NOAA)  

Heating Degree Days The average number of heating degree days per year 
during the 30-year period from 1981–2010 at the 
three weather stations that are closest to campus 
(authors’ calculations from data provided by NCES 
and NOAA)  

Female  A variable that takes on the value of 1 if the 
individual is female, and zero otherwise (PEIMS) 

Percent Day The percentage of a standard district work day for 
which the employee is hired to work (PEIMS) 

Days Employed The actual number of at-work days within the school 
year that a person is scheduled to work in the 
district. This number does not include holidays, 
weekends, and any other days the employee is not 
scheduled to work (PEIMS) 

Square miles > 400 A variable that takes on the value of 1 if the district  
has more than 400 square miles, and zero otherwise 
(TEA) 

K–8 District A variable that takes on the value of 1 if district does 
not serve high school grades, and zero otherwise 
(TAPR) 

HS-CWI The High School Comparable Wage Index (Texas 
Smart Schools) 

Number of Potential Employers A pupil-weighted average of the number of 
employers in the zip codes where campuses are 
located (authors’ calculations from US Census data) 
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Variable Name Definition and Source 
Per-pupil operating expenditure Actual current, per-pupil operating expenditures 

(PEIMS object codes 6100 through 6499), excluding 
food and student transportation expenditures, and 
adjusted for share services agreements. 

Campus enrollment Total number of students enrolled at the school 
(TAPR) 

Average Conditional NCE  A normalized gain score indicator of student 
performance on the State of Texas Assessments of 
Academic Readiness (STAAR®) Grades 3–8 and 
end-of-course (EOC) exams (Authors’ calculations 
from PEIMS data on individual students) 

Teacher Cost Index  The predicted salary in the district for a teacher with 
a standard set of characteristics who was assigned to 
a standard campus, divided by a minimum predicted 
salary for that year (Authors’ calculations from 
multiple data sources) 

Auxiliary Personnel Cost Index The predicted salary in the district for an auxiliary 
worker with a standard set of characteristics who 
was assigned to a standard campus, divided by a 
minimum predicted salary for that year (Authors’ 
calculations from multiple data sources) 

District enrollment Total number of students enrolled in the district 
(TAPR) 

% Economically disadvantaged The percentage of students eligible for free or 
reduced-price lunch at a campus (TAPR) 

% Special education The percentage of students eligible for special 
education services at a campus (TAPR) 

% High needs special education The percentage of students with a special education 
classification other than speech-language difficulties 
or learning disabilities (Authors’ calculations from 
PEIMS data) 

First Tier Coastal County A variable that takes on a value of 1 if a county is 
Aransas; Brazoria; Calhoun; Cameron; Chambers; 
Galveston; Jefferson; Kenedy; Kleberg; Matagorda; 
Nueces; Refugio; San Patricio; or Willacy County, 
and zero otherwise (Texas Department of Insurance) 

Herfindahl Index  The sum of squared enrollment shares for 
metropolitan areas, micropolitan areas or rural 
counties (authors’ calculations from TAPR data) 

Share of spending unallocated The share of current operating expenditures in a 
campus that were imputed on a per capita basis 
(Authors’ calculations from PEIMS data) 
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Variable Name Definition and Source 
Number with test scores  Number of students who’s test scores in reading or 

mathematics contribute to the calculation of the 
Conditional NCE score for a campus (Authors’ 
calculations from PEIMS data) 

Manufacturing establishments in zip Number of establishments engaged in the 
mechanical, physical, or chemical transformation of 
materials into new products (U.S. Census Bureau) 

Percent of county in places Percentage of residents in a county residing in a 
Census-designated place in 2010 (U.S. Census 
Bureau) 

Square Miles  Square miles in the school district (TEA) 
Total Transportation Expenditures A district’s total reported current operating 

expenditures (PEIMS object codes 6100-6499) 
under PEIMS Function 34 (PEIMS) 

Expenditures per Mile A district’s total expenditures under PEIMS 
Function 34 divided by their total route services 
mileage (Authors’ calculations; PEIMS and Texas 
Education Agency Transportation Operations 
Report) 

Riders per Mile A district’s total average daily ridership divided by 
their annual total route services mileage (Authors’ 
calculations; Texas Education Agency 
Transportation Operations Report and 
Transportation Route Services Report) 

Total Route Miles The sum of a district’s regular route services 
mileage and special route services mileage (Texas 
Education Agency Transportation Operations 
Report) 

Diesel Price Price of diesel in the county (Oil Price Information 
Services) 

Population Density A county’s population in 2010 divided by its total 
land area (U.S. Census Bureau) 

Congestion Vehicle miles travelled per lane mile (Texas 
Transportation Institute) 

Number of Special Riders District special program average daily ridership 
(Texas Education Agency Transportation Route 
Services Report) 

Number of Total Riders District total of special program average daily 
ridership and regular program average daily 
ridership (Texas Education Agency Transportation 
Route Services Report) 
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Variable Name Definition and Source 
Percent Special Riders Percentage of total district ridership that is special 

program riders (Authors’ calculations; Texas 
Education Agency Transportation Route Services 
Report) 

Number of Special Miles District total special program route related services 
mileage (Texas Education Agency Transportation 
Operations Report) 

Number of Regular Miles District total regular program route related services 
mileage (Texas Education Agency Transportation 
Operations Report) 

Percent Special Miles of Total Miles Percentage of total district route mileage that is 
special route miles (Authors’ calculations; Texas 
Education Agency Transportation Operations 
Report) 

Total Vehicles District total reported vehicles (Texas Education 
Agency Transportation Operations Report) 

Number of Regular Service Buses Less 
than 5 Years Old 

Number of district buses used for regular route 
services that are 0-5 years old (Texas Education 
Agency Transportation Operations Report) 

Number of Special Service Buses Less 
than 5 Years Old 

Number of district buses used for special route 
services that are 0-5 years old (Texas Education 
Agency Transportation Operations Report) 

Number of Total Buses Less than 5 
Years Old 

Total buses within a school district that are 0-5 years 
old (Texas Education Agency Transportation 
Operations Report) 

Percent of Buses Less than 5 Years Old Percentage of total district buses that are 0-5 years 
old (Authors’ calculations; Texas Education Agency 
Transportation Operations Report) 
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Appendix C: Coefficient Estimates and Robust Standard Errors for the 
Teacher Salary Model 

Variables Model 1 Std. Errors Model 2 Std. Errors 
Years of experience (log) 0.0544*** (0.00342) 0.0659*** (0.00130) 

Years of experience (log), sq. -0.0184*** (0.00204) -0.0332*** (0.000736) 

Years of experience (log), cubed 0.0148*** (0.000646) 0.0116*** (0.000125) 

First year teacher 0.00948*** (0.00130) 0.0215*** (0.000670) 

No degree 0.00767*** (0.00106) -0.000687 (0.000541) 

Master’s degree 0.0205*** (0.000411) 0.0241*** (0.000200) 

PhD or EdD 0.0255*** (0.00232) 0.0309*** (0.00107) 

New hire -0.00430*** (0.000189) -0.00547*** (0.000124) 

Assigned multiple campuses -0.00168*** (0.000481) -0.000610** (0.000271) 

Elementary subjects 0.00386*** (0.000265) 0.00339*** (0.000202) 

Language arts teacher -0.000958*** (0.000226) -0.00468*** (0.000153) 

Math teacher 4.88e-06 (0.000260) -0.000481*** (0.000168) 

Science teacher 0.000151 (0.000256) -0.000699*** (0.000170) 

Social studies teacher 0.000419* (0.000220) 0.00207*** (0.000153) 

Health/PE teacher 0.0132*** (0.000381) 0.0221*** (0.000186) 

Foreign language teacher -0.00367*** (0.000510) -0.00475*** (0.000332) 

Fine arts teacher 0.00224*** (0.000441) 0.00559*** (0.000241) 

Computer teacher -0.00455*** (0.000630) -0.0112*** (0.000376) 

Vocational/technical teacher -0.00287*** (0.000559) -0.00711*** (0.000292) 

Special subject teacher 0.00323*** (0.000501) 0.00156*** (0.000340) 

Tested grade or subject teacher -0.000465** (0.000227) -0.00272*** (0.000149) 

Assigned non-graded students -0.00107*** (0.000275) -0.000604*** (0.000172) 

Assigned elementary students -0.00587*** (0.000450) -0.00925*** (0.000326) 

Assigned secondary students 0.0239*** (0.00880) 0.0181*** (0.00525) 

Assigned pre-K students 0.000274 (0.000636) 0.000214 (0.000455) 

Assigned kindergarten students 0.00288*** (0.000469) 0.00459*** (0.000350) 

Elementary school campus 0.00982*** (0.00200) 0.0122*** (0.000730) 

Middle school campus 0.0198*** (0.00197) 0.0281*** (0.000726) 

High school campus 0.0227*** (0.00198) 0.0337*** (0.000730) 

Large High School Campus 0.0333*** (0.00196) 0.0494*** (0.000731) 

Department head 0.0126*** (0.00155) 0.0156*** (0.00122) 
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Variables Model 1 Std. Errors Model 2 Std. Errors 
Administrator 0.0413*** (0.00880) 0.0856*** (0.00245) 

Support staff 0.00579*** (0.00223) 0.00875*** (0.00141) 

Social Security for All 0.0520*** (0.00167) 0.0364*** (0.000506) 

Percentage EverELL students 0.0560*** (0.00200) 0.0893*** (0.000621) 

Unemployment rate -0.00474*** (0.000175) -0.00534*** (9.26e-05) 

Fair Market Rent Index 0.236*** (0.0138) 0.613*** (0.00748) 

ACS-CWIFT 0.591*** (0.0145) 1.069*** (0.00798) 

ACS-CWIFT*Rent Index -0.252*** (0.0142) -0.653*** (0.00788) 

Distance to the center of the nearest 
metropolitan area (log) 

-0.00582*** (0.00140) -0.00833*** (0.000533) 

Distance to metro, squared 0.00334*** (0.000341) 0.00403*** (0.000120) 

Distance to nearest EPP 0.0167*** (0.000899) 0.0243*** (0.000350) 

Distance to EPP, squared -0.00623*** (0.000271) -0.00772*** (9.44e-05) 

Cooling Degree days (log) 0.0824*** (0.00321) 0.0602*** (0.000684) 

2014–2015 -0.0615*** (0.00232) -0.111*** (0.000226) 

2015–2016 -0.0532*** (0.00185) -0.0938*** (0.000165) 

2016–2017 -0.0467*** (0.00140) -0.0775*** (0.000173) 

2017–2018 -0.0414*** (0.000930) -0.0619*** (0.000135) 

2018–2019 -0.0376*** (0.000469) -0.0477*** (0.000104) 

Central metropolitan County 0.00993*** (0.00103) 0.0109*** (0.000319) 

Micropolitan county 0.0149*** (0.00167) 0.0178*** (0.000502) 

Sparsely populated county -0.0581*** (0.00675) -0.0606*** (0.00185) 

Very Sparsely populated county -0.0503*** (0.00449) -0.0610*** (0.00126) 

Rural: Years of experience (log) -0.162*** (0.00745) -0.218*** (0.00358) 

Rural: Years of experience (log), sq. 0.110*** (0.00439) 0.147*** (0.00197) 

Rural: Years of experience (log), 
cubed 

-0.0180*** (0.000791) -0.0244*** (0.000327) 

Rural: First year teacher -0.0748*** (0.00358) -0.102*** (0.00187) 

Rural: No degree -0.0110** (0.00449) -0.0128*** (0.00185) 

Rural: Master’s degree -0.00685*** (0.00151) -0.00704*** (0.000566) 

Rural: PhD or EdD -0.00884 (0.0119) -0.00538 (0.00406) 

Rural: New hire 0.00196*** (0.000587) 0.00656*** (0.000328) 

Rural: Assigned multiple campuses 0.00219* (0.00117) 0.00375*** (0.000583) 

Rural: Elementary subjects -0.00411*** (0.000836) -0.00416*** (0.000531) 



 

129 | P a g e  
 

Variables Model 1 Std. Errors Model 2 Std. Errors 
Rural: Language arts teacher -0.00306*** (0.000724) -0.00376*** (0.000382) 

Rural: Math teacher -0.00155* (0.000840) -0.00199*** (0.000417) 

Rural: Science teacher -0.000217 (0.000836) -0.00112*** (0.000428) 

Rural: Social studies teacher -0.000346 (0.000732) -0.000565 (0.000385) 

Rural: Health/PE teacher 0.0104*** (0.00120) 0.0150*** (0.000492) 

Rural: Foreign language teacher 0.00340 (0.00208) 0.00100 (0.000992) 

Rural: Fine arts teacher -0.00639*** (0.00119) -0.00864*** (0.000570) 

Rural: Computer teacher -0.000540 (0.00139) 0.00398*** (0.000817) 

Rural: Vocational/technical teacher -0.000199 (0.00132) 0.00162*** (0.000601) 

Rural: Special subject teacher -0.00501*** (0.00177) -0.00425*** (0.000981) 

Rural: Tested grade or subject 
teacher 

-0.000279 (0.000801) 0.000529 (0.000392) 

Rural: Assigned non-graded 
students 

0.00356*** (0.000777) 0.00405*** (0.000418) 

Rural: Assigned elementary students -0.000647 (0.00145) 0.00140* (0.000769) 

Rural: Assigned secondary students -0.00214 (0.0195) -0.00237 (0.00991) 

Rural: Assigned pre-K students 0.000827 (0.00196) -0.00454*** (0.00110) 

Rural: Assigned kindergarten 
students 

-0.000419 (0.00157) -0.00372*** (0.000884) 

Rural: Elementary school campus -0.00527* (0.00276) -0.00640*** (0.00100) 

Rural: Middle school campus -0.000756 (0.00284) 0.000936 (0.00103) 

Rural: High school campus 0.000829 (0.00281) 0.00450*** (0.00101) 

Rural: Large High School Campus -0.00928** (0.00401) -0.00537*** (0.00186) 

Rural: Department head 0.00998 (0.0124) 0.00994 (0.00681) 

Rural: Administrator 0.00762 (0.0128) 0.00100 (0.00384) 

Rural: Support staff 0.00172 (0.00689) -0.00264 (0.00325) 

Rural: Social Security -0.0189*** (0.00656) -0.00484** (0.00196) 

Rural: Percentage EverELL students 0.0661*** (0.00536) 0.0377*** (0.00153) 

Rural: Unemployment rate 0.00410*** (0.000286) 0.00329*** (0.000139) 

Rural: Rent Index -0.156*** (0.0434) -0.249*** (0.0253) 

Rural: CWIFT -0.551*** (0.0408) -0.804*** (0.0240) 

Rural: CWIFT*Rent Index 0.236*** (0.0507) 0.367*** (0.0299) 

Rural: Distance to the center of the 
nearest metropolitan area (log) 

0.169*** (0.0237) 0.142*** (0.00696) 

Rural: Distance to Metro, squared -0.0282*** (0.00313) -0.0243*** (0.000911) 



 

130 | P a g e  
 

Variables Model 1 Std. Errors Model 2 Std. Errors 
Rural: Distance to nearest EPP -0.0675*** (0.00298) -0.0791*** (0.000967) 

Rural: Distance to EPP, squared 0.0179*** (0.000690) 0.0199*** (0.000214) 

Rural: Cooling Degree days (log) -0.0161*** (0.00406) 0.00727*** (0.00116) 

Rural: 2014–2015 0.275*** (0.0655) 0.366*** (0.0255) 

Rural: 2015–2016 0.274*** (0.0655) 0.365*** (0.0255) 

Rural: 2016–2017 0.271*** (0.0655) 0.361*** (0.0255) 

Rural: 2017–2018 0.269*** (0.0655) 0.358*** (0.0255) 

Rural: 2018–2019 0.273*** (0.0655) 0.359*** (0.0255) 

Rural: 2019–2020 0.312*** (0.0655) 0.396*** (0.0255) 

Rural: Sparsely populated county 0.0595*** (0.00706) 0.0655*** (0.00195) 

Rural: Very Sparsely populated 
county 

0.0486*** (0.00501) 0.0615*** (0.00143) 

Constant 9.458*** (0.0300) 9.297*** (0.00867) 
 

Estimation technique Teacher Fixed 
effects 

 AR Teacher 
Random 
effects 

 

Wooldridge test for autocorrelation 
F(1, 314545)  

  9536.594  

Number of Observations 1,809,066  1,809,066  

Number of Individuals 441,671  441,671  

Note: All variables labeled “Rural: x” represent the coefficients on the interaction between the non-metropolitan 
county indicator and the designated variable. 
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Appendix D: Coefficient Estimates and Robust Standard Errors for the 
Auxiliary Personnel Wage Model 

Variables Coefficients Standard Errors 

Years of experience (log) -13.57*** (0.886) 
Years of experience (log), sq. 4.176*** (0.241) 
Years of experience (log), cubed -0.415*** (0.0217) 
Female -6.075*** (1.379) 
Female * years of experience 6.237*** (1.127) 
Female * years of experience (log), sq. -2.066*** (0.305) 
Female * years of experience (log), cu. 0.220*** (0.0275) 
Advanced Degree 0.0382*** (0.00212) 
New hire -0.0428*** (0.000635) 
Percent Day -0.00234*** (3.57e-05) 
Days Employed (log) 0.170*** (0.00333) 
Business/Finance Clerical 0.327*** (0.00292) 
Campus Office/Clerical 0.131*** (0.00168) 
Central Office/Clerical 0.257*** (0.00207) 
Child Nutrition -0.145*** (0.00157) 
Human Resources  0.353*** (0.00442) 
Information Technology Technicians 0.394*** (0.00304) 
Campus Technology Specialist 0.287*** (0.00497) 
Custodial -0.182*** (0.00178) 
Maintenance 0.0674*** (0.00213) 
Plumber 0.246*** (0.00728) 
Painter 0.117*** (0.00770) 
HVAC 0.244*** (0.00483) 
Electrician 0.263*** (0.00642) 
Warehouse 0.0623*** (0.00470) 
Safety/Security 0.205*** (0.00290) 
Transportation -  
Square Miles > 400 -0.0267*** (0.00170) 
Large District -0.0390*** (0.00161) 
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Variables Coefficients Standard Errors 
Social Security for Some or All 0.0680*** (0.00201) 
K–8 District 0.109*** (0.0118) 
Unemployment rate -0.00856*** (0.000516) 
Rent Index -0.501*** (0.0465) 
HS-CWI -0.159*** (0.0421) 
HS-CWI*Rent Index 0.605*** (0.0461) 
Distance to the center of the nearest metro area (log) -0.0209*** (0.000949) 
Heating Degree days (log) 0.0317*** (0.00371) 
Cooling Degree days (log) 0.131*** (0.00722) 
Number of potential employers (log) 0.00694*** (0.000535) 
2017–2018 -0.0749*** (0.000558) 
2018–2019 -0.0565*** (0.000373) 
Metropolitan County -0.0284*** (0.00313) 
Central metropolitan County 0.0175*** (0.00188) 
Micropolitan county 0.0119*** (0.00295) 
Sparsely populated county 0.0247*** (0.00357) 
Very Sparsely populated county 0.125*** (0.00407) 
Constant 17.14*** (1.086) 

 
Number of Observations 510,341  
Number of Individuals 223,509  

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Appendix E: A General Overview of the Cost Function Methodology 

The idea of a cost function is widely used in the education literature, and has been discussed in 
Gronberg, Jansen and Taylor (2011a) and in Taylor et al (2014, 2017). A cost function is a function 
relating a measure of cost to the prices of various inputs (input prices) and to other specific factors 
that impact cost (environmental factors). In a market economy, productively efficient firms will 
minimize costs consistent with each level of output produced, given market prices for inputs and 
the measures of other environmental factors that impact cost. Efficient non-profit organizations 
will also minimize costs consistent with the output produced for given input prices, and again 
conditional on the environmental factors that impact their costs. 

Two important concepts are the short run cost function and the long run cost function. The short 
run cost function applies when the period of time is too short for the firm or nonprofit 
organization to adjust its capital stock. The long run cost function applies with the time period is 
long enough for all changes to occur in the desired level of the capital stock (and all other 
inputs). In this study we modeled the short run cost function, the cost function that considers the 
capital stock to be relatively fixed. 

In economics the concept of a production function is relatively straightforward and posits a 
model linking the use of inputs (e.g., labor and capital) with the production of output. Again, 
there can be a short run and a long run version of the production function. The cost function is 
built on the concept of a production function linking outputs to inputs, along with the idea that an 
organization must pay market prices for inputs, with the price and quantity of inputs determining 
the organizations cost of producing output. To produce more output requires more inputs and 
leads to higher costs. Organizations that are efficient will strive to produce every level of output 
at the lowest possible cost. The cost function specifies this relationship between a left hand side 
variable, cost, and a set of right hand side variables that include output levels, input price levels, 
and measures of the relevant environmental variables. An item of interest is the impact of 
changes in these right hand side or explanatory variables on the left hand side variable, cost. For 
instance, the impact on cost of rising output levels is often of interest, as this is related to the 
concept of economies of scale. A firm or organization with positive economies of scale will see 
its per-unit cost declining as output increases. Typically economists posit a U-shaped 
relationship between the level of output and per-unit costs, with per-unit costs falling as output 
increases up to some point, after which per-unit costs remain constant or even increase with 
further increases in output. 

Firms minimize cost, but they are also hypothesized to maximize profits. Nonprofit organizations 
do not maximize profits by definition, but if efficient they would still seek to minimize costs. In 
the public sector the absence of profit-maximizing incentives makes greater the possibility of 
cost inefficiency, and this must be addressed in any analysis of educational cost.  

The issue of inefficiency can be addressed by using what is called a stochastic frontier cost 
function. In this model a cost function is modified to include a regression error term that contains 
two parts. One is a standard two-sided error term that is included in any regression model to 
capture random positive or negative ‘shocks’ or disturbances that make the relationship between 
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the left hand side variable, cost, not perfectly described by the left hand side function of output 
levels, input prices, and environmental variables. The second is a one-sided error that can only be 
positive, and this one-sided error moves the left hand side variable measuring cost away from the 
value predicted using the cost function in a positive direction. The idea is that the cost function – 
including the traditional two-sided error – is the measure of cost when an organization is 
operating efficiently, and the one-sided error is the additional ‘cost’ or, better, the additional 
spending over and above the efficient level, that an organization is doing. This additional 
spending is inefficient. The stochastic cost frontier approach allows the data to reveal the degree 
of cost inefficiency while identifying properties of the true cost function. 

Another important issue is the functional form of the cost function itself, including the two error 
terms. For the cost function, the ‘translog’ specification is a flexible functional form that can 
serve as a second order approximation to an arbitrary function. The word translog stands for 
“transcendental logarithmic’ and the name refers to the logarithmic function which is one of the 
transcendental functions in mathematics. The translog is popular because of its flexibility – 
elasticities (including elasticity of scale) can change with output and with factor proportions.  

The statistical distribution of the two error terms in the stochastic frontier cost function must also 
be specified. It is common in regression models to assume the two-sided error term has a normal 
distribution (or possibly a closely related distribution). The one-sided error, the real difference 
with the stochastic frontier model, has been developed for a series of one-sided distributions, and 
here we use the distribution that is STATA’s default, the exponential distribution.  

When properly specified and estimated using stochastic frontier analysis (SFA), the educational 
cost function is a theoretically and statistically reliable method for estimating the relationship 
between cost and measures of scale. These have often been used to measure scale economies for 
the provision of educational services. This analysis uses SFA to estimate an educational cost 
function for Texas. It also uses SFA to study the provision of school transportation services by 
school districts 

The standard stochastic frontier model starts with a cost function. A cost function – a cost 
frontier – specifies the minimum cost necessary to achieve certain outcomes with specified 
inputs and specified environmental factors. The cost function can be written in general form as: 

(1) ( | ) exp( )C C Z β ε= ⋅   

where the left hand side variable C is cost, and on the right ( | )C Z β  is a function with a set of 
variables Z and a set of coefficients β. This function is the non-stochastic part of the cost function 
or cost frontier. The set of variables Z would include variables affecting the frontier level of cost, 
which includes output levels, the prices of inputs into production, and environmental factors that 
impact cost and production. We write this as 1 1 1{ ,..., ; ,..., , ,..., }n k mZ y y w w z z= , where we have n 
output measures, k input prices, and m environmental factors including fixed factors of 
production. The second term on the right hand side contains exp(ε), where ε is a random noise 
component representing exogenous random shocks to the relationship. This cost frontier ( | )C Z β  
is the true deterministic neo-classical cost function, the object of discovery. The error term, ε, 
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indicates random deviations from the cost frontier due to measurement error and unforeseen 
random changes in cost due to factors not modeled in the cost function. 

Equation (1) with a symmetric two-sided error term ε presents a general form for the standard 
empirical cost function, including the modeled cost frontier and the allowance for random 
deviations from the cost frontier. 

In the stochastic frontier approach, the cost function in (1) is regarded as a frontier, a minimum 
cost of attaining given outputs with given inputs including environmental factors. Spending may 
then deviate from this cost frontier, exceeding the minimum cost specified in the cost frontier. 
Thus the stochastic frontier approach starts with (1) and adds the assumption that spending 
exceeds the cost frontier due to random errors that can be (but are not required to be) interpreted 
as inefficiency. The stochastic frontier approach basically takes equation (1) and assumes that the 
random error, ε, consists of two parts, a standard two-sided random error that can be positive or 
negative and on average is zero, and a one-sided error that is always positive (or at least not 
negative). This one-sided error captures the idea that individual decision-making units – districts 
or campuses in the school context – can at best be on the cost frontier, plus or minus the value 
specified in the two-sided random error. The one-sided error captures the idea that a fully 
efficient decision-making units can at best be on the cost frontier, and if they are inefficient this 
is captured or modelled by the one-sided error. The larger the one-sided error, the further a 
decision-making unit is from the frontier, and hence the more inefficient is the decision-making 
unit. 

To model this, equation (1) is altered to specify the error term, ε, as consisting of two 
components, v plus u. The two-sided error is v, and the one-sided error is u. Because inefficiency 
increases cost above the frontier (i.e., above the minimum possible cost), values of u are zero or 
greater.  

The stochastic frontier cost function is given as: 

(2) ( | ) exp( ) ( | ) exp( ) exp( )E C Z v u C Z v uβ β= ⋅ + = ⋅ ⋅  

where E is actual or observed expenditures and spending and ( | )C Z β  is the cost frontier as 
described above. The expression ( | ) exp( )C Z vβ ⋅ is the traditional stochastic cost function, and 
the full expression including the one-sided error term exp( )u is the stochastic frontier model. 
Cost efficiency is defined as exp( ) 1CE u= − ≤ . The distance below 1 is a measure of 
inefficiency. 

Cost frontier estimates indicate the cost of achieving certain outcomes after controlling for 
output levels, input prices, environmental factors, and random two-sided disturbances. Note that 
if we take the natural logarithm of both sides of equation (2), we get: 

(3) ln( ) ln( ( | )) .E C Z v uβ= + +  

It remains to say something more about the deterministic part of this cost function. This analysis 
estimates a version of a translog frontier cost function. The dependent variable is a measure of 
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operating expenditures, as we are estimating a short run cost function and as such abstract from 
capital purchases. The explanatory variables—the right-hand-side variables—include measures 
of outputs, measures of input prices, and measures of environmental factors. The translog 
specification is: 

(4) 
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where usual symmetry restrictions ( ij jiβ β= ) for all i,j and for all variables r,s from the set {y, w, 
z}. There are times when a translog is modified to include a cubic term, especially a cubic term 
for an output variable. For instance, cost functions estimated for educational service providers 
often include a cube of (log) enrollment, since enrollment values can be quite large for some 
districts and quite small for other districts. Further, variables in a translog must be positive, as 
the log of zero and the log of a negative number are undefined. This can be dealt with in a 
number of ways. One common procedure is to substitute a percentage deviation of a variable 
from one. For values of x close to 1, ln(x) is approximately the percentage deviation of x from 1.  

Equation (4) nests the popular Cobb-Douglas as a special case. If the coefficients on all of the 
quadratic terms are set to zero a Cobb-Douglas function is the result. Equation (4) also nests the 
classical (non-frontier) linear regression specification of the translog, which is obtained if the 
one-side error term is restricted to be identically zero. Thus, the general specification used in this 
analysis allows researchers to test empirically for alternative specifications sometimes found in 
the literature. 

Following Gronberg et al. (2013) the one-sided error (u) is modeled as a function of a Herfindahl 
index of school district competition. This Herfindahl index is based on the enrollment shares of 
districts within a given county. The Herfindahl index for a perfectly competitive market with an 
infinity of small firms is zero; the Herfindahl index for a monopoly market with only a single 
firm is one. Larger values of the Herfindahl index indicate lower levels of competition. 

Equation (4) is hard to interpret, but we can derive ‘marginal effects’ of changes in the 
explanatory variables on cost. This provides useful interpretable output from the estimation of 
equation (4). These marginal effects are derivatives of the dependent variable in equation (4), 
ln(E), with respect to an explanatory variable in equation (4), such as ln(y) or ln(w). Moreover, 
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because we are taking derivatives in this way, the result is a percentage change in E with respect 
to a change in y, or with respect to a change in w.  

For example, the marginal effect of a change in ln(y1) is calculated as: 

(5) 1 ,1 ,11 1 ,1 ,1 ,1
2 1 11

ln( )( ) 2 ln( ) ln( ) ln( ) ln( )
ln( )

n k m

y yy yy i i yw j j yz j j
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d Eme y y y w z
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β β β β β
= = =

= = + + + +∑ ∑ ∑   

Again as examples, the marginal effects of a change in ln(w1) is presented in equation (6), and 
the marginal effect of a change in ln(z1) is presented in equation (7): 
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Appendix F: The Educational Cost Function 

Cost functions are widely studied in evaluating the cost of education and in evaluating school 
funding formulas including possible economies of scale and the cost implications of other 
differences across educational units. Obviously, economies of scale have been a large interest to 
educational funding agencies. Other interests include the cost of education difference by level of 
school (high schools versus elementary schools, for example), by student needs (low income 
students, English language learners), by geography (enrollment density or sparsity, remoteness), 
by teacher labor market characteristics as they influence the price of hiring a teacher, by other 
labor market characteristics that influence the price of hiring other workers, as well as a host of 
other matters. Cost functions, in principle, are well able to handle all of these issues. This analysis 
follows Taylor et al. (2014, 2017) by using stochastic frontier analysis (SFA) to estimate an 
educational cost function for Texas.  

Background 

This analysis draws on three key strands of scholarly literature. The first is the literature on the 
estimation of educational cost functions in the context of economies of scale. The second is the 
literature on educational cost functions in the context of measuring the impact of student need. The 
third is the literature on the link between competition and school district efficiency. 

Cost Function Analysis and Economies of Scale in Education 
Cost function analysis is particularly well suited to examinations of educational economies of 
scale, frequently in the context of school district consolidation. For example, Dodson and Garrett 
(2004) estimated a cost function for Arkansas school districts and found per-pupil cost savings of 
at least 19% from consolidating four small, rural districts into a county-level district. Duncombe, 
Miner and Ruggiero (1995) simulated the consolidation of New York school districts with fewer 
than 500 students and found large potential cost savings. Zimmer, DeBoer and Hirth (2009) also 
found large potential gains from their simulated consolidation of smaller (i.e., fewer than 1,000 
pupils) districts in Indiana. Gronberg et al. (2015) simulated consolidation to the county level 
throughout Texas and found that consolidation would reduce per-pupil costs in many rural Texas 
counties, but raise per-pupil costs in most metropolitan counties. Taylor et al. (2014) simulated 
county-level consolidation in Texas five largest counties, and concluded that such consolidations 
would lead to dysfunctionally large districts and an increase in educational costs. Karakaplan and 
Kutlu (2019) simulated the consolidation of very small (<100 student) school districts in 
California, and concluded that the cost savings due to economies of scale would be more than 
offset by increased inefficiency due to the loss of competition.  

Further evidence comes from cost function estimates of the relationship between school district 
size and the cost of education. Andrews, Duncombe and Yinger (2002) surveyed 10 cost studies 
that were published between 1985 and 1999, and concluded that per-pupil cost was very high for 
school districts with fewer than 500 students, lowest for school districts in the 2,000 to 5,000 
student range, and somewhat higher for school districts with more than 5,000 students.  

More recent cost-function analyses have reached similar conclusions about the high cost of 
operating small districts, but offer contradictory findings about the least-cost district configuration. 
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For example, Imazeki and Reschovsky (2006) found that most of the savings from economies of 
scale were realized by the time the district reaches 10,000 students, but that costs continued to 
decline with size until enrollments reached approximately 85,000. Gronberg, Jansen, and Taylor 
(2011a) and Eom et al. (2014) found that costs continued to decline with size for even the largest 
districts.  

Most recently, researchers have examined economies of scale for district size while controlling for 
campus size. In such analyses, there are substantial economies of scale at the campus level, and 
district-wide economies of scale are found to be exhausted at much lower levels of total enrollment. 
Again, using Texas data, Gronberg, Jansen, and Taylor (2012) found that the economies of scale 
were fully exhausted when district enrollment reached 1,200 students, Taylor et al. (2014) found 
that economies of scale were fully exhausted when district enrollment reached 3,200, and Taylor 
et al. (2017) found that economies of scale were fully exhausted when district enrollment reached 
7,700. Gronberg, Jansen, and Taylor (2017) compared alternative education campuses operated by 
traditional public school districts with those operated by open-enrollment charter schools, and 
concluded that the cost of alternative education fell with campus size but rose with district size 
once district size reached 570.  

Cost Function Analyses and Student Need 
In addition to economies of scale, researchers have also used cost function analyses to explore the 
additional costs associated with variations in student need. As discussed in Golebiewski (2011), 
Rumberger and Gandara (2008) and Baker, Taylor and Vedlitz (2008), cost function estimates of 
the .cost associated with student poverty gaps varied widely. Some of the studies they surveyed 
found that no additional funding would be needed (Downes and Pogue 1994) while other studies 
suggested that economically disadvantaged students require more than twice the funding of 
students who are not disadvantaged (Duncombe and Yinger 2005a). As a general rule, the highest 
cost estimates come from analyses of New York and the lowest cost estimates come from analyses 
of more rural states such as Arkansas, Arizona, Kansas and Texas. 

Many cost-function researchers have also estimated the additional funding needed to achieve the 
same level of performance with English language learners (ELL) as with students who are already 
proficient in English. Recent reviews of the literature include Jimenez-Castellanos and Topper 
(2012), Golebiewski (2011) and Rumberger and Gandara (2008). They all found that the estimated 
range of costs is even wider for ELL students than for economically disadvantage students. For 
example, Duncombe and Yinger (2005b) estimated that the cost of serving an ELL student in 
Kansas was a statistically significant, but tiny, 0.14 percent higher than the cost of serving a student 
who was not ELL. At the other end of the spectrum, Duncombe and Yinger (1997) estimated that 
the cost of serving an ELL student in New York was four times the cost of serving a student who 
was not ELL. Taylor et al (2014) and Taylor, Gronberg and Jansen (2017) found that in Texas the 
cost of serving a student who had ever been identified as ELL was between 9 percent and 13.5 
percent higher than the cost of serving a student who had never been identified as ELL. 

Imazeki (2008) found in her analysis of California that the marginal cost of serving ELL student 
who were not Spanish speakers was four times greater than the marginal cost of serving Spanish-
speaking ELL students.  
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More generally, a lack of economies of scale could make it more costly per student to provide 
bilingual education in some states or districts. A number of researchers, including Downes and 
Pogue (1994), Imazeki and Reschovsky (2004, 2006) and Gronberg et al. (2015) have found 
significant nonlinearities in the cost of serving ELL students. 

A large literature has developed regarding the cost of serving special education students. Recent 
reviews of the literature include Golebiewski (2011) who notes that there is little consensus as to 
how to measure the extent of student disabilities, and even less consensus regarding the associated 
costs. A number of researchers have found that costs were systematically higher for students with 
more profound disabilities. For example, Gronberg et al. (2004) and Imazeki and Reschovsky 
(2004) found that the cost of serving students with speech and learning disabilities were much 
lower than the costs of serving other special education students although they were still 
significantly higher than the costs of serving students in regular education programs. 

Competition and Efficiency in Education 
Although the evidence is not uniform, researchers have generally found that a lack of choice among 
educational providers reduces the efficiency of the public school system. Much of the work has 
been done in Texas. For example, Grosskopf, Hayes, Taylor, and Weber (1999), Grosskopf et al. 
(2001), Gronberg et al. (2015) and Taylor et al. (2014) found that Texas school districts were less 
efficient (i.e., got less educational bang for the buck) when they were located in metropolitan areas 
with less choice.  

Competition has also been found to effect school district efficiency in other states. Misra, Grimes, 
and Rogers (2012) found that elementary and secondary schools in Mississippi were more efficient 
in urban areas where competition from private schools was higher. Kang and Greene (2002) 
analyzed school districts in New York and concluded that efficiency was lower in counties with 
less competition. Hoxby (2003) studied school districts in Michigan and found less efficiency in 
school markets with less charter school competition. A recent paper by Jinnai (2014) finds a 
positive effect of charter school entry on student achievement in overlapping/matched grades in 
neighboring traditional public schools in North Carolina. Millimet and Collier (2008) and 
Karakaplan and Kutlu (2019) reached similar conclusions about the relationship between 
competition and school district efficiency in the states of Illinois and California, respectively. 

Recent evidence suggests that another form of school choice—vouchers—leads to positive 
competitive effects. An important paper by Figlio and Hart (2014) found evidence that an increase 
in the competitiveness of private schools due to the introduction of a means-tested voucher 
program in Florida led to a modest increase in public school student performance. Figlio and 
Karbownik (2016) and Carr (2011) found similar results for scholarship voucher programs in Ohio, 
while Egalite (2016) found similar competitive effects in Louisiana. 

The Estimation 

The data for this analysis come from administrative files and public records of the Texas Education 
Agency (TEA), the Education Research Center at the University of Texas at Dallas, the National 
Center for Education Statistics (NCES), the US Bureau of Labor Statistics (BLS), the US 
Department of Housing and Urban Development (HUD), the U.S Census Bureau. The analysis 
covers the five-year period from 2014–15 through 2018–19.  
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The unit of analysis is the standard accountability campus in all traditional public school districts. 
Alternative Education Accountability (AEA) campuses (e.g., juvenile justice campuses, 
disciplinary education campuses, residential campuses and all other alternative education 
campuses) have been excluded because they are subject to different accountability requirements 
and may have different cost structures than other campuses (TEA 2014). Because they may have 
a different education technology that will not be available to traditional school districts, open-
enrollment charter schools have also been excluded from the cost function analysis (although they 
are included in the measure of educational competition). Virtual campuses and campuses that lack 
reliable data on student performance (such as elementary education campuses that serve no 
students in tested grades, or very small campuses) have also been excluded. 

Table F-1 provides means and standard deviations for the variables use in this analysis. Enrollment 
(both campus and district), the teacher cost index, the auxiliary personnel cost index and miles to 
the metro center enter the stochastic frontier regression in logs, while variables already in 
percentages and the indicator variables are not logged before entering the stochastic frontier 
regression. 

Because school quality is generally thought of as a choice variable for school district 
administrators, the possible endogeneity of school quality indicators is a common concern for 
researchers estimating educational cost functions. (For example, see the discussion in Duncombe 
and Yinger (2005a, 2011); Imazeki and Reschovsky (2004); or Gronberg, Jansen, and Taylor. 
(2011a).) Campus size is also plausibly under the control of the school district—at least in the 
longer run. After all, larger school districts choose whether to have four 600 student high schools 
or two 1,200 student high schools. Even smaller districts choose whether to have an elementary 
school that serves kindergarten through sixth grade and a second school for seventh and eighth 
graders, or to have a larger, single school that serves kindergarten through eighth grade. This 
analysis follows Gronberg et al. (2015) and Gronberg, Jansen and Taylor (2017) and treats both 
school quality and campus size as potentially endogenous, using a control function approach.   
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Table F-1: Descriptive Statistics for Campuses, 2014–2015 to 2018–2019 
Variables Mean Std. Dev. Minimum Maximum 
Per-pupil operating expenditure 9,064 1,930 4,326 32,498 
Campus enrollment 695.356 528.305 28 5,098 
Average Conditional NCE  0.503 0.045 0.242 0.771 

Miles to the metro center 22.948 19.443 1 190.554 
Teacher Cost Index  1.234 0.095 1 1.392 
Auxiliary Personnel Cost Index 1.149 0.065 1 1.371 

District enrollment (log) 9.378 1.868 4.159 12.280 
% Economically disadvantaged 0.605 0.259 0.000 1.000 
% Ever English Language Learner  0.268 0.224 0.000 0.978 
% Special education 0.090 0.030 0.000 0.292 
% high needs special education 0.484 0.081 0.034 0.756 
Middle School campus 0.226 0.418 0.000 1.000 

High School campus 0.172 0.378 0.000 1.000 
Multi-grade campus 0.033 0.177 0.000 1.000 
K–8 district  0.006 0.077 0.000 1.000 

Micropolitan county 0.084 0.277 0.000 1.000 
Metropolitan county 0.813 0.390 0.000 1.000 
Sparsely populated county 0.037 0.190 0.000 1.000 

Very sparsely populated county 0.045 0.208 0.000 1.000 
First Tier Coastal County 0.087 0.282 0.000 1.000 

Herfindahl Index (log) -2.019 0.884 -2.985 0.000 
Share of spending unallocated 0.192 0.066 0.000 0.750 
Number with test scores (log) 5.402 0.856 3.219 7.796 

Manufacturing establishments in zip 18.878 21.726 0.000 378.000 
Percent of county in places 0.719 0.213 0.000 0.997 
Square Miles (log) 4.949 0.970 1.635 8.490 

Number of observations    34,502 

Note: Open-enrollment charter, virtual school, alternative education, juvenile justice and disciplinary justice 
campuses have been excluded, as have all campuses with fewer than 25 students for whom conditional normal curve 
equivalent (NCE) scores could be calculated. Sources: Academic Excellence Indicator System (AEIS) 2011–12; 
Texas Academic Performance Reports (TAPR) 2014–15 through 2018–19; Public Education Information 
Management System (PEIMS); National Center for Education Statistics (NCES). 
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The dependent variable used in the analysis is the log of actual current, per-pupil operating 
expenditures, excluding food and student transportation expenditures. As in Imazeki and 
Reschovsky (2006), Gronberg, Jansen, and Taylor (2011b) or Gronberg, Jansen, and Taylor 
(2017), food service expenditures have been excluded on the grounds that they are unlikely to be 
explained by the same factors that explain student performance, and therefore that they add 
unnecessary noise to the analysis. Transportation expenditures have been excluded on similar 
grounds.  

All expenditures data have been adjusted to account for school districts that serve as a fiscal agent 
for another school district or group of districts.45 Fiscal agents collect funds from member districts 
in a shared service agreement, and make purchases or pay salaries with those shared funds on 
behalf of the member districts. As a result, the spending of fiscal agents is artificially inflated while 
the spending by member districts is artificially suppressed. However, fiscal agents report annually 
to TEA about the amounts they spent on behalf of their member districts. These distribution data 
have been used to allocate spending by fiscal agents to their member districts on a proportional 
basis.46 

Because not all school district expenditures are allocated to the campus level, and the share of 
allocated expenditures varies from district to district, researchers have distributed unallocated 
school district expenditures to the campuses on a per pupil basis. Thus, for example, if Little 
Elementary serves 20% of the students in its district, it is presumed to be responsible for 20% of 
the unallocated spending. While other allocation strategies are possible, this is the most common 
in the literature (e.g., Gronberg, Jansen, and Taylor, 2012; Grosskopf et al., 2013). 

In the end, some schools still had anomalous spending patterns. The researchers excluded as 
unreliable any school where per-pupil expenditures exceeded $33,000 or were less than $3,500. 

Outputs 

As noted above, the independent variables measuring education output include both a quantity 
dimension of output—enrollment—and a quality dimension. Quantity is measured as the number 
of students in fall enrollment at the campus. The campus enrollment variable ranges from 29 to 
5,098 with a mean of 696.  

The quality measure captures differences in student performance. The measure is a normalized 
gain score indicator of student performance on the State of Texas Assessments of Academic 
Readiness (STAAR®) Grades 3–8 and end-of-course (EOC) exams. Although schools clearly 
produce unmeasured outcomes that may be uncorrelated with mathematics and reading test scores, 
and standardized tests may not measure the acquisition of all important higher-order skills, these 
are performance measures for which districts are held accountable by the state, and the most 
common measures of school district output in the literature (e.g., Gronberg, Jansen, and Taylor, 

 
45 For more on the allocation procedure, see Texas Smart Schools (2019) 
46 Due to data limitations, spending by fiscal agents could not be allocated back to specific campuses within member 
districts.  
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2011a, 2011b, 2017 or Imazeki and Reschovsky, 2006). Therefore, they are reasonable output 
measures for cost analysis. 

STAAR® Grades 3–8 and EOC scores can be difficult to compare across grades, years or testing 
regimes. Therefore, this analysis relies on normalized (or equivalently, standardized) test scores. 
The normalization follows Reback (2008) and yields gain score measures of student performance 
that are not biased by typical patterns of reversion to the mean.47  

The calculation of normalized gain scores proceeds in three steps. First, transform the scores of 
individual students into conditional z-scores. Denote the test scores for student (i), grade (g), and 
time or year (t), as Sigt, and measure each student’s performance relative to others with same prior 
score in the subject as: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖−𝐸𝐸(𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖|𝑆𝑆𝑖𝑖,𝑖𝑖−1,𝑖𝑖−1)

[𝐸𝐸�𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖2 �𝑆𝑆𝑖𝑖,𝑖𝑖−1,𝑖𝑖−1�−𝐸𝐸(�𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖�𝑆𝑆𝑖𝑖,𝑖𝑖−1,𝑖𝑖−1�
2

].5
  

For example, consider all Grade 6 students who had a raw score of 30 on the prior year’s Grade 5 
STAAR®-Mathematics. For this subgroup of students with a Grade 5 score of 30, calculate the 
mean and standard deviations of the Grade 6 scores for STAAR®-Mathematics. The mean is the 
expected score in Grade 6 (𝐸𝐸(𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖|𝑆𝑆𝑖𝑖,𝑖𝑖−1,𝑖𝑖−1)) for someone with a Grade 5 score of 30; the standard 
deviation is the denominator in equation (1). Thus, the variable Yijgt measures individual deviations 
from the expected score, adjusted for the variance in those expected scores. This is a type of z-
score. Transforming individual STAAR® scores into z-scores in this way allows researchers to 
aggregate across different grade levels, test subjects and test regimes despite the differences in the 
content or scaling of the various tests. It also provides a common frame of reference for 
incorporating the scores of students who, for example, took the STAAR®-Mathematics in Grade 
7, but the Algebra 1 EOC in Grade 8.48 

Second, calculate the average conditional z-score (i.e., the average Yigt) across all required 
mathematics and reading tests for all of the students attending each school.49 An average 
conditional z-score of 1 indicates that, on average, the students at Little Elementary scored one 
standard deviation above the expected score for students with their prior test performance. An 
average conditional z-score of -1 indicates that, on average, the students scored one standard 
deviation below expectations. 

Finally, for ease of interpretation, transform the z-scores into conditional normal curve equivalent 
(NCE) scores. NCE scores (defined as 50+21.06*z) are a monotonic transformation of z-scores 
that are commonly used in the education literature and can be interpreted as percentile ranks.50 A 

 
47 All students in the state, not just those in CBSAs were included in the calculation of standardized scores. 
48 Yigt for this population is calculated by taking the mean and standard deviations of the Algebra 1 EOC scores among 
all of the students who took the Algebra 1 EOC and shared a common score on the prior year’s STAAR®-Mathematics.  
49 Only students in the accountability subset (i.e., students who attended the same campus in the fall of the academic 
year as they did in the spring) are included in the campus average. 
50 Technically, this interpretation only holds if the scores are normally distributed. Given the large number of students 
tested each year in Texas, normality is a reasonable assumption. 
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conditional NCE score of 50 indicates that (on average) the students performed exactly as expected 
given their prior test performance; and a conditional NCE score of 90 indicates that (on average) 
they performed as well or better than 90% of their peers.  

For estimation purposes, the conditional NCE scores are expressed as percentages. As Table F-1 
documents, the campus-level average conditional NCE score had a mean of 0.50 with a minimum 
of 0.24 and a maximum of 0.77.  

Input Prices 

This analysis uses the new Texas TCI as the salary index for profession staff (i.e., teachers, 
administrators and professional staff) and the APCI as the wage index for other staff (i.e., auxiliary 
personnel and instructional aides). Both indices indicate that the price of labor is at least 36% 
higher in the highest cost locations than in the lowest cost locations. However, the correlation 
between the two indices is only 0.5776, suggesting that the local conditions that made a given 
school district particularly attractive to teachers are not always the same as the local conditions 
that make a district particularly attractive to auxiliary personnel.  

In an ideal situation, the estimated cost function would include direct measures of local prices for 
instructional equipment and classroom materials. Such data are, unfortunately, not available to 
researchers. However, prices for pencils, paper, computers, and other instructional materials are 
largely set in a competitive market (and therefore unlikely to vary across schools), and prices for 
nonprofessional labor or building rents are largely a function of school location. Therefore, the 
cost analysis includes a measure of the distance from the campus to the center of the nearest 
metropolitan area.51 This variable had an average value of 23 miles, a minimum of 1 mile, and a 
maximum of 191 miles, indicating the rather large distances sometimes involved in Texas.  

Other Environmental Factors 

The model includes indicators for a variety of environmental factors that influence district cost but 
which are not purchased inputs. A major environmental factor in this study is district enrollment. 
District enrollment averaged 37,294 students, with a minimum of 64 and a maximum of 215,408. 
Given the large range on this important environmental variable and the potential for unusually 
large districts to have undue influence on the estimation results, the cube of district enrollment and 
indicators for the two largest districts (Dallas ISD and Houston ISD) were added to the 
specification. 

To capture variations in costs that derive from variations in student needs, the cost function 
included the percentages of students in each campus who were identified as special education or 
economically disadvantaged students. The models also included the percentage of students in each 

 
51 Miles to the center of the metropolitan area for each campus was calculated as-the-crow-flies using latitude and 
longitude information. The latitude and longitude of metro centers come from the US Census Bureau. Where available, 
latitude and longitude information for campuses are taken from the NCES’ Common Core Database. The remaining 
campuses are assigned latitudes and longitudes according to the zip codes at their street address. 
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campus who were ever identified as English Language Learners (ELL) 52 and the percentage of 
special education students in the district with high needs.53 (Following Gronberg et al. 2005, high 
needs special education students are those with a classification other than speech-language 
difficulties or learning disabilities.) The latter was measured at the district level rather than the 
campus level because privacy concerns led to excessive censoring when the variables were 
measured at the campus level. 

To allow for the possibility that the education technology differs according to the grade level of 
the school, the cost model includes indicators for school type (middle school, high school and 
multi-grade schools). Fixed effects for year control for inflation and other time trends in Texas 
education. 

The Texas Department of Insurance designates 14 Texas counties along the gulf coast as potential 
windstorm catastrophe areas.54 Districts in those First Tier Coastal Counties (and in the cities of 
Morgan’s Point, La Porte, Shoreacres, Pasadena and Seabrook) have elevated risk of damage from 
a hurricane or tropical storm, and therefore face higher costs to purchase insurance or self-insure. 
To capture geographic cost differences arising from difference in insurance risk, this analysis 
included an indicator for whether or not the district was in a designated catastrophe area. 

The K–8 indicator takes on the value of one if the school district does not operate any high school 
grades, and zero otherwise. It has been included because the restricted grade range of a K–8 school 
district may allow it to specialize in ways not available to districts of similar size attempting to 
serve the full range of grades.55 

Population density and metropolitan status are factors that constrain district choices about campus 
size and could influence other aspects of the educational technology. For example, districts in 
sparsely populated counties cannot take advantage of the school-level economies of scale available 
to other districts of similar size because their populations are so dispersed. Instead, such districts 
must operate smaller schools than other districts, which drives up costs. In addition, districts in 
metropolitan areas may incur costs (such as school security costs) that are not incurred by districts 
in other parts of the state. Therefore, this analysis included indicators for whether or not the district 
was located in a metropolitan or micropolitan county (as defined by the US Census Bureau) and 
indicators for whether or not the district was located in a sparsely or very sparsely populated 

 
52 Students who perform well on the English/Language Arts tests are no longer considered ELL, making the percentage 
ELL endogenous and introducing potential estimation problems. Therefore, each student’s complete academic history 
was used to identify those students who have been categorized as ELL, at some point during their experience in Texas 
(Ever-ELL). While only 18.5% of students statewide were identified as ELL in 2015–16, nearly 30% of the students 
could be identified as Ever ELL.  
53 Following Gronberg et al. 2005, high needs special education students are those with a classification other than 
speech-language difficulties or learning disabilities. Where the share of students with speech-language difficulties or 
learning disabilities was censored (due to privacy concerns) the researchers presumed that all of the special education 
students were high needs students. 
54 The First Tier Counties are: Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Jefferson, Kenedy, 
Kleberg, Matagorda, Nueces, Refugio, San Patricio, and Willacy. 
55 The one traditional public school district that does not serve elementary grades, South Texas ISD, has been excluded 
from the analysis. 
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county.56 (Note that these categories are not mutually exclusive: a county can be both sparsely 
populated and located in a metropolitan area.) 

Efficiency Factors 

The error terms for all frontier specifications depend on a number of factors that theory suggests 
may explain differences in school efficiency. Prior research has demonstrated that competition can 
reduce inefficiency in public education (e.g., Belfield and Levin 2002; Millimet and Collier 2008; 
Gronberg et al. 2015, Taylor et al. 2017). Therefore, the one-sided variance function is modeled 
as a function of the degree of educational competition in the district’s metropolitan area, 
micropolitan area, or rural county.57  

As is common in the literature, the degree of educational competition was measured with a 
Herfindahl index of enrollment concentration. A Herfindahl index (which is defined as the sum of 
the squared enrollment shares) increases as the level of enrollment concentration increases. A 
Herfindahl index of 1.00 indicates a metropolitan area, micropolitan area or rural county with a 
single local education agency (LEA); a Herfindahl index of 0.10 indicates a metropolitan area, 
micropolitan area, or rural county with 10 LEAs of equal size. Both traditional public school 
districts and open-enrollment charter schools are included in the calculation of enrollment 
concentration.  

Heteroscedasticity in the two-sided error may also arise. To capture such a possibility, the two-
sided variance is modeled as a function of the share of campus expenditures that was not 
specifically allocated to the campus by the district. This variable has been included because 
measurement error in the dependent variable (a common source of heteroscedasticity) is likely to 
be a function of the extent to which the dependent variable was imputed. Also included is the 
number of students who had a conditional NCE score. The second factor has been included because 
the larger the number of tested students, the smaller is the potential for measurement error in this 
key independent variable. 

Instrumental Variables 

The key to implementing the control function corrections is the identification of viable instruments 
for school quality and campus size. Human capital theory suggests that local labor market 
conditions can influence the demand for educational quality and the opportunity cost of staying in 
school so, as in Gronberg, Jansen and Taylor (2017), this analysis uses labor market conditions in 
the vicinity of the school site as instruments for the conditional NCE scores. The indicator of labor 
market conditions—the number of employers in the campus zip code that were manufacturers—
came from the ZIP Business Patterns produced by the Census Bureau.  

 
56 A sparsely populated county has a population density of fewer than 20 persons per square mile; a very sparsely 
populated county has a population density of fewer than 10 persons per square mile.  
57 By assumption, the one-sided error term has an exponential distribution, which is the Stata default. Jenson (2005) 
finds that specifying a half-normal distribution for the inefficiency term generates more reliable estimates of technical 
efficiency than other assumptions about the distribution of inefficiency 
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This analysis uses three instruments for campus size. The first was the number of square miles in 
the school district. Campuses are likely to be smaller (all else equal) in districts with larger 
geographic footprints, where the time costs of transporting students to scale-efficient campuses 
could be prohibitive. The second was the share of the county population who lived in a city, town 
or other Census-designated place (CDP), which proved to be a particularly useful measure of 
population dispersion and highly correlated with school size.58 The third was the interaction 
between the share of the county population who lived in a CDP and an indicator for rural counties.  

Results 

While the translog specification has the benefit of flexibility and generality compared to, say, the 
Cobb Douglas or other simple forms, the coefficient estimates from the translog specification are 
not readily interpretable. Most researchers present the change in cost arising from a small change 
in each explanatory variable, the so-called marginal effects. These marginal effects depend on the 
values of all the explanatory variables.59 

Table F-2 indicates the marginal effects of a change in the various outputs, prices, and 
environmental variables on expenditures per pupil. For each explanatory variable, two entries are 
provided in each column. The first is the mean of the marginal effect of the variable in question, 
calculated for each data point in the sample. The second is the probability that all of the coefficients 
related to the variable in question (i.e., the direct effect and all interaction effects) are jointly zero.  

The first column presents Model 1. It was estimated from campus level data treating NCE scores 
and campus enrollments as exogenous, as in Taylor et al. (2014).  

The second column in Table F-2 presents a model in which campus size and student performance 
were both treated as endogenous using a control function correction. To implement the correction, 
the residual from a first stage regression of campus enrollment on the instruments and all of the 
exogenous explanatory variables was included as a regressor in this specification of the translog, 
as was the residual from a first-stage regression of the school quality measure (the average 
conditional NCE score) on the same set of instruments and exogenous variables.  

As the table illustrates, the instruments met the necessary conditions for instrumental variables, 
being not only conceptually exogenous but also well correlated with campus enrollment and school 
quality. The first-stage F-statistics for the joint significance of the excluded instruments easily 
exceeded the benchmark threshold of 10. 

 

  

 
58 Census designated places (CDPs) are statistical geographic entities representing closely settled, unincorporated 
communities that are locally recognized and identified by name 
59 See Taylor et al. (2014) for details on the calculation of marginal effects. 
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Table F-2: Means of the Marginal Effects 
Variable Model 1 Model 2 Model 3 
Campus Enrollment (log) -0.163 -0.016 -0.035 

Joint p-value  0.000 0.000 0.000 
Average NCE  0.048 0.677 0.128 

Joint p-value  0.000 0.001 0.000 
Miles to Metro Center (log) 0.009 0.009 0.008 

Joint p-value  0.000 0.000 0.000 
Teacher Cost Index 0.732 0.652 0.656 

Joint p-value  0.000 0.000 0.000 
APCI 0.007 0.095 0.049 

Joint p-value 0.000 0.000 0.000 
District Enrollment (log) 0.003 -0.033 -0.028 

Joint p-value  0.000 0.000 0.000 
% Students Econ. Disadv. 0.125 0.240 0.181 

Joint p-value  0.000 0.000 0.000 
% EverELL 0.062 -0.026 0.010 

Joint p-value  0.000 0.000 0.000 
% Special Ed. 1.204 1.119 1.116 

Joint p-value  0.000 0.000 0.000 
% Special Ed. High Needs 0.144 0.126 0.121 

Joint p-value  0.000 0.000 0.000 
Middle School Campus 0.042 0.031 0.028 

Joint p-value  0.000 0.000 0.000 
High School Campus 0.206 0.127 0.132 

Joint p-value  0.000 0.000 0.000 
Multi-grade Campus 0.199 0.146 0.150 

Joint p-value  0.000 0.000 0.000 
K¬8 School district -0.080 -0.106 -0.094 

Joint p-value  0.000 0.000 0.000 
Micropolitan County -0.111 -0.139 -0.135 

Joint p-value  0.000 0.000 0.000 
Metropolitan County -0.104 -0.132 -0.121 

Joint p-value  0.000 0.000 0.000 
Sparsely Populated County -0.061 -0.026 -0.041 

Joint p-value 0.000 0.000 0.000 
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Variable Model 1 Model 2 Model 3 
Very Sparsely Populated County 0.135 0.127 0.135 

Joint p-value 0.000 0.000 0.000 
First Tier Coastal County -0.008 -0.016 -0.013 

Joint p-value 0.000 0.000 0.000 
School Size Residual  -0.148 -0.129 

p-value   0.007 0.023 
First Stage F-Statistic  26.090 23.535 

School Quality Residual  -0.630  
p-value   0.142  
First-stage F-statistic  21.560  

One-sided error    
Herfindahl Index (log) 0.330 0.352 0.343 

p-value 0.000 0.000 0000 
Number of observations 34,502 34,502 34,502 

Note: All models also include year fixed effects. P-values based on robust standard errors that were clustered by 
district and year.  
Source: Authors’ calculations from Table F-5. 

The first-stage residuals for school quality were statistically insignificant at the 5-percent level in 
Model 2, but the first-stage residuals for school size were statistically significant. This suggested 
that test scores could safely be treated as exogenous, but school size should be treated as 
endogenous. Therefore, the third column in Table F-2 presents a model in which campus size was 
treated as endogenous but average NCE scores were treated as exogenous.60 Because the first-
stage residual for school size was statistically significant in Model 3 (which confirms the 
endogeneity of school size) Model 3 was the preferred specification. 

The first variable listed in Table F-2 is the log of Campus Enrollment. Researchers calculated the 
marginal effect of an increase in campus enrollment for every sample data point and then averaged 
those estimates to yield the mean of the marginal effects. The table indicates that a 1% increase in 
campus enrollment had a mean marginal effect of -0.035, indicating that, on average, a 1% increase 
in campus enrollment was associated with a 0.035% decrease in cost per student.  

The joint p-value for the coefficients on campus enrollment and its interactions was zero to three 
decimal places, indicating that the coefficients on district enrollment in the cost function are jointly 
statistically significant at better than the 1-percent level. 

Figure F-1 graphs the relationship between campus size and cost per student, holding all other 
variables at their sample mean values. As such, the figure illustrates the cost per pupil if every 
campus in a district of 11,823 students (the sample mean) had average demographics and the 

 
60 Thus, the residual from a first stage regression of campus enrollment on the instruments and all of the exogenous 
explanatory variables was included as a regressor in this specification of the translog 
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designated level of campus enrollment. For ease of interpretation, the predictions have been 
normalized so that a prediction of 1.30 indicates that costs are predicted to be 30% above the 
minimum predicted cost. 

Figure F-1: The Estimated Relationship between Per-Pupil Cost and Campus Enrollment 

 
Source: Authors’ calculations. 

The slope of the graph is the marginal effect, and the shape of the graph in Figure F-1 indicates 
that, as a general rule and holding everything else constant, increases in campus size led to 
decreases in the cost of education. For example, the cost function indicated that all other things 
being equal, a 200-student campus cost 4% more to operate than a 400-student campus, which in 
turn costs 2.5% more to operate than an 800 student campus. Costs were minimized at a campus 
size of 1,500 students. However, the economies of scale at the campus level were largely exhausted 
once campus enrollment reached 1,000. The predicted cost per pupil for a campus of 1,000 students 
was 0.3% above the least-cost configuration, as was the predicted cost per pupil for a campus more 
than twice as large. The predicted cost of operating the largest campus in the sample (5,098 
students) was 2.7% above the predicted cost of operating the least-cost campus configuration. 

Figure F-2 presents a graph of how changes in campus average conditional NCE scores impact 
predicted cost. As the figure indicates, increases in educational quality were also associated with 
increases in the cost of education. As the Conditional NCE increased, the slope also increased, 
indicating the cost of producing additional academic gains was higher for campuses where gains 
were already high than it was for campuses where gains were relatively low.  
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Figure F-2: The Estimated Relationship between Per-Pupil Cost and the Average Conditional 
NCE Score 

 
Source: Authors’ calculations. 

Efficiency Results 

An important part of this study was the estimation of cost efficiency, or inefficiency. Figure F-3 
graphs the distribution of cost efficiency for Model 3.61 The average cost efficiency score was 
0.93, indicating that campuses were producing 93% of their potential output, on average. Given 
that inefficiency in this context means unexplained expenditures, not necessarily waste, and that 
many campuses may have been producing outcomes that were not reflected in test scores, the 
average efficiency level was quite high. However, the minimum efficiency scores were well below 
50%, suggesting that some campuses spent much more than could be explained by measured 
outcomes, input prices or student need. This higher the Herfindahl index, the higher the level of 
cost inefficiency, but competition alone explained only a fraction of the measured inefficiency. 
Sixty percent of the variation in cost efficiency came from differences within school districts. 

 
61 Cost efficiency was estimated following Battese and Coelli (1995). 
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Figure F-3: Histogram of Cost Efficiency Measures for Model 3 

 
Source: Authors’ calculations. 

The Educational Cost index 

Using the coefficient estimates from Model 3, one can predict how much each district must spend, 
each year, in order to produce a standard level of output, assuming it was making cost-minimizing 
choices about campus size. The Educational Cost Index (ECI) is the ratio of the predicted cost for 
the district, divided by the state minimum predicted cost.  

As is customary in the literature, the level of output quality was set at the state average (or in other 
words a Conditional NCE score of 0.50). However, the level of output quantity (campus 
enrollment) to use in the construction of the ECI was not obvious.  

Conceptually, the district should be expected to choose an average campus size that is as cost-
effective as possible while still serving all of the students. Therefore, the research team used a grid 
search to identify the cost-minimizing average campus size. The team calculated the average 
campus size for each district under a variety of scenarios. The first scenario was constructed 
assuming only a single campus (so that campus enrollment equaled district enrollment); the second 
scenario was constructed assuming that campus enrollment was equal to district enrollment 
divided by two; the third scenario was constructed assuming that campus enrollment was equal to 
district enrollment divided by three; and so on until there were 300 scenarios.62 Cost was predicted 

 
62 To avoid extrapolating outside of the experience of the data, scenarios that led to an average campus enrollment 
below 100 (roughly the first percentile of campus enrollment) or above 3000 (roughly the 99th percentile of campus 
enrollment) were  
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for each campus under each scenario, holding all cost factors except the two output measures at 
their observed values, setting the output quality at the state mean, and setting the campus 
enrollment for every campus in the district at the scenario average. The scenario with the lowest 
average predicted cost was identified for each district. Finally, the ECI for each district was defined 
as the average predicted cost per pupil under the least-cost scenario, divided by the state minimum 
average predicted cost per pupil. 63  

Robustness Checks  

Table F-3 presents the marginal effects from two alternative specifications designed to examine 
the robustness of the educational cost function estimated as Model 3.  

Table F-3: Means of the Marginal Effects from Alternative Specifications 
Variable Model 3 Model 3a Model 3b 
Campus Enrollment (log) -0.035 -0.041 -0.038 

Joint p-value 0.000 0.000 0.000 
Average NCE  0.128 0.101 0.126 

Joint p-value 0.000 0.000 0.000 
Miles to Metro Center (log) 0.008 0.008 0.007 

Joint p-value 0.000 0.000 0.000 
Teacher Cost Index 0.656 0.685 0.667 

Joint p-value 0.000 0.000 0.000 
APCI 0.049 0.012 0.038 

Joint p-value 0.000 0.000 0.000 
District Enrollment (log) -0.028 -0.027 -0.026 

Joint p-value 0.000 0.000 0.000 
% Students Econ. Disadv. 0.181 0.184 0.181 

Joint p-value 0.000 0.000 0.000 
% EverELL 0.010 0.013 0.009 

Joint p-value 0.000 0.000 0.000 

% Special Ed. 1.116 1.220 1.122 

 
63 The reference prediction used in the construction of the ECI is the prediction at the one-quarter percentile (so that 
only one quarter of one percent of the districts have a predicted wage below the reference wage). The ECI was set to 
1.00 for the handful of districts with predicted wages below the reference wage. This approach ensures that the 
reference wage is not an extreme outlier 
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Variable Model 3 Model 3a Model 3b 
Joint p-value 0.000 0.000 0.000 

% Special Ed. High Needs 0.121 0.141 0.130 
Joint p-value 0.000 0.000 0.000 

Middle School Campus 0.028 0.030 0.027 
Joint p-value 0.000 0.000 0.000 

High School Campus 0.132 0.135 0.133 
Joint p-value 0.000 0.000 0.000 

Multi-grade Campus 0.150 0.226 0.150 
Joint p-value 0.000 0.000 0.000 

K¬8 School district -0.094 -0.080 . 
Joint p-value 0.000 0.000 . 

Micropolitan County -0.135 -0.131 -0.167 
Joint p-value 0.000 0.000 0.000 

Metropolitan County -0.121 -0.126 -0.151 
Joint p-value 0.000 0.000 0.000 

Sparsely Populated County -0.041 -0.047 -0.034 
Joint p-value 0.000 0.000 0.000 

Very Sparsely Populated County 0.135 0.148 0.081 
Joint p-value 0.000 0.000 0.000 

First Tier Coastal County -0.013 -0.015 0.012 
Joint p-value 0.000 0.000 0.000 

Number of observations 34,502 32,149 34,298 

Note: All models also include year fixed effects. P-values based on robust standard errors that were clustered by 
district and year. 
Source: Authors’ calculations from Table F-5. 

The first column in Table F-3 replicates the marginal effects from Model 3 (the preferred 
specification). The second column in Table F-3 presents a version of model 3 wherein the state’s 
two largest districts—Dallas ISD and Houston ISD—were excluded from the sample. At the table 
illustrates, the model was largely insensitive to the inclusion or exclusion of the state’s two largest 
districts. 

The final column in Table F-3 presents a version of model 3 that restricts the sample to only school 
districts that serve the full spectrum of grade levels. As such, K–8 districts have been excluded 
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from Model 3b. Once again, the marginal effects indicate that the model was robust to this change 
in the estimation sample—with one exception. When K–8 districts were excluded from the sample, 
the mean marginal effect on cost from being in a First Tier Coastal County was positive, not 
negative. This pattern appears to arise from a slightly smaller coefficient on the interaction between 
district enrollment and the coastal county indicator under this specification.  

The estimated ECI from both of the alternative specifications were very highly correlated with the 
baseline ECI. As Table F-4 illustrates, the correlation between the baseline ECI and the ECI from 
model 3a (the model excluding DISD and HISD) was 0.985. The correlation between the baseline 
ECI and the ECI from model 3b (the model excluding the K–8 districts) was lower (0.955). 
However, when attention was restricted only to districts that served the full spectrum of grades 
(i.e., the districts included in the estimation of model 3b) the correlation between the two ECIs 
was 0.9994). This pattern implies that including the K–8 districts in the estimation did not bias the 
index values for districts that served the full spectrum of grades, but did yield different index values 
for the K–8 districts themselves.  

Table F-4: Pearson Correlation Coefficients for Alternative Model ECIs, 2018–19 
Variable Correlation with ECI 

Model 3,  
All Districts 

Correlation with ECI 
Model 3, excluding 

DISD and HISD 

Correlation with ECI 
Model 3, excluding  

K8 districts 
ECI Model 3 1.0000 1.0000 1.0000 
ECI Model 3a 0.9856 0.9856 0.9773 
ECI Model 3b 0.9554 0.9554 0.9994 

 

Table F-5 presents the estimated coefficients and robust standard errors from each of the model 
specifications.  

Table F-5: Coefficient Estimates and Standard Errors from Alternative Specifications 
Variables  Model 1 Model 2 Model 3 Model 3a Model 3b 

District Enrollment -0.0689 
(0.098) 

-0.7471*** 
(0.268) 

-0.6853** 
(0.286) 

-0.7041** 
(0.286) 

-0.5821** 
(0.239) 

District Enrollment, 
squared 

0.0147 
(0.012) 

0.0790*** 
(0.026) 

0.0720*** 
(0.027) 

0.0766*** 
(0.027) 

0.0601*** 
(0.022) 

District Enrollment, 
cubed 

-0.0004 
(0.000) 

-0.0025*** 
(0.001) 

-0.0023*** 
(0.001) 

-0.0024*** 
(0.001) 

-0.0018*** 
(0.001) 

District Enrollment* 
Campus Enrollment 

-0.0147*** 
(0.003) 

-0.0148*** 
(0.003) 

-0.0148*** 
(0.003) 

-0.0186*** 
(0.003) 

-0.0146*** 
(0.003) 

District 
Enrollment*NCE 

0.0110 
(0.022) 

0.0092 
(0.022) 

0.0349 
(0.025) 

-0.0158 
(0.025) 

0.0381 
(0.025) 

District 
Enrollment*Distance 
(log) 

-0.0013 
(0.003) 

-0.0015 
(0.003) 

-0.0016 
(0.003) 

-0.0007 
(0.003) 

-0.0017 
(0.003) 

District 
Enrollment*TCI (log) 

0.0110 
(0.061) 

-0.0027 
(0.063) 

0.0002 
(0.062) 

0.0399 
(0.063) 

-0.0183 
(0.065) 
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Variables  Model 1 Model 2 Model 3 Model 3a Model 3b 

District Enrollment* 
APCI (log) 

0.0596 
(0.041) 

0.1079** 
(0.044) 

0.0906** 
(0.045) 

0.0718 
(0.046) 

0.1191** 
(0.052) 

District Enrollment*Pct 
Poor 

0.0076 
(0.008) 

0.0316** 
(0.013) 

0.0323** 
(0.015) 

0.0373** 
(0.015) 

0.0327** 
(0.014) 

District Enrollment * 
Pct EverELL 

0.0020 
(0.008) 

-0.0115 
(0.010) 

-0.0125 
(0.010) 

-0.0214** 
(0.011) 

-0.0116 
(0.010) 

District Enrollment* 
Pct Special Ed. 

0.2924*** 
(0.036) 

0.2395*** 
(0.054) 

0.2315*** 
(0.046) 

0.2991*** 
(0.048) 

0.2280*** 
(0.046) 

District Enrollment * 
Pct Special Ed. High 
Needs 

-0.0226 
(0.028) 

-0.0302 
(0.028) 

-0.0305 
(0.028) 

-0.0160 
(0.029) 

-0.0297 
(0.028) 

District Enrollment* 
Middle School 

0.0021 
(0.003) 

-0.0173** 
(0.007) 

-0.0157** 
(0.008) 

-0.0137* 
(0.008) 

-0.0161** 
(0.008) 

District Enrollment* 
High School 

-0.0328*** 
(0.004) 

-0.0650*** 
(0.012) 

-0.0607*** 
(0.012) 

-0.0594*** 
(0.013) 

-0.0614*** 
(0.012) 

District Enrollment* 
Multigrade School 

0.0066 
(0.009) 

0.0238** 
(0.011) 

0.0220* 
(0.011) 

0.0557*** 
(0.012) 

0.0173* 
(0.010) 

District Enrollment* 
K¬8 District 

-0.0335 
(0.055) 

-0.0075 
(0.055) 

-0.0119 
(0.055) 

0.0005 
(0.056) 

 

District Enrollment* 
Micropolitan County 

-0.0482*** 
(0.011) 

-0.0494*** 
(0.011) 

-0.0477*** 
(0.011) 

-0.0456*** 
(0.011) 

-0.0446*** 
(0.011) 

District Enrollment* 
Metropolitan County 

-0.0139 
(0.012) 

-0.0126 
(0.012) 

-0.0123 
(0.012) 

-0.0153 
(0.012) 

-0.0070 
(0.013) 

District Enrollment* 
Sparsely Populated 
County 

-0.0243** 
(0.012) 

-0.0114 
(0.013) 

-0.0178 
(0.012) 

-0.0168 
(0.012) 

-0.0172 
(0.012) 

District Enrollment* 
Very Sparsely 
Populated County 

0.0691*** 
(0.016) 

0.0829*** 
(0.017) 

0.0775*** 
(0.016) 

0.0809*** 
(0.016) 

0.0730*** 
(0.016) 

District Enrollment* 
Coastal County 

-0.0183*** 
(0.005) 

-0.0189*** 
(0.005) 

-0.0185*** 
(0.005) 

-0.0193*** 
(0.005) 

-0.0177*** 
(0.005) 

Campus Enrollment -0.2719*** 
(0.051) 

-0.1228 
(0.079) 

-0.1426* 
(0.082) 

-0.1605* 
(0.086) 

-0.1407* 
(0.080) 

Campus Enrollment * 
Campus Enrollment 

0.0182*** 
(0.003) 

0.0179*** 
(0.003) 

0.0178*** 
(0.003) 

0.0204*** 
(0.004) 

0.0176*** 
(0.003) 

Campus Enrollment * 
NCE 

0.0717 
(0.045) 

0.0735 
(0.045) 

0.0767* 
(0.045) 

0.1576*** 
(0.047) 

0.0733 
(0.045) 

Campus Enrollment * 
Distance (log) 

-0.0010 
(0.003) 

-0.0014 
(0.004) 

-0.0015 
(0.004) 

-0.0037 
(0.004) 

-0.0014 
(0.004) 

Campus Enrollment * 
TCI (log) 

-0.0841 
(0.085) 

-0.0949 
(0.085) 

-0.0958 
(0.085) 

-0.2020** 
(0.083) 

-0.0919 
(0.085) 

Campus Enrollment * 
APCI (log) 

-0.1067* 
(0.063) 

-0.1009 
(0.062) 

-0.0968 
(0.063) 

-0.0205 
(0.063) 

-0.1011 
(0.063) 

Campus Enrollment * 
Pct. Poor 

0.0284* 
(0.015) 

0.0295* 
(0.015) 

0.0307** 
(0.015) 

0.0149 
(0.016) 

0.0305* 
(0.016) 
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Variables  Model 1 Model 2 Model 3 Model 3a Model 3b 

Campus Enrollment * 
Pct. EverELL 

-0.0026 
(0.018) 

-0.0008 
(0.018) 

-0.0018 
(0.018) 

0.0255 
(0.018) 

-0.0029 
(0.018) 

Campus Enrollment * 
Pct. Special Ed. 

-0.6430*** 
(0.075) 

-0.6387*** 
(0.075) 

-0.6412*** 
(0.075) 

-0.6670*** 
(0.078) 

-0.6403*** 
(0.075) 

Campus Enrollment * 
Pct. Special Ed. High 
Needs 

0.0530 
(0.038) 

0.0591 
(0.038) 

0.0583 
(0.038) 

0.0500 
(0.039) 

0.0590 
(0.038) 

Campus Enrollment * 
Middle School 

0.0566*** 
(0.006) 

0.0577*** 
(0.006) 

0.0578*** 
(0.006) 

0.0536*** 
(0.007) 

0.0581*** 
(0.006) 

Campus Enrollment * 
High School 

0.0823*** 
(0.006) 

0.0844*** 
(0.006) 

0.0846*** 
(0.006) 

0.0828*** 
(0.008) 

0.0850*** 
(0.006) 

Campus Enrollment * 
Multigrade School 

0.0047 
(0.017) 

0.0065 
(0.017) 

0.0071 
(0.017) 

-0.0303* 
(0.017) 

0.0067 
(0.017) 

Campus Enrollment * 
K8 District 

0.0820 
(0.062) 

0.0795 
(0.062) 

0.0793 
(0.062) 

0.0621 
(0.062) 

 

Campus Enrollment * 
Micropolitan County 

0.0293** 
(0.012) 

0.0302** 
(0.012) 

0.0304** 
(0.012) 

0.0267** 
(0.012) 

0.0282** 
(0.012) 

Campus Enrollment * 
Metropolitan County 

0.0049 
(0.014) 

0.0048 
(0.014) 

0.0045 
(0.014) 

0.0088 
(0.014) 

0.0020 
(0.014) 

Campus Enrollment * 
Sparsely Populated 
County 

0.0378** 
(0.015) 

0.0381** 
(0.015) 

0.0378** 
(0.015) 

0.0349** 
(0.015) 

0.0342** 
(0.015) 

Campus Enrollment * 
Very Sparsely 
Populated County 

-0.1020*** 
(0.018) 

-0.1050*** 
(0.018) 

-0.1048*** 
(0.018) 

-0.1113*** 
(0.018) 

-0.1088*** 
(0.018) 

Campus Enrollment * 
Coastal County 

-0.0001 
(0.008) 

0.0009 
(0.008) 

0.0011 
(0.008) 

0.0042 
(0.008) 

0.0006 
(0.008) 

NCE 0.5710 
(0.387) 

1.1621** 
(0.590) 

-0.9953 
(0.824) 

-1.0025 
(0.832) 

-0.9929 
(0.808) 

NCE * NCE -0.7151*** 
(0.236) 

-0.7212*** 
(0.235) 

0.5068 
(0.619) 

0.4377 
(0.620) 

0.5122 
(0.596) 

NCE * Distance (log) -0.0599* 
(0.032) 

-0.0558* 
(0.032) 

0.0013 
(0.043) 

-0.0011 
(0.046) 

0.0001 
(0.042) 

NCE * TCI (log) 0.0370 
(0.628) 

0.1496 
(0.622) 

-0.1563 
(0.639) 

-0.1809 
(0.681) 

-0.1350 
(0.635) 

NCE * APCI (log) -0.7745 
(0.512) 

-0.7904 
(0.510) 

-0.6015 
(0.519) 

-0.7398 
(0.533) 

-0.7099 
(0.514) 

NCE * Pct. Poor 0.0335 
(0.110) 

0.0390 
(0.110) 

0.3301** 
(0.167) 

0.3020* 
(0.171) 

0.3089* 
(0.161) 

NCE * Pct. EverELL -0.3290*** 
(0.110) 

-0.3273*** 
(0.110) 

-0.4770*** 
(0.126) 

-0.4996*** 
(0.140) 

-0.4670*** 
(0.125) 

NCE * Pct. Special Ed. 0.1385 
(0.614) 

0.1551 
(0.611) 

-2.0961* 
(1.141) 

-1.2843 
(1.154) 

-2.0710* 
(1.096) 

NCE * Pct. Special Ed. 
High Needs 

0.1819 
(0.291) 

0.2137 
(0.292) 

0.0927 
(0.297) 

0.0177 
(0.287) 

0.1466 
(0.299) 

NCE * Middle School -0.0547 
(0.049) 

-0.0525 
(0.049) 

0.0833 
(0.077) 

0.0544 
(0.078) 

0.0861 
(0.077) 
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Variables  Model 1 Model 2 Model 3 Model 3a Model 3b 

NCE * High School -0.1760*** 
(0.060) 

-0.1714*** 
(0.060) 

0.0287 
(0.107) 

-0.0133 
(0.111) 

0.0303 
(0.106) 

NCE * Multigrade 
School 

-0.0835 
(0.126) 

-0.0784 
(0.126) 

-0.0832 
(0.126) 

-0.2417** 
(0.118) 

-0.0682 
(0.126) 

NCE * K8 District 0.4113* 
(0.234) 

0.4365* 
(0.234) 

0.3711 
(0.235) 

0.3129 
(0.233) 

 

NCE * Micropolitan 
County 

-0.1213 
(0.080) 

-0.1253 
(0.081) 

-0.1156 
(0.080) 

-0.1069 
(0.080) 

-0.1331* 
(0.080) 

NCE * Metropolitan 
County 

-0.1115 
(0.102) 

-0.1175 
(0.102) 

-0.0413 
(0.108) 

0.0168 
(0.113) 

-0.0655 
(0.108) 

NCE * Sparsely 
Populated County 

-0.0144 
(0.114) 

-0.0187 
(0.114) 

-0.1232 
(0.124) 

-0.1274 
(0.124) 

-0.1265 
(0.124) 

NCE * Very Sparsely 
Populated County 

0.2011* 
(0.120) 

0.2067* 
(0.120) 

0.1368 
(0.124) 

0.1373 
(0.126) 

0.1398 
(0.122) 

NCE * Coastal County 0.1023 
(0.064) 

0.0914 
(0.064) 

0.0439 
(0.067) 

0.0622 
(0.069) 

0.0331 
(0.067) 

Distance (log) -0.0232 
(0.040) 

0.0062 
(0.040) 

-0.0232 
(0.041) 

-0.0171 
(0.043) 

-0.0267 
(0.042) 

Distance (log) * 
Distance (log) 

0.0037 
(0.002) 

0.0039* 
(0.002) 

0.0030 
(0.002) 

0.0035 
(0.002) 

0.0031 
(0.002) 

Distance (log) * TCI 
(log) 

-0.0420 
(0.086) 

-0.0646 
(0.088) 

-0.0530 
(0.088) 

-0.0575 
(0.095) 

-0.0661 
(0.090) 

Distance (log) * APCI 
(log) 

0.0172 
(0.067) 

-0.0586 
(0.073) 

-0.0504 
(0.073) 

-0.0303 
(0.073) 

-0.0297 
(0.070) 

Distance (log) * Pct. 
Poor 

-0.0173 
(0.013) 

-0.0359** 
(0.015) 

-0.0244* 
(0.013) 

-0.0183 
(0.015) 

-0.0247* 
(0.013) 

Distance (log) * Pct. 
EverELL 

0.0669*** 
(0.016) 

0.0823*** 
(0.016) 

0.0731*** 
(0.016) 

0.0583*** 
(0.019) 

0.0757*** 
(0.016) 

Distance (log) * Pct. 
Special Ed. 

0.2772*** 
(0.061) 

0.2753*** 
(0.065) 

0.2482*** 
(0.063) 

0.2033*** 
(0.073) 

0.2422*** 
(0.063) 

Distance (log) * Pct. 
Special Ed. High Needs 

0.0252 
(0.036) 

-0.0084 
(0.037) 

-0.0007 
(0.037) 

-0.0081 
(0.040) 

0.0042 
(0.038) 

Distance (log) * Middle 
School 

-0.0120*** 
(0.004) 

-0.0094* 
(0.005) 

-0.0063 
(0.005) 

-0.0056 
(0.005) 

-0.0064 
(0.005) 

Distance (log) * High 
School 

-0.0213*** 
(0.005) 

-0.0233*** 
(0.005) 

-0.0206*** 
(0.005) 

-0.0159*** 
(0.006) 

-0.0210*** 
(0.005) 

Distance (log) * 
Multigrade School 

-0.0150 
(0.012) 

0.0001 
(0.013) 

-0.0013 
(0.014) 

-0.0001 
(0.014) 

-0.0014 
(0.014) 

Distance (log) * K8 
District 

0.1273*** 
(0.029) 

0.1409*** 
(0.029) 

0.1347*** 
(0.029) 

0.1343*** 
(0.028) 

 

Distance (log) * 
Micropolitan County 

0.0097 
(0.012) 

0.0135 
(0.012) 

0.0154 
(0.012) 

0.0173 
(0.012) 

0.0183 
(0.012) 

Distance (log) * 
Metropolitan County 

0.0251* 
(0.013) 

0.0355** 
(0.014) 

0.0308** 
(0.014) 

0.0351** 
(0.015) 

0.0324** 
(0.015) 
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Variables  Model 1 Model 2 Model 3 Model 3a Model 3b 

Distance (log) * 
Sparsely Populated 
County 

0.0678*** 
(0.015) 

0.0468*** 
(0.017) 

0.0541*** 
(0.016) 

0.0559*** 
(0.016) 

0.0541*** 
(0.016) 

Distance (log) * Very 
Sparsely Populated 
County 

0.0721*** 
(0.018) 

0.0703*** 
(0.018) 

0.0714*** 
(0.018) 

0.0687*** 
(0.019) 

0.0701*** 
(0.018) 

Distance (log) * 
Coastal County 

0.0138 
(0.009) 

0.0187** 
(0.009) 

0.0168* 
(0.009) 

0.0186** 
(0.009) 

0.0175** 
(0.009) 

TCI (log) 2.6040*** 
(0.811) 

3.1512*** 
(0.861) 

3.1393*** 
(0.874) 

3.3227*** 
(0.894) 

3.4718*** 
(0.925) 

TCI (log) * TCI (log) 0.9609 
(1.194) 

-0.7609 
(1.352) 

-0.0853 
(1.212) 

0.2494 
(1.254) 

-0.0866 
(1.206) 

TCI (log) * APCI (log) -1.2174 
(1.476) 

0.7570 
(1.669) 

0.1503 
(1.536) 

-0.3548 
(1.508) 

0.3361 
(1.558) 

TCI (log) * Pct. Poor -0.6991** 
(0.287) 

-0.9688*** 
(0.315) 

-0.9673*** 
(0.317) 

-0.7137** 
(0.336) 

-1.0120*** 
(0.322) 

TCI (log) * Pct. 
EverELL 

0.1554 
(0.281) 

0.1796 
(0.281) 

0.1663 
(0.280) 

-0.0024 
(0.321) 

0.1853 
(0.282) 

TCI (log) * Pct. Special 
Ed. 

-8.0215*** 
(1.290) 

-5.8788*** 
(1.453) 

-6.1493*** 
(1.481) 

-6.1818*** 
(1.497) 

-5.9001*** 
(1.506) 

TCI (log) * Pct. Special 
Ed. High Needs 

-0.2650 
(0.697) 

-0.0594 
(0.696) 

-0.1909 
(0.698) 

-0.1276 
(0.707) 

-0.4175 
(0.703) 

TCI (log) * Middle 
School 

0.0496 
(0.072) 

-0.1114 
(0.094) 

-0.0654 
(0.088) 

-0.0683 
(0.091) 

-0.0857 
(0.093) 

TCI (log) * High 
School 

-0.0967 
(0.097) 

-0.2052* 
(0.108) 

-0.2006* 
(0.107) 

-0.1765 
(0.113) 

-0.2222** 
(0.110) 

TCI (log) * Multigrade 
School 

-0.0568 
(0.214) 

-0.3898 
(0.247) 

-0.3164 
(0.243) 

-0.2575 
(0.250) 

-0.3466 
(0.248) 

TCI (log) * K8 District -0.8558* 
(0.515) 

-1.2220** 
(0.536) 

-1.1065** 
(0.527) 

-1.1154** 
(0.518) 

 

TCI (log) * 
Micropolitan County 

-0.1592 
(0.232) 

-0.2897 
(0.246) 

-0.3066 
(0.241) 

-0.2848 
(0.242) 

-0.3086 
(0.246) 

TCI (log) * 
Metropolitan County 

-0.4143 
(0.300) 

-0.4572 
(0.314) 

-0.4702 
(0.305) 

-0.5155 
(0.315) 

-0.5349* 
(0.313) 

TCI (log) * Sparsely 
Populated County 

0.4143 
(0.298) 

0.2515 
(0.307) 

0.3583 
(0.295) 

0.3260 
(0.296) 

0.3152 
(0.296) 

TCI (log) * Very 
Sparsely Populated 
County 

-0.4001 
(0.331) 

-0.8821** 
(0.379) 

-0.6732** 
(0.340) 

-0.5699* 
(0.342) 

-0.7822** 
(0.349) 

TCI (log) * Coastal 
County 

0.2547 
(0.197) 

0.5498** 
(0.218) 

0.4661** 
(0.210) 

0.3797* 
(0.212) 

0.4669** 
(0.208) 

APCI (log) -1.4937** 
(0.656) 

-1.8952*** 
(0.669) 

-1.7748*** 
(0.668) 

-2.0748*** 
(0.674) 

-2.2732*** 
(0.720) 

APCI (log) * APCI 
(log) 

1.4413** 
(0.709) 

1.0114 
(0.734) 

1.0944 
(0.720) 

0.9824 
(0.715) 

0.9430 
(0.746) 
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Variables  Model 1 Model 2 Model 3 Model 3a Model 3b 

APCI (log) * Pct. Poor 0.0043 
(0.222) 

0.0839 
(0.227) 

0.0802 
(0.227) 

-0.0313 
(0.228) 

0.1201 
(0.229) 

APCI (log) * Pct. 
EverELL 

-0.2892 
(0.259) 

-0.3979 
(0.267) 

-0.4178 
(0.268) 

-0.3624 
(0.282) 

-0.4658* 
(0.275) 

APCI (log) * Pct. 
Special Ed. 

5.4284*** 
(1.115) 

5.9781*** 
(1.140) 

5.8186*** 
(1.131) 

6.6709*** 
(1.114) 

5.4547*** 
(1.120) 

APCI (log) * Pct. 
Special Ed. High Needs 

3.1419*** 
(0.528) 

2.8163*** 
(0.541) 

2.8360*** 
(0.543) 

2.8884*** 
(0.544) 

3.1638*** 
(0.538) 

APCI (log) * Middle 
School 

-0.1347** 
(0.066) 

0.0263 
(0.090) 

0.0007 
(0.089) 

-0.0083 
(0.091) 

0.0385 
(0.099) 

APCI (log) * High 
School 

-0.1768** 
(0.075) 

0.0819 
(0.126) 

0.0589 
(0.131) 

0.0153 
(0.135) 

0.1017 
(0.142) 

APCI (log) * 
Multigrade School 

-0.1091 
(0.193) 

0.2046 
(0.226) 

0.1401 
(0.225) 

-0.0284 
(0.229) 

0.2567 
(0.252) 

APCI (log) * K8 
District 

0.1257 
(0.447) 

0.4861 
(0.468) 

0.4558 
(0.472) 

0.5589 
(0.455) 

 

APCI (log) * 
Micropolitan County 

0.0405 
(0.162) 

0.1155 
(0.165) 

0.0806 
(0.164) 

0.0796 
(0.164) 

0.1186 
(0.164) 

APCI (log) * 
Metropolitan County 

-0.0883 
(0.201) 

-0.1986 
(0.204) 

-0.2092 
(0.204) 

-0.1288 
(0.203) 

-0.1135 
(0.201) 

APCI (log) * Sparsely 
Populated County 

0.0160 
(0.205) 

0.0505 
(0.214) 

-0.0226 
(0.207) 

-0.0130 
(0.207) 

0.0890 
(0.206) 

APCI (log) * Very 
Sparsely Populated 
County 

0.4695* 
(0.276) 

0.7651** 
(0.312) 

0.6048** 
(0.281) 

0.6493** 
(0.278) 

0.7639*** 
(0.295) 

APCI (log) * Coastal 
County 

-0.1168 
(0.130) 

-0.1956 
(0.132) 

-0.1875 
(0.132) 

-0.1562 
(0.133) 

-0.1887 
(0.130) 

Pct Poor -0.0673 
(0.139) 

-0.1535 
(0.174) 

-0.4305** 
(0.216) 

-0.4950** 
(0.220) 

-0.4127* 
(0.211) 

Pct. Poor * Pct. Poor 0.2012*** 
(0.031) 

0.1930*** 
(0.040) 

0.2431*** 
(0.035) 

0.2835*** 
(0.036) 

0.2353*** 
(0.035) 

Pct. Poor * Pct. 
EverELL 

-0.2033*** 
(0.047) 

-0.2446*** 
(0.056) 

-0.2838*** 
(0.057) 

-0.3277*** 
(0.064) 

-0.2662*** 
(0.055) 

Pct. Poor * Pct. Special 
Ed. 

-0.4826** 
(0.196) 

-0.8721*** 
(0.257) 

-1.0313*** 
(0.315) 

-0.8343*** 
(0.324) 

-1.0240*** 
(0.311) 

Pct. Poor * Pct. Special 
Ed. High Needs 

-0.3094*** 
(0.117) 

-0.2511** 
(0.119) 

-0.2717** 
(0.118) 

-0.2363** 
(0.117) 

-0.2571** 
(0.120) 

Pct. Poor * Middle 
School 

0.0306** 
(0.014) 

0.0904*** 
(0.026) 

0.0972*** 
(0.031) 

0.0962*** 
(0.032) 

0.0950*** 
(0.030) 

Pct. Poor * High 
School 

0.0086 
(0.021) 

0.1555** 
(0.065) 

0.1689** 
(0.073) 

0.1873** 
(0.074) 

0.1644** 
(0.070) 

Pct. Poor * Multigrade 
School 

-0.0313 
(0.041) 

0.0017 
(0.046) 

0.0141 
(0.046) 

0.0696 
(0.047) 

0.0143 
(0.047) 

Pct. Poor * K8 District 0.1141 
(0.097) 

0.1136 
(0.102) 

0.1433 
(0.099) 

0.1817* 
(0.093) 
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Variables  Model 1 Model 2 Model 3 Model 3a Model 3b 

Pct. Poor * 
Micropolitan County 

0.0097 
(0.039) 

0.0547 
(0.043) 

0.0532 
(0.044) 

0.0612 
(0.043) 

0.0574 
(0.042) 

Pct. Poor * 
Metropolitan County 

0.1282*** 
(0.045) 

0.1794*** 
(0.050) 

0.1785*** 
(0.051) 

0.1806*** 
(0.054) 

0.1702*** 
(0.051) 

Pct. Poor * Sparsely 
Populated County 

0.0670 
(0.048) 

0.1274** 
(0.053) 

0.0969** 
(0.049) 

0.0970* 
(0.050) 

0.0943* 
(0.051) 

Pct. Poor * Very 
Sparsely Populated 
County 

0.0293 
(0.052) 

0.0332 
(0.053) 

0.0191 
(0.052) 

0.0314 
(0.053) 

0.0204 
(0.053) 

Pct. Poor * Coastal 
County 

0.0630*** 
(0.023) 

0.0972*** 
(0.025) 

0.0869*** 
(0.025) 

0.0765*** 
(0.025) 

0.0886*** 
(0.025) 

Pct EverELL -0.0035 
(0.163) 

0.0455 
(0.168) 

0.1827 
(0.185) 

0.1861 
(0.205) 

0.1388 
(0.179) 

Pct. EverELL * Pct. 
EverELL 

-0.0068 
(0.031) 

0.1201** 
(0.053) 

0.1055* 
(0.055) 

0.1073* 
(0.060) 

0.0965* 
(0.051) 

Pct. EverELL * Pct. 
Special Ed. 

0.8818*** 
(0.228) 

1.4008*** 
(0.311) 

1.4704*** 
(0.346) 

1.5820*** 
(0.363) 

1.4555*** 
(0.338) 

Pct. EverELL * Pct. 
Special Ed. High Needs 

0.0938 
(0.118) 

-0.0517 
(0.136) 

0.0231 
(0.123) 

0.0435 
(0.128) 

0.0582 
(0.124) 

Pct. EverELL * Middle 
School 

-0.0222 
(0.015) 

-0.0366** 
(0.016) 

-0.0467*** 
(0.018) 

-0.0406** 
(0.018) 

-0.0412** 
(0.017) 

Pct. EverELL * High 
School 

-0.0547** 
(0.021) 

-0.1548*** 
(0.045) 

-0.1588*** 
(0.049) 

-0.1742*** 
(0.050) 

-0.1504*** 
(0.046) 

Pct. EverELL * 
Multigrade School 

-0.0444 
(0.048) 

-0.1026* 
(0.054) 

-0.1055* 
(0.055) 

-0.1284** 
(0.055) 

-0.0954* 
(0.054) 

PCt. EverEll * K8 
District 

0.1485 
(0.122) 

0.1412 
(0.123) 

0.1724 
(0.123) 

0.1462 
(0.124) 

 

Pct. EverELL * 
Micropolitan County 

0.0333 
(0.049) 

-0.0280 
(0.053) 

-0.0078 
(0.052) 

-0.0049 
(0.053) 

-0.0149 
(0.052) 

Pct. EverELL * 
Metropolitan County 

0.0997* 
(0.052) 

0.0493 
(0.054) 

0.0604 
(0.055) 

0.0583 
(0.058) 

0.0712 
(0.054) 

Pct. EverELL * 
Sparsely Populated 
County 

-0.2946*** 
(0.063) 

-0.3612*** 
(0.068) 

-0.3483*** 
(0.067) 

-0.3426*** 
(0.068) 

-0.3474*** 
(0.067) 

Pct. EverELL * Very 
Sparsely Populated 
County 

-0.0786 
(0.058) 

-0.1177** 
(0.060) 

-0.1005* 
(0.059) 

-0.0948 
(0.062) 

-0.0968* 
(0.058) 

Pct. EverELL * Coastal 
County 

-0.0515* 
(0.027) 

-0.0742*** 
(0.028) 

-0.0704** 
(0.028) 

-0.0680** 
(0.029) 

-0.0731*** 
(0.028) 

Pct. Special Ed. * Pct. 
Special Ed. 

-3.1725*** 
(0.716) 

5.8269 
(3.698) 

4.7328 
(3.576) 

2.7658 
(3.554) 

4.6174 
(3.444) 

Pct. Special Ed. * Pct. 
Special Ed. High Needs 

2.4106*** 
(0.521) 

2.6095*** 
(0.524) 

2.5991*** 
(0.523) 

2.8851*** 
(0.519) 

2.6573*** 
(0.533) 
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Variables  Model 1 Model 2 Model 3 Model 3a Model 3b 

Pct. Special Ed. * 
Middle School 

0.1090 
(0.079) 

-0.2959 
(0.194) 

-0.3079 
(0.204) 

-0.2586 
(0.211) 

-0.2937 
(0.196) 

Pct. Special Ed. * High 
School 

0.8333*** 
(0.087) 

-0.1933 
(0.460) 

-0.1634 
(0.445) 

-0.1288 
(0.448) 

-0.1344 
(0.422) 

Pct. Special Ed. * 
Multigrade School 

0.7758*** 
(0.154) 

0.4559* 
(0.259) 

0.3479 
(0.242) 

0.4017 
(0.264) 

0.3773 
(0.231) 

Pct. Special Ed. * K8 
District 

-0.8451* 
(0.469) 

-1.1621** 
(0.521) 

-1.1806** 
(0.500) 

-1.1200** 
(0.490) 

 

Pct. Special Ed. * 
Micropolitan County 

0.9359*** 
(0.159) 

0.9520*** 
(0.160) 

0.9325*** 
(0.159) 

0.9193*** 
(0.159) 

0.8995*** 
(0.162) 

Pct. Special Ed. * 
Metropolitan County 

1.4194*** 
(0.194) 

1.0196*** 
(0.238) 

1.0565*** 
(0.244) 

0.8315*** 
(0.248) 

1.0417*** 
(0.238) 

Pct. Special Ed. * 
Sparsely Populated 
County 

-0.4133* 
(0.224) 

-0.3905* 
(0.225) 

-0.4081* 
(0.224) 

-0.3330 
(0.224) 

-0.4318* 
(0.226) 

Pct. Special Ed. * Very 
Sparsely Populated 
County 

-1.5492*** 
(0.230) 

-1.4245*** 
(0.237) 

-1.3991*** 
(0.236) 

-1.3250*** 
(0.239) 

-1.3920*** 
(0.242) 

Pct. Special Ed. * 
Coastal County 

0.1247 
(0.109) 

0.0675 
(0.114) 

0.1150 
(0.109) 

-0.0009 
(0.111) 

0.1023 
(0.109) 

Pct Special Ed.  0.7131 
(0.677) 

-0.4445 
(0.785) 

1.1776* 
(0.710) 

0.6526 
(0.736) 

1.2052* 
(0.707) 

Pct. Special Ed. High 
Needs*Pct. Special Ed. 
High Needs 

0.1102 
(0.158) 

0.1811 
(0.161) 

0.1438 
(0.158) 

0.2059 
(0.152) 

0.1446 
(0.160) 

Pct. Special Ed. High 
Needs * Middle School 

-0.2474*** 
(0.034) 

-0.3158*** 
(0.042) 

-0.2950*** 
(0.041) 

-0.2629*** 
(0.040) 

-0.2967*** 
(0.041) 

Pct. Special Ed. High 
Needs * High School 

-0.2486*** 
(0.041) 

-0.2951*** 
(0.045) 

-0.2898*** 
(0.045) 

-0.2588*** 
(0.045) 

-0.2913*** 
(0.045) 

Pct. Special Ed. High 
Needs * Multigrade 
School 

-0.0517 
(0.064) 

-0.0584 
(0.063) 

-0.0590 
(0.063) 

-0.0033 
(0.062) 

-0.0635 
(0.063) 

Pct. Special Ed. High 
Needs * K8 District 

-0.4325*** 
(0.115) 

-0.3911*** 
(0.116) 

-0.3917*** 
(0.116) 

-0.3267*** 
(0.115) 

 

Pct. Special Ed. High 
Needs * Micropolitan 
County 

0.0372 
(0.048) 

0.0241 
(0.050) 

0.0173 
(0.049) 

0.0176 
(0.049) 

0.0072 
(0.049) 

Pct. Special Ed. High 
Needs * Metropolitan 
County 

-0.0076 
(0.082) 

-0.0321 
(0.081) 

-0.0144 
(0.082) 

-0.0432 
(0.087) 

-0.0097 
(0.082) 

Pct. Special Ed. High 
Needs * Sparsely 
Populated County 

0.0932 
(0.061) 

0.1261** 
(0.062) 

0.1085* 
(0.061) 

0.1208** 
(0.061) 

0.1122* 
(0.063) 
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Variables  Model 1 Model 2 Model 3 Model 3a Model 3b 

Pct. Special Ed. High 
Needs * Very Sparsely 
Populated County 

-0.3915*** 
(0.082) 

-0.3648*** 
(0.083) 

-0.3585*** 
(0.083) 

-0.3493*** 
(0.084) 

-0.4004*** 
(0.083) 

Pct. Special Ed. High 
Needs * Coastal 
County 

0.0314 
(0.082) 

-0.0217 
(0.084) 

-0.0188 
(0.085) 

-0.0349 
(0.086) 

-0.0339 
(0.087) 

Pct Special Ed. High 
Needs 

-0.5633* 
(0.293) 

-0.5043* 
(0.298) 

-0.4282 
(0.301) 

-0.5564* 
(0.305) 

-0.4951 
(0.304) 

Middle School * K8 
District 

0.1412*** 
(0.037) 

0.1771*** 
(0.042) 

0.1791*** 
(0.041) 

0.1821*** 
(0.041) 

 

Middle School 
Micropolitan County 

-0.0085 
(0.009) 

-0.0363** 
(0.015) 

-0.0365** 
(0.015) 

-0.0356** 
(0.015) 

-0.0347** 
(0.015) 

Middle School * 
Metropolitan County 

-0.0187* 
(0.011) 

-0.0176 
(0.012) 

-0.0204* 
(0.011) 

-0.0190 
(0.012) 

-0.0204* 
(0.011) 

Middle SchoolSparsely 
Populated County 

-0.0195* 
(0.011) 

-0.0064 
(0.012) 

-0.0124 
(0.012) 

-0.0101 
(0.012) 

-0.0142 
(0.012) 

Middle SchoolVery 
Sparsely Populated 
County 

-0.0134 
(0.014) 

-0.0069 
(0.014) 

-0.0075 
(0.014) 

-0.0052 
(0.014) 

-0.0140 
(0.014) 

Middle SchoolCoastal 
County 

0.0135** 
(0.006) 

0.0277*** 
(0.010) 

0.0179*** 
(0.007) 

0.0162** 
(0.007) 

0.0185*** 
(0.007) 

Middle School -0.1536*** 
(0.048) 

0.0504 
(0.090) 

-0.0593 
(0.065) 

-0.0572 
(0.067) 

-0.0592 
(0.065) 

High School * 
Micropolitan County 

-0.0350*** 
(0.011) 

-0.0618*** 
(0.015) 

-0.0583*** 
(0.015) 

-0.0550*** 
(0.015) 

-0.0552*** 
(0.015) 

High School * 
Metropolitan County 

-0.0284** 
(0.013) 

-0.0457*** 
(0.015) 

-0.0432*** 
(0.015) 

-0.0344** 
(0.015) 

-0.0437*** 
(0.014) 

High School * Sparsely 
Populated County 

-0.0051 
(0.014) 

0.0140 
(0.016) 

0.0060 
(0.015) 

0.0076 
(0.015) 

0.0031 
(0.015) 

High School * Very 
Sparsely Populated 
County 

0.0509*** 
(0.014) 

0.0563*** 
(0.015) 

0.0487*** 
(0.014) 

0.0539*** 
(0.015) 

0.0422*** 
(0.015) 

High School * Coastal 
County 

0.0189** 
(0.008) 

0.0038 
(0.011) 

0.0026 
(0.011) 

0.0000 
(0.011) 

0.0038 
(0.011) 

High School 0.2620*** 
(0.058) 

0.5319*** 
(0.115) 

0.3758*** 
(0.076) 

0.3540*** 
(0.079) 

0.3787*** 
(0.076) 

Multigrade School * 
Micropolitan County 

-0.0496*** 
(0.019) 

-0.0765*** 
(0.022) 

-0.0730*** 
(0.021) 

-0.0612*** 
(0.021) 

-0.0678*** 
(0.021) 

Multigrade School * 
Metropolitan County 

-0.0254 
(0.026) 

-0.0039 
(0.027) 

-0.0132 
(0.026) 

-0.0194 
(0.027) 

-0.0078 
(0.027) 

Multigrade School * 
Sparsely Populated 
County 

-0.0038 
(0.022) 

0.0156 
(0.024) 

0.0045 
(0.023) 

0.0088 
(0.022) 

0.0026 
(0.022) 
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Multigrade School * 
Very Sparsely 
Populated County 

0.0696** 
(0.030) 

0.0501 
(0.032) 

0.0468 
(0.032) 

0.0740** 
(0.032) 

0.0325 
(0.034) 

Multigrade School * 
Coastal County * 

0.0326 
(0.038) 

0.0332 
(0.038) 

0.0341 
(0.038) 

0.0243 
(0.041) 

0.0340 
(0.038) 

Multigrade School 0.2231* 
(0.125) 

-0.0089 
(0.152) 

0.0194 
(0.156) 

0.0477 
(0.157) 

0.0415 
(0.149) 

K8 District * 
Micropolitan County 

-0.0734 
(0.046) 

-0.0926** 
(0.047) 

-0.0897* 
(0.047) 

-0.0851* 
(0.047) 

 

K8 District * 
Metropolitan County 

0.1686** 
(0.067) 

0.2074*** 
(0.069) 

0.1987*** 
(0.068) 

0.1899*** 
(0.067) 

 

K8 District * Sparsely 
Populated County 

-0.1465*** 
(0.053) 

-0.1158** 
(0.055) 

-0.1158** 
(0.055) 

-0.1188** 
(0.055) 

 

K8 District * Very 
Sparsely Populated 
County 

0.0822 
(0.080) 

0.0761 
(0.083) 

0.0646 
(0.083) 

0.0575 
(0.081) 

 

K8 District * Coastal 
County 

-0.0180 
(0.052) 

-0.0241 
(0.053) 

-0.0138 
(0.052) 

-0.0209 
(0.053) 

 

K8 District -0.6722** 
(0.282) 

-0.9777*** 
(0.302) 

-0.9116*** 
(0.300) 

-0.9318*** 
(0.294) 

 

Micropolitan County * 
Sparsely Populated 
County 

0.0189 
(0.016) 

0.0135 
(0.016) 

0.0107 
(0.016) 

0.0155 
(0.016) 

0.0083 
(0.017) 

Micropolitan County * 
Very Sparsely 
Populated County 

0.0694*** 
(0.026) 

0.0405 
(0.029) 

0.0416 
(0.029) 

0.0330 
(0.029) 

0.0421 
(0.028) 

Micropolitan County * 
Coastal County 

0.4531*** 
(0.087) 

0.4717*** 
(0.091) 

0.4892*** 
(0.090) 

0.4968*** 
(0.090) 

0.0771 
(0.071) 

Micropolitan County  0.0675 
(0.082) 

0.0585 
(0.083) 

0.0420 
(0.084) 

0.0290 
(0.083) 

0.0312 
(0.085) 

Metropolitan County * 
Sparsely Populated 
County 

-0.0178 
(0.041) 

-0.0121 
(0.042) 

-0.0127 
(0.041) 

-0.0136 
(0.042) 

-0.0092 
(0.042) 

Metropolitan County * 
Very Sparsely 
Populated County 

0.0609* 
(0.034) 

0.0713** 
(0.035) 

0.0659** 
(0.033) 

0.0516 
(0.034) 

0.0631* 
(0.034) 

Metropolitan County * 
Coastal County 

0.3849*** 
(0.091) 

0.3882*** 
(0.094) 

0.4094*** 
(0.093) 

0.4258*** 
(0.092) 

-0.0048 
(0.067) 

Metropolitan County  -0.1756 
(0.112) 

-0.1869* 
(0.113) 

-0.2120* 
(0.116) 

-0.2282* 
(0.118) 

-0.2309* 
(0.123) 

Sparsely Populated 
County  

-0.2945*** 
(0.108) 

-0.3387*** 
(0.111) 

-0.2444** 
(0.111) 

-0.2534** 
(0.111) 

-0.2242** 
(0.111) 

Very Sparsely 
Populated County  

0.0804 
(0.150) 

-0.0051 
(0.154) 

0.0683 
(0.150) 

0.0587 
(0.152) 

0.1427 
(0.151) 
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Variables  Model 1 Model 2 Model 3 Model 3a Model 3b 

Very Sparsely 
Populated County * 
Coastal County 

0.4096*** 
(0.084) 

0.4544*** 
(0.087) 

0.4574*** 
(0.087) 

0.4613*** 
(0.086) 

0.0473 
(0.077) 

Coastal County -0.3911*** 
(0.110) 

-0.4473*** 
(0.114) 

-0.4209*** 
(0.112) 

-0.4250*** 
(0.112) 

 

HISD -0.0963*** 
(0.020) 

-0.0667*** 
(0.021) 

-0.0760*** 
(0.021) 

 -0.0827*** 
(0.020) 

DISD 0.0015 
(0.023) 

0.0136 
(0.023) 

0.0182 
(0.023) 

 0.0114 
(0.022) 

2014–15 School Year -0.0792*** 
(0.006) 

-0.0817*** 
(0.006) 

-0.0819*** 
(0.006) 

-0.0833*** 
(0.006) 

-0.0814*** 
(0.006) 

2015–16 School Year -0.0492*** 
(0.006) 

-0.0510*** 
(0.006) 

-0.0508*** 
(0.006) 

-0.0547*** 
(0.005) 

-0.0505*** 
(0.006) 

2017–18 School Year -0.0412*** 
(0.006) 

-0.0417*** 
(0.006) 

-0.0416*** 
(0.006) 

-0.0427*** 
(0.006) 

-0.0414*** 
(0.006) 

2018–19 School Year -0.0141** 
(0.006) 

-0.0129** 
(0.006) 

-0.0133** 
(0.006) 

-0.0164*** 
(0.006) 

-0.0131** 
(0.006) 

School Size Residuals  -0.1476*** 
(0.055) 

-0.1288** 
(0.057) 

-0.1275** 
(0.057) 

-0.1267** 
(0.054) 

School Quality Residuals  -0.6303 
(0.430) 

   

Constant 10.2232*** 
(0.345) 

11.3182*** 
(0.643) 

11.9656*** 
(0.838) 

12.1393*** 
(0.839) 

11.6861*** 
(0.721) 

One-sided error      
Herfindahl (log) 0.3304*** 

(0.047) 
0.3523*** 

(0.046) 
0.3430*** 

(0.047) 
0.3621*** 

(0.051) 
0.3362*** 

(0.047) 
Constant -4.5997*** 

(0.094) 
-4.5546*** 
(0.093) 

-4.5718*** 
(0.094) 

-4.5856*** 
(0.095) 

-4.5885*** 
(0.094) 

Two-sided error      
Unallocated Share 3.3899*** 

(0.404) 
3.3637*** 

(0.404) 
3.3935*** 

(0.403) 
3.3635*** 

(0.399) 
3.5755*** 

(0.403) 
Number of students 
Tested (log) 

-0.2638*** 
(0.027) 

-0.2627*** 
(0.027) 

-0.2601*** 
(0.027) 

-0.2519*** 
(0.028) 

-0.2513*** 
(0.027) 

Constant -4.3869*** 
(0.184) 

-4.3920*** 
(0.183) 

-4.4122*** 
(0.183) 

-4.4142*** 
(0.191) 

-4.4991*** 
(0.184) 

Number of observations 34,502 34,502 34,502 32,149 34,298 
Note: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix G: The Transportation Cost Function 

The Literature 

A school transportation policy monograph from the Center for Cities and Schools at the University 
California Berkeley (Vincent et al. 2014) reports that “Overall, student transport, and particularly 
the associated costs, is a grossly under-researched issue.” Consistent with this claim, we find that 
the academic journal literature on the economics of education has paid surprisingly little attention 
to the study of school transportation costs. There are two small school transportation research 
strands. One set of papers focuses upon the potential of cost advantages to district size and the 
second set of papers looks at the potential for cost savings from privatization of the school 
transportation function. 

We find three published papers in the school cost economies literature that provide analyses of 
public school district transportation cost functions. Duncombe, Miner, and Ruggiero (1995) study 
school district costs for New York State using data from 1990. Dodson and Garrett (2004) use year 
2000 data from Arkansas to study the determinants of variation in school costs across school 
districts. In the most recent study, Zimmer, DeBoer, and Hirth (2009) analyze a three-year panel 
(2004–2006) of cost data for school districts in Indiana.  

For all three of these papers, the primary purpose is to develop and to estimate a cost function 
model of total operating costs for school districts. The outputs in the total cost function are 
measures of student performance, e.g., achievement test scores and dropout rates. The major input 
price is a measure of teacher salaries. Environmental factors, such as number of pupils and 
student/family characteristics, are also included. These papers are, therefore, part of the much 
larger literature on school cost functions that is summarized earlier in this report. The 
distinguishing feature of these three papers is that each one disaggregates total operating 
expenditures into its major subcomponents, including transportation, and then estimates separate 
cost functions for each subcomponent. The explanatory cost factors in the transportation cost 
function estimation are identical to those used in the total cost function estimation. 

The policy focus of all three papers is consolidation, and the key findings from the transportation 
cost estimations are student enrollment scale results. In Duncombe, Miner, and Ruggiero (1995), 
the estimated relationship between transportation costs per pupil and enrollment is U-shaped, with 
a minimum at 1100 pupils. The per pupil transportation costs decline sharply by 25% from an 
enrollment of 50 to the minimum at 1100, then increase much more slowly beyond 1100. The scale 
results in Dodson and Garrett (2004) are similar to those in Duncombe, Miner, and Ruggiero 
(1995). The estimated transportation costs per pupil curve declines steeply to around 500 to 1000 
students, then becomes essentially flat (so more L-shaped) over the reminder of the observed range 
of district sizes. Zimmer, DeBoer, and Hirth (2009) also finds an L-shaped relationship between 
transportation costs per pupil and enrollment over the enrollment range of the data. The cost-
minimizing enrollment occurs at 27,510 students, although most of the decline in average costs is 
realized by an enrollment of 10,000 students. 

There is a major shortcoming in the three papers referenced above. The transportation cost 
estimates are derived from empirical models that are, fundamentally, not developed as 
transportation cost function models. In Duncombe, Miner, and Ruggiero (1995) and Dodson and 
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Garrett (2004), the output measures are the number of students taught (quantity) and student 
achievement outcomes (quality), not transportation outputs. Only Zimmer, DeBoer, and Hirth 
(2009) includes a direct transportation output, bus miles, in addition to number of pupils and pupil 
achievement outputs. Since the total number of students may serve as a reasonable proxy for the 
number of student bus riders, there is some transportation cost function flavor to the results in these 
papers. However, neither Zimmer, DeBoer, and Hirth (2009) nor the other two papers included 
appropriate input prices for a transportation cost study. The only labor price is teacher salaries. For 
a school transportation cost analysis, the principal labor price is bus driver salaries. The 
transportation cost functions in the papers are poorly specified. Since the transportation cost 
function is not the primary object of interest, the weakness in specification is understandable, but 
it limits the usefulness of the findings for understanding the determinants of variation across school 
districts in the costs of transporting students. 

The school bus privatization literature, on the other hand, does include papers that estimate 
credible school transportation cost function models. Lazarus and McCullough (2005) and estimate 
a log-linear model of variable school transportation costs using data from Minnesota school 
districts for school year 1999–2000. The model treats the number of pupils transported as the 
measure of transportation output. Input prices for bus drivers and for fuel and input controls for 
the number of miles of road in the district and the number school buses (separating small and 
large). The percentage of special transportation needs riders was also included as a regressor to 
allow for potential differential transportation costs for these rider types. The key additional control 
is a dummy variable for in-house or contract delivery of transportation services. They also explore 
the possibility of different cost functions for rural and nonrural districts. Thompson (2011) makes 
several refinements to the Lazarus and McCullough study. In particular, Thompson uses multiple 
years of Minnesota school district data rather than a single cross-section, a continuous measure of 
the degree of privatization, the addition of bus miles/student transported as a second output, and 
treatment of the potential endogeneity of the privatization variable/decision. The main conclusion 
of both of these papers is that contracting out did not lead to reductions in the cost of pupil 
transportation services relative to in house provision.  

In a pair of papers, Hutchinson and Pratt (1999, 2007) explore the relative cost of contracting out 
versus in-house production of school bus transportation. The 1999 study uses data from Tennessee 
school districts while the 2007 study uses Louisiana school district data. The same basic empirical 
cost function model is used in both of these papers. The cost model assumes two outputs: the 
average number of students transported daily and the number of one-way bus miles driven, and 
two input prices: average annual bus driver salary and cost per gallon for fuel. Fixed inputs include 
the number of Type I and Type II buses and the district population density. A stronger, flexible 
translog functional form is assumed for the cost function specification. Again, the focus of these 
studies is on the comparative cost of in-house and contracted transportation institutions. 
Hutchinson and Pratt find that in-house was cheaper in Louisiana but that contracting out was 
cheaper in Tennessee. 

Although the academic literature on school bus transportation functions is sparse, there is a robust 
academic literature on the costs of municipal bus transit. Most bus transit systems in the United 
States are publicly owned and operated. As with all regulated public industries, policy makers and 
government agencies are interested in understanding the underlying cost structure of firms in the 
industry in order to set industry pricing policies or to assess the potential cost advantages of 
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increasing or decreasing the number of firm operators in a particular city. There is also 
considerable interest in the possibility of reducing operating costs by privatizing the transit system. 
Cost function studies can provide valuable information on scale economies, input price effects, 
and other cost factors that can be used to help shape bus transit policy. 

The modern literature on transit system cost functions was largely developed in the 1980s and 
1990s. The timing of this literature coincided with the development of flexible functional forms 
for the estimation of cost functions. The use of flexible forms, such as the transcendental 
logarithmic (or ‘translog’) cost model, allowed researchers to provide stronger econometric 
evidence on the key economic characteristics of the bus transit system that were of interest to 
policy makers and to transit system managers than could be obtained from more a priori restricted 
functional forms used in earlier studies. 

As suggested above, a key element of any cost function study is the definition and measurement 
of the output for which the (minimum) costs are being determined. In a study of crude oil, the 
output measurement is straightforward—the number of barrels (quantity) of sweet light (quality) 
crude oil produced per day. For a study of transportation services, the choice of an appropriate and 
workable measure of output has been more controversial. As argued in an influential review article 
by Berechman and Giuliano (1985), in the case of bus transportation there are two relevant type 
of output measures. One is a vehicle-based or technical output measure, such as bus miles or bus-
hours. The second is a passenger-based or demand-based output measure, such as passenger-trips 
or passenger-hours. Cost is, fundamentally, a producer or supplier type concept, and in the 
transportation context, transit operators assemble inputs to supply bus miles. Bus miles are, 
however, best thought of as an intermediate output. B miles are produced in order to transport 
passengers to destinations. The final output is the passenger trips, or the associated passenger 
miles, and the economic value is derived from this final output.  

The cornerstone paper in the bus transit cost function literature, Viton (1981), uses bus miles as 
the measure of bus service output. Many of the bus system cost studies follow suit and use this 
supplier-related technical output level. Important examples include Williams and Dalal (1981) and 
Matas and Raymond (1998). Several studies, instead, have chosen to use the demand-related 
passenger miles as their output measure. Examples of this approach include Williams and Hall 
(1981), Button and O’Donnell (1985), and Berechman (1983). A third set of papers (e.g., 
Berechman and Giuliano1984; de Rus 1990; and Karlaftis, McCarthy and Sinha 1999) take a more 
agnostic stance and estimate two cost models, one with vehicles-miles as output and the second 
with passenger-miles as output. As suggested by Berechman and Giuliano (1984), a better 
approach would be to estimate a single model that included both output measures. In a well-cited 
review of the literature on economies of scale and economies of density in the transportation 
literature, Caves and Christensen (1988) cite an unpublished dissertation by Windle (1984) as 
providing the best evidence for bus transit cost economies. In a published article based upon his 
dissertation research, Windle (1988) reports the results of his two-output cost function 
specification, with bus route miles and passenger miles as the outputs. This is also the approach 
taken in a study of 68 Midwest bus transit systems by Harmatuck (2005). In a study of Class I 
intercity bus carriers in the United States, Tauchen, Fravel, and Gilbert (1983) include both bus 
miles and number of passengers per mile as output measures in their cost function.  
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In the public policy regulatory context, the key findings from bus cost function studies are evidence 
on the returns to scale characteristics of bus transit service production. According to Small (1992), 
cost functions that use vehicle-related outputs reveal increasing returns for small systems, constant 
returns for medium-sized systems, and mildly decreasing returns for large systems. Cost functions 
that use passenger-related outputs show increasing returns. These are, however, broadly 
generalized conclusions. There is considerable variation across the studies. From the studies that 
include both output types, Windle (1988) finds constant returns to bus miles and increasing returns 
to passenger miles. Harmatuck (2005) includes both types of output measures, finds constant 
returns to vehicle miles and slightly increasing returns to passenger trips. Tauchen, Fravel, and 
Gilbert (1983) finds constant returns to scale for bus miles and no significant cost effect of the 
number of passengers per mile. 

All of the modern bus transit cost studies include measures of the price of labor and the price of 
fuel in their cost function. For bus transit firms, labor costs constitute around 75% of operating 
expenses (Harmatuck (2005)). Accounting for exogenous differences in wages of bus drivers (and 
other transport staff) is critically important to estimating bus transit cost functions. Similarly, the 
price of diesel fuel to run the buses is an important factor in determining bus transit operating 
costs. 

In addition to labor and fuel, the third critical input to producing bus services is bus capital. The 
majority of the transit studies treat the rolling stock of bus capital as being fixed, and thus the cost 
function estimates are interpreted as short run bus variable operating cost functions. The number 
of buses is usually included as an explanatory variable. Some studies include average age of the 
buses as a measure of capital quality. 

A second important public policy consideration is the efficiency of public transit operations. A 
common feature of public sector firms is a relatively weak incentive environment for realizing cost 
efficient service delivery. The absence of residual claimancy to the generation of profits and 
limited competition combine to make an assumption of cost minimizing behavior on the part of 
transit managers questionable. The hypothesis that bus transit firms may not minimize costs can 
be tested using stochastic cost frontier techniques. Harmatuck (2005) finds evidence of 
inefficiency ranging from very low (actual cost only 1% greater than predicted minimum cost) to 
very high (actual cost 30% greater than expected minimum cost) across city systems in the 
Midwest. Size did not appear to be a determinant of efficiency, but location (state) did show some 
systematic effects (e.g., most of the Wisconsin city transit systems were more cost efficient than 
were most of the Michigan city transit systems). In a review of a large set of (mostly 1990s) bus 
frontier studies, De Borger, Kerstens, and Costa (2002) report that “most studies report substantial 
remaining inefficiency among urban transit operators”. Representative examples include Fazioli, 
Filippini, and Prioni (1993), with average cost efficiency per operator between 78% and 100% and 
Levaggi (1994), with average cost inefficiency per operator between 14% and 40%.  

We would note that the Dodson and Garrett (2004) school transportation cost analysis employs a 
stochastic frontier cost function approach and the Duncombe, Miner, and Ruggiero (1995) school 
transportation cost paper includes a stochastic frontier cost function estimation in an appendix. 
Neither paper reports the estimated mean inefficiency for districts in their samples.  

Hanley (2007) used linear programming techniques to explore the impact of school district 
consolidation on school bus routes and therefore school district transportation costs. He simulated 
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the consolidation of school districts in Iowa up to a target enrollment of between 500 and 1,000 
students and concluded that the increase in transportation costs would be large enough to offset at 
least half of the expected savings from administrative efficiencies.  

Data 

The data for this analysis come from administrative files and public records of the Texas Education 
Agency (TEA), the Education Research Center at the University of Texas at Dallas, the National 
Center for Education Statistics (NCES), the US Bureau of Labor Statistics (BLS), the US 
Department of Housing and Urban Development (HUD) and the U.S Census Bureau. The analysis 
covers the five year period from 2014–15 through 2018–19.  

The unit of analysis is the district, as districts make transportation decisions for all campuses in 
the district. Alternative Education Accountability (AEA) campuses (e.g., juvenile justice 
campuses, disciplinary education campuses, residential campuses and all other alternative 
education campuses) have been excluded. Open-enrollment charter schools have also been 
excluded from the analysis. Virtual campuses and campuses that lack reliable data on student 
performance (such as elementary education campuses that serve no students in tested grades, or 
very small campuses) have also been excluded. The final sample includes 980 districts for each 
year between school years 2014–15 and 2018–19. 

Table G-1 provides means and standard deviations for the variables used in this analysis. Total 
Transportation Expenditures is listed first, and Total Route Miles is listed fourth. We divide Total 
Transportation Expenditures by Total Route Miles to get Expenditures per Mile, which serves as 
our left hand side (or our dependent) variable after transforming to natural logarithm.  

Table G-1: Descriptive Statistics for Transportation Cost Model AY 2015 –AY 2019 
Variable Mean Std. Dev. Minimum Maximum 
Total Transportation Expenditures $1,411,742 4,920,305 $5,348 $66,600,000 
Expenditures per Mile $3.32 1.71 $0.23 $24.65 
Riders per Mile 0.71 0.44 0.02 9.22 
Total Route Miles 368,646.10 940,289.60 2,273 16,600,000 
Diesel Price $2.11 0.29 $1.55 $3.04 
Wage Index 1.12 0.06 1 1.41 
Population Density 243.73 508.93 0.6 2,718 
Congestion 848.55 685.59 47 3,236 
Number of Special Riders 117.16 423.60 0 7,335 
Number of Total Riders 1,614.49 4,233.83 5 74,641 
Percent Special Riders 4.78 9.25 0 100 
Number of Special Miles 103,507.70 304,988.70 0 5,992,172 
Number of Regular Miles 265,138.40 650,537 0 11,729,698 
Percent Special Miles of Total Miles 18.04 16.55 0 100 
Total Vehicles 42.59 88.93 1 1,133 
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Variable Mean Std. Dev. Minimum Maximum 
Number of Regular Service Buses 
Less than 5 Years Old 

10.23 23.00 0 388 

Number of Special Service Buses Less 
than 5 Years Old 

2.89 8.80 0 148 

Number of Total Buses Less than 5 
Years Old 

13.11 30.75 0 470 

Percent of Buses Less than 5 Years 
Old 

27.55 0.18 0 1 

Rural District Indicator 0.32 0.47 0 1 
Micropolitan District Indicator 0.20 0.40 0 1 

 

We have two output measures. The first is Riders per Mile, listed third in the table. Riders per Mile 
is calculated as Total Riders, listed 10th, divided by Total Route Miles, and it enters our regression 
after a natural logarithm transform. The second is Total Route Miles itself, which also enters our 
regression in natural logarithms. 

We have two input price measures. The first is Diesel Prices, a per-gallon measure of diesel prices, 
listed fifth in the table. This variable enters our regression in natural logarithms. The second is our 
wage index for transportation and other auxiliary workers, APCI, discussed in Chapter 1. This 
variable enters our regression in natural logarithms. 

We have seven environmental variables, plus a series of year fixed effects. The environmental 
variables include a measure of population density, Density, and a measure we think of as 
measuring congestion. We call it Congestion in the table. It is calculated by the Texas 
Transportation Institute and called vehicle miles per center lane mile. These two variables enter 
our regression in natural logs. We also calculate the percent of special riders as the ratio of Spec 
Riders to Total Riders and label it Pct Spec Riders. This enters our cost function regression as a 
percent. Similarly, we calculate the percent of special rider miles as the ratio of District Spec Miles 
to District Tot Miles, and label it Pct Spec Miles. This too enters our cost function as a percent. 
Another percent variable is the percent of new busses, busses less than five years old. For this, we 
add the total number of regular buses less than five years old to the number of special rider buses 
less than five years old to get the total number of buses less than five years old, and divide by the 
total number of district vehicles. This variable is labeled Pct Buses Less than 5 y.o., and it enters 
the regression as a percent as well. 

The final variable we include is a measure of the capital stock for transportation. We use the 
variable Total Vehicles, and it enters our regression in natural logarithm. The capital stock may 
also serve as a proxy measure for the number of bus routes, which could be considered as an 
output-type variable.  

Summary of Data with Sources: 

Total transportation expenditures are collected from Texas Education Agency’s Public 
Education Information Management System (PEIMS) Financial Actual Data files from 2014–2015 
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to 2018–2019. Total transportation expenditures were generated by taking the total of reported 
spending under PEIMS Function 34 (reported transportation expenditures).  

Expenditures per mile are calculated by dividing total transport expenditures (from PEIMS 
Financial Actual Data files) by reported district total route services. Data for district total route 
services were collected from the Texas Education Agency’s Transportation Operations Report 
(TOR). Total route services include regular and special route services (columns P and V of the 
TOR Excel spreadsheet). 

Riders per mile are calculated by dividing a district’s reported total average daily ridership by 
their annual total route services mileage. Route services mileage are collected from the TOR, as 
previously mentioned. Average daily ridership is collected from the Texas Education Agency’s 
Transportation Route Report (TRR) and is the sum of reported regular program average daily 
ridership and special program average daily ridership (columns AC and AI of the TRR Excel 
spreadsheet).  

Total route miles are generated from the TOR (columns P and V of the TOR Excel spreadsheet). 
They are the total of regular route services mileage and special route services mileage for each 
district. 

Diesel prices were purchased from Oil Price Information Services (OPIS).  

The wage index is discussed in Chapter 1.  

Population density is calculated by dividing a county’s population by its land area. Data on county 
population and land area in square miles were collected from the 2010 Census.  

Congestion is vehicle miles travelled per lane mile. These figures were provided by TTI.  

Ridership:  

• District Special Riders: Special program average daily ridership from the TRR (column AI 
on the TRR Excel spreadsheet) 

• District Total Riders: Total of special program average daily ridership and regular program 
average daily ridership as reported in the TRR (columns AC + AI on the TRR Excel 
spreadsheet) 

• District Percent Special Riders: (Special program riders divided by total riders)*100 

Mileage: 

• District Special Miles: Special Mileage Summary—Route Related Services as reported in 
the TOR (column V of the TOR Excel spreadsheet) 

• District Total Miles: Total of special program route related services and regular program 
route related services as reported in the TOR (columns P + V of the TOR Excel 
spreadsheet) 

• District Percent Special Miles: (Special miles divided by total miles)*100 
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Vehicles: These all come from the TOR. The columns of the TOR Excel spreadsheet with the data 
are:  

• District Buses Less than 5 y.o.: Column AZ 
• District Special Buses Less than 5 y.o.: Column BE 
• District Total Buses Less Than 5 y.o.: Columns AZ + BE 
• District Percent Buses Less Than 5 y.o.: (Total buses less than 5 y.o./(total buses: columns 

BD + BI))*100 

Rural and micro are both indicator variables discussed in the text. 

Fuel Prices and West Texas Intermediate Prices 

Our fuel price measure is a measure of diesel fuel prices by county. It seems clear that such prices 
are well outside the control of any school district. Fuel prices vary by geography—they vary 
systematically across counties—and they vary over time. The time variation is largely due, with 
some lags, to variation over time in the world price of oil. One important variable measuring the 
world price of oil is the price of West Texas Intermediate, or WTI. Variations in the price of WTI 
are a significant driver of oil prices at the county level over our sample period. In fact, a regression 
of our fuel price measure, in logs, on the price of WTI, in logs, has an r-square value of 78%. 
Adding county level fixed effects (county level indicators) increases that measure of fit to 88%. 
So, WTI explains a large majority of the movements in our county level diesel prices. 

The graph below shows diesel prices for every county in Texas, for the years 2015–2019, where 
each year is represented by a different color. Notice the high correlation over the years in counties 
that have higher-than-typical diesel prices. Certain counties have high prices, for whatever reason, 
and those high prices persist over the years. 
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Figure G-1: Average Annual Diesel Prices by County: 2015–19 

 
Source: Oil Price Information Services. 

In addition, the price of WTI varies over time. WTI was highest in 2018, lowest in 2016. The 
following table shows the WTI price and the average of the county prices over time. WTI and 
average county diesel prices have varied closely over time. 

Table G-2: Average Diesel Prices and West Texas Intermediate Prices: 2015–19 
Diesel Price Types 2015 2016 2017 2018 2019 
WTI (per gallon) $1.16 $1.03 $1.21 $1.55 $1.36 
Average Diesel Price (per gallon) $2.13 $1.70 $2.02 $2.50 $2.36 
Max Diesel Price $2.49 $1.99 $2.40 $3.04 $2.92 
90th Percentile Diesel Price $2.29 $1.82 $2.18 $2.69 $2.52 
75th Percentile Diesel Price $2.19 $1.75 $2.06 $2.54 $2.41 
Median Diesel Price $2.11 $1.69 $1.99 $2.47 $2.33 
25th Per $2.06 $1.64 $1.95 $2.42 $2.28 
Min Diesel Price $1.90 $1.55 $1.88 $2.33 $2.11 

 

The estimated marginal effect of fuel prices in our model is 0.1425, indicating that at the means of 
all other variables, a 10% increase in fuel prices would increase total transportation costs by 
1.425%. The overall mean of diesel prices is $2.106 in our model, so a 10% increase would be an 
increase of $0.211 per gallon. Cost per mile averages $3.318 in our data, so an increase of 1.425 
is an increase of $0.047 per mile.  
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The Two-Sided and One-Sided Error Terms—Heteroscedasticity and Efficiency 

Heteroscedasticity in the two-sided error is literally a lack of a constant variance across the 
observations. It is often the case that the variance, or standard deviation, of the two-sided 
regression error may vary systematically with one or more of the explanatory variables in the 
regression. In the standard situation, this leads to problems with statistical inference, although the 
coefficient estimates are not impacted. In our model the two-sided error is related to the natural 
log of district enrollment and to the square of this variable. As enrollment increases, the variance 
of the two-sided error declines. Our coefficient estimates for the two sided error are that the 
standard deviation of the two sided error, SD(V), is given as: 

SD(V) = -.9445067 + .0074094*dle - 0304401*(dle)2.  

Table G-3 presents values of SD(V) for the range of enrollment values from minimum to maximum 
in our sample. The SD(V) is largest for the smallest district, and declines steadily as district size 
grows. 

Table G-3: Heteroscedasticity in Two-Sided Error 
Variable Minimum Median Mean Maximum 
Enrollment Values 27 1022 4904.124 215,408 
Std. Dev. of V 0.5337 0.3081 0.2144 0.0665 

 

The one-sided error is linked to efficiency, or its converse, inefficiency. We model the variance of 
the one-sided error as a function of educational competition, as measured by a Herfindahl index of 
enrollment concentration in the geographic area, where the geographic area was the CBSA. A 
Herfindahl index of 1.00 indicates a metropolitan area with a single local education agency (LEA); 
a Herfindahl index of 0.10 indicates a metropolitan area with 10 LEAs of equal size. Both 
traditional public school districts and open enrollment charter schools are included in the 
calculation of enrollment concentration. Table G-4 reports the mean value for the Herfindahl index 
in the sample is 0.24, with a minimum value of 0.05 and a maximum of 1.00. Our coefficient 
estimates for the one-sided are such that the standard deviation of the one sided error, SD(U), is 
given as: 

SD(U) = -6.154216 - 0.4293874*lherf,  

where lherf is the natural log of the Herfindahl index. Table G-4 presents values of SD(U) for 
values of our Herfindahl index from the lowest (.0505) to the highest (1.0) in our sample. As our 
Herfindahl index rises in value, as the educational services in an area become more concentrated, 
SD(U) decreases. 

Table G-4: Inefficiency and the One-Sided Error 
Variable Minimum Mean Median Maximum 
Herfindahl Index .0505 .2368 .2773 1.0000 
Std. Dev. of U 0.0880 0.0627 0.0606 .0458 
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Endogeneity and Instrumental Variables 

Our output measures are under the control of school districts. Districts set routes, determining the 
physical miles covered by each bus route, and arrange schedules of school opening times and bus 
routing, which impacts ridership and riders per mile. Parents and students have choices for 
transportation to schools, and districts can influence those choices in a number of ways. 

Our methodology for dealing with endogeneity is to use instrumental variables in a control 
function approach. Basically the control function approach is a form of instrumental variables 
regression in which, in the first stage, a regression is run for each endogenous variable on a set of 
instruments. These instruments are variables that are correlated with the endogenous variable but 
that do not otherwise directly impact the dependent variable, which here is transportation cost per 
mile. In the control function approach, after the first stage regressions, the residual from each first 
stage regression is added as an additional explanatory variable in the main regression of interest, 
the stochastic frontier cost function regression. These residual variables both correct the final 
regression estimated coefficients and serve as a means of testing if the hypothesized endogenous 
variable is appropriately treated as endogenous.  

Our instrumental variables are the log of district enrollment, the square of the log of district 
enrollment, the district enrollment in grade 9, the district enrollment in grade 10, the district 
enrollment in grade 11, the district enrollment in grade 12, and the log of square miles in a district. 
Table G-5 summarizes the first stage regressions. 

Table G-5: Summary of First Stage Regression Results 
Variable Riders per Mile 

Coefficient 
Riders per Mile 

p-value 
Total Route 

Miles 
Coefficient 

Total Route 
Miles p-value 

Log of District 
Enrollment 

.8186 0.000 -.4427 0.000 

Log of District 
Enrollment, sq. 

-.0455 0.000 .0419 0.000 

Enrollment 9th -.0002 0.042 .0002 0.012 
Enrollment 10th -.0000 0.819 -.0001 0.401 
Enrollment 11th .0001 0.630 -0002 0.277 
Enrollment 12th .00031 0.026 -.0001 0.271 
Log of Square Miles 
in District 
 

-.2878 0.000 .2357 0.000 

F: test of instrument 
significance 

132.11 0.000 122.66 .000 

R-square of 
regression 

.551  .927  

 

As is clear in the table, our instruments satisfy the requirement of entering significantly in the first 
stage, with very low probability values for individual hypothesis tests and for the tests of joint 
significance. The variables for square miles and for enrollment are especially strongly statistically 
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significant in the individual hypotheses tests. Table G-8 reports the regression results for both first 
stages, plus a final column with results from the stochastic frontier regression. For the endogeneity 
issue, the most important information is summarized here in Table G-6. Both residual terms are 
strongly statistically significant, consistent with the notion that they are endogenous and that our 
first stage correction is appropriate. 

Table G-6: Summary of Final Regression (SFA Cost Function) Results for Endogeneity 
Variable Coefficient Standard Error “t-stat” p-value 
First Stage Residual for Riders per Mile -0.9314 .0361 25.78 0.000 
First Stage Residual for Total Route Miles -1.0602 .0453 23.41 0.000 

Results 

The translog specification has many benefits in terms of flexibility and generality compared to, 
say, the Cobb Douglas, but the coefficient estimates from the translog specification are not readily 
interpretable. There are quadratic terms and many interactions all of which impact the 
interpretation of how a change in an explanatory or right hand side variable will impact the 
dependent or left hand side variable. To interpret the coefficients researchers typically present the 
change in the dependent variable—here the change in cost per mile—that arises from a small 
change in an explanatory variable. These are called ‘marginal effects.’ Because the marginal effect 
of a change in any one explanatory variable will depend on the values of all the other explanatory 
variables, there is no unique marginal effect. That is, the impact of a change in any one explanatory 
variable depends on the values of all the other explanatory variables. So, to present marginal effects 
in a standard way, it is typical to calculate marginal effects based on the means of the explanatory 
variables. We will call these the marginal effects at the mean—the mean values of all the 
explanatory variables. We also calculate the marginal effects of each explanatory variables for all 
observations in our sample and then calculate the mean of those, and we call that the mean of the 
marginal effects. Both calculations provide a way to present the marginal effects in a standardized 
way. 

Table G-7 indicates the marginal effects of a change in the various outputs, prices, and 
environmental variables on transportation expenditures per mile. For each explanatory variable 
there are two entries. First is the marginal effect at the mean—the marginal effect on per-pupil cost 
of a change in the explanatory variable in question, holding all other variables at their respective 
sample mean values. Second is the mean of the marginal effects—the mean of the marginal effect 
of the variable in question, calculated for each data point in the sample. A note at the bottom of 
the table indicates that the probability value is essentially zero for the null hypothesis for the 
variables in question that all the coefficients on the direct effect and all interaction effects are 
jointly zero. That is, all the variables are strongly statistically significant in the cost function. 

The third variable listed in Table G-7 is the log of total route miles. The marginal effect of a change 
in total route miles calculated at the mean of all variables in the sample is 0.6198, indicating that 
an increase in total route miles of 1%, at the sample mean, will increase costs per mile by 0.6198%. 
To convey the magnitude of this effect, a 1% increase in route miles at the sample mean (about 
122,000 miles) is an increase of about 1,220 miles. This causes a 0.6198% increase in 
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transportation costs per mile. The mean of transportation costs per mile is about $3.32, so this is 
an increase of $0.0206 per mile, or about 2.1 cents per mile.  

As mentioned, the mean of the marginal effects calculates the marginal effect of an increase in 
district enrollment for every sample data point and then averages those estimates to yield the mean 
of the marginal effects. Here a 1% increase in total route miles has the same marginal effect as 
reported above.  

Table G-7: Marginal Effects at the Means 
Variable Marginal Effect at the 

Mean 
Standard Error 

Log of District Total Vehicles -0.6691 0.0498 
Log of Riders per Mile 1.0718 0.0342 
Log of Total Route Miles 0.6198 0.0425 
Log of Fuel Price 0.1533 0.1441 
Log of APCI 0.1054 0.1055 
Log of Population Density -0.1068 0.0107 
Log of Roadway Congestion -0.1167 0.0178 
Percent Special Program Riders 0.0283 0.0016 
Percent Special Program Miles -0.0054 0.0007 
Percent District Buses < 5 y.o. -0.0029 0.0008 
Rural District -0.0741 0.0336 
Micropolitan District 0.0458 0.0289 

Note: A hypothesis test for the joint p-value for the coefficients on each of the listed variables is zero to four decimal 
points, indicating that the coefficients on these variables in the cost function are, jointly, strongly statistically 
significant. 

Figure G-2 graphs the impact of changes in log total route miles on predicted cost per mile (relative 
to the minimum predicted cost). The slope of the graph is the marginal effect, and the shape of the 
graph indicates that there are increasing costs. That is, transportation costs per mile are rising in 
the number of miles. 

Figure G-3 graphs the impact of changes in log riders per mile on predicted cost per mile (relative 
to the minimum predicted cost). The slope of the graph is the marginal effect, and the shape 
indicates there are increasing costs. Transportation costs per mile are rising in the number of riders 
per mile. Moreover, the slope is fairly constant over the range of values for riders per mile. The 
marginal effect is about 1, actually 1.0718, indicating that a 1% change in riders per mile results 
in just over under a 1.1% increase in transportation costs per mile.  
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Figure G-2: Predicted Cost versus Total Route Miles 

 
Source: Authors’ calculations. 

Figure G-3: Predicted Cost versus Riders per Mile 

 
Source: Authors’ calculations. 
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The auxiliary personnel cost index (ACPI) has a marginal effect at the mean of about 0.1054. On 
average, an increase in auxiliary personnel hiring cost of 1% results in a 0.1054% increase in per 
mile transportation costs, evaluated at the sample means. Labor costs are a large share of 
transportation spending, and it is expected that changes in labor costs will have a meaningful 
impact on transportation costs. 

Figure G-4 graphs the impact of the ACPI on cost per mile (relative to the minimum predicted cost 
per mile) as the auxiliary personnel index ranges from 1.00 to 1.39 in the sample. As the figure 
illustrates, increases in personnel costs had a positive effect on cost per mile over much the relevant 
range, but the marginal effect was not well estimated at the very low end of the range. 

Figure G-4: The Estimated Relationship between Cost per Mile and the Auxiliary Personnel 
Cost Index 

 
Source: Authors’ calculations. 

The fuel price has an estimated marginal effect at the mean of about 0.142. On average, an increase 
in fuel prices of 1% results in a 0.14% increase in per mile transportation costs, evaluated at the 
sample means. Fuel costs are a large share of transportation spending, and it is expected that 
changes in labor costs will have a significant impact on transportation costs. 

Figure G-5 graphs the impact of the fuel price on cost per mile (relative to the minimum predicted 
cost per mile) as the fuel price varies from 1.55 to 3.04 in the sample. As the figure illustrates, 
increases in fuel costs had a positive effect on cost per mile over much the relevant range, but the 
marginal effect was not well estimated at the lower end of the range. 
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Figure G-5: The Estimated Relationship between Cost per Mile and District Fuel Price 

 
Source: Authors’ calculations. 

A 1% increase in population density for a district is associated, evaluated at the mean, with a 
decrease in district per mile student transportation costs of about 0.105%. Thus, the analysis 
indicates that for a campus with average characteristics, the per mile costs of supplying bus miles 
is decreasing in the geographic concentration of the student populations. 

Figure G-6 graphs the relationship between the log of population density and cost per mile (relative 
to the minimum predicted cost per mile) as the population density varies from 0.6 to 2718 in the 
sample. As the figure illustrates, increases in population density had a negative effect on cost per 
mile over much the relevant range, but the marginal effect was positive at the extremely high 
densities at the top end of the range. 
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Figure G-6: The Estimated Relationship between Cost per Mile and Population Density 

 
Source: Authors’ calculations. 

Efficiency Results 

The one sided error is a measure of inefficiency. Alternatively, efficiency is measured as the 
complement of inefficiency, and is calculated as exp(-u), basically one minus percent inefficiency. 
A graph of efficiency is presented in Figure G-7, where 1 is 100% efficient. The mean efficiency 
is .9401, just above 94%. The lowest value in our sample is .5080, and the highest value is .9760. 
Clearly values are clustered near the median, .9443, and highly skewed. The first percentile is at 
.8686, and the tenth percentile .9206, indicating that almost all the districts had an efficiency value 
greater than 86% and a large majority over 92%. 
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Figure G-7: Distribution of Estimated Efficiency for Transportation Cost Function 

 
Source: Authors’ calculations. 

One hypothesis would be that the lower the Herfindahl index, the more the competition leads 
school districts to pursue efficiency in the provision of services including transportation services. 
Certainly, this is what we found for educational services, although the impact on efficiency in 
transportation services is less clear.  

In fact we find that the most concentrated districts are estimated to be the most efficient suppliers 
of student transportation services.  

Calculating Adjustments Based on Marginal Effects 

For the three principal exogenous input cost factors in our model—fuel price, labor price, and 
population density—we used the estimated marginal effect to generate a set of cost allotment 
adjustment factors. Using 2018–19 data, we first divide the input data into quartiles for each 
variable. For each quartile, we calculate the percentage difference between the median input price 
within the quartile and the minimum input price for the sample. We then multiply this percentage 
deviation of the mid-quartile price from the minimum price times the input’s estimated marginal 
effect to yield a predicted percentage increase in cost per mile due to the higher fuel price. We then 
treat the predicted percentage cost increase as a transportation allotment cost adjustment factor for 
all districts in that fuel price quartile. For example, the first quartile of the diesel fuel price in our 
2018–19 sample ranges from the sample minimum of $2.106 per gallon to $2.253 per gallon. The 
median quartile fuel price of $2.229 per gallon is 5.8% higher than the minimum price. The 
marginal effect for fuel price is estimated to be $0.0051 (for a 1% increase in fuel price), so the 
5.8% higher fuel price is estimated to increase cost per mile by $0.027. The fuel price adjustment 
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factor assigned to districts in the first quartile is 0.03. This fuel price adjustment would increase 
the regular program allotment rate to $1.03 for these districts. We repeat this process for the other 
three fuel price quartiles, and end up with four fuel price adjustment factors, one for each of the 
quartile fuel price ranges. We apply the same process to generate four quartile adjustment factors 
for the transportation labor wage index, the other key exogenous input price cost factor. 

For population density, the key environmental cost factor, we modify the adjustment factor 
generating process slightly. Population density in Texas ranged widely, from a minimum density 
of 0.6 to a maximum of 2,718. The population density distribution is also highly skewed, with over 
half of the densities below 50, and a 75th percentile value of only 209.5. Also, the estimated 
marginal effect of population density is negative, so higher population density represents a more 
advantageous cost environment. We select the 90th percentile value of 769.9 as our reference 
density, and the percentage deviation of the median quartile density values from 769.9 times the 
estimated marginal cost per mile effect for population density ( - $0.0035 per mile) to generate our 
population density adjustment factors. This approach assigns a zero density adjustment factor to 
all districts in the top decile of the population density distribution. 

Using 2018–19 data, we first divide the input data into quartiles for each variable. For each 
quartile, we calculated the percentage difference between the median input price within the quartile 
and the minimum input price for the sample. We then multiplied this percentage deviation of the 
mid-quartile price from the minimum price times the input’s estimated marginal effect to yield a 
predicted percentage increase in cost per mile due to the higher fuel price. We then treated the 
predicted percentage cost increase as a transportation allotment cost adjustment factor for all 
districts in that fuel price quartile. For example, the first quartile of the diesel fuel price in our 
2018–19 sample ranged from the sample minimum of $2.106 per gallon to $2.253 per gallon. The 
median quartile fuel price of $2.229 per gallon is 5.8% higher than the minimum price. The 
marginal effect for fuel price is estimated to be $0.0051 (for a 1% increase in fuel price), so the 
5.8% higher fuel price is estimated to increase cost per mile by $0.027. The fuel price adjustment 
factor assigned to districts in the first quartile is 0.03. This fuel price adjustment would increase 
the regular program allotment rate to $1.03 for these districts. We repeat this process for the other 
three fuel price quartiles, and end up with four fuel price adjustment factors, one for each of the 
quartile fuel price ranges. We apply the same process to generate four quartile adjustment factors 
for the transportation labor wage index, the other key exogenous input price cost factor. 

For population density, the key environmental cost factor, we modify the adjustment factor 
generating process slightly. Population density in Texas ranged widely, from a minimum density 
of 0.6 to a maximum of 2,718. The population density distribution is also highly skewed, with over 
half of the densities below 50, and a 75th percentile value of only 209.5. Also, the estimated 
marginal effect of population density is negative, so higher population density represents a more 
advantageous cost environment. We select the 90th percentile value of 769.9 as our reference 
density, and the percentage deviation of the median quartile density values from 769.9 times the 
estimated marginal cost per mile effect for population density ( - $0.0035 per mile) to generate our 
population density adjustment factors. This approach assigns a zero density adjustment factor to 
all districts in the top decile of the population density distribution. 
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Regression Results 

Table G-8: Coefficient Estimates for First Stage and For Final Stage Transportation Cost 
Regressions 

Variables 

First Stage 
Regression 
z1 

First Stage 
Regression 
z2 

Final 
Regression 
SFA 

Log of District Total Vehicles 0.1058 0.4879*** 0.316 
 (0.149) (0.119) (0.362) 
Log of District Total Vehicles, sq. 0.0116 0.0075 0.1150*** 
 (0.011) (0.009) (0.022) 
Log of District Total Vehicles*Log of Riders 
per Mile   -0.0384 
   (0.028) 
Log of District Total Vehicles*Log of Total 
Route Miles   -0.1578*** 
   (0.036) 
Log of District Total Vehicles*Log of Fuel 
Price -0.0413 -0.0421 -0.0001 
 (0.061) (0.048) (0.104) 
Log of District Total Vehicles*Log of APCI -0.2105 -0.8088*** 1.4563*** 
 (0.157) (0.125) (0.294) 
Log of District Total Vehicles*Log of 
Population Density -0.0367*** 0.0288*** 0.0118 
 (0.013) (0.010) (0.019) 
Log of District Total Vehicles*Log of Roadway 
Congestion 0.0011 0.0590*** -0.036 
 (0.026) (0.021) (0.036) 
Log of District Total Vehicles*Percent Special 
Program Riders -0.0012 0.0005 0.0072*** 
 (0.001) (0.001) (0.002) 
Log of District Total Vehicles*Percent Special 
Program Miles 0.0027*** -0.0026*** 0.0001 
 (0.001) (0.001) (0.001) 
Log of District Total Vehicles*Percent District 
Buses Less than 5 y.o. -0.0003 -0.0002 0.0016** 
 (0.000) (0.000) (0.001) 
Log of District Total Vehicles*Rural District 0.0131 -0.0654** 0.2387*** 
 (0.034) (0.027) (0.053) 
Log of District Total Vehicles*Micropolitan 
District 0.1101*** -0.0068 0.0685 
 (0.029) (0.023) (0.053) 
Log of Riders per Mile   0.7904*** 
   (0.219) 
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Variables 

First Stage 
Regression 
z1 

First Stage 
Regression 
z2 

Final 
Regression 
SFA 

Log of Riders per Mile, sq.   0.0459*** 
   (0.012) 
Log of Riders per Mile*Log of Total Route 
Miles   0.0585*** 
   (0.023) 
Log of Riders per Mile*Log of Fuel Price   -0.0633 
   (0.066) 
Log of Riders per Mile*Log of APCI   -0.6333*** 
   (0.193) 
Log of Riders per Mile*Log of Population 
Density   -0.0505*** 
   (0.011) 
Log of Riders per Mile*Log of Roadway 
Congestion   0.0147 
   (0.021) 
Log of Riders per Mile*Percent Special 
Program Riders   -0.0083*** 
   (0.001) 
Log of Riders per Mile*Percent Special 
Program Riders   0.0024*** 
   (0.001) 
Log of Riders per Mile*Percent District Buses 
Less than 5 y.o.   0.0001 
   (0.000) 
Log of Riders per Mile*Rural District   -0.0263 
   (0.034) 
Log of Riders per Mile*Micropolitan District   -0.0398 
   (0.033) 
Log of Total Route Miles   -0.1395 
   (0.31) 
Log of Total Route Miles, sq.   0.0653*** 
   (0.016) 
Log of Total Route Miles*Log of Fuel Price   0.0157 
   (0.085) 
Log of Total Route Miles*Log of APCI   -0.3656 
   (0.245) 
Log of Total Route Miles*Log of Population 
Density   -0.0281** 
   (0.015) 
Log of Total Route Miles*Log of Roadway 
Congestion   -0.0016 
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Variables 

First Stage 
Regression 
z1 

First Stage 
Regression 
z2 

Final 
Regression 
SFA 

   (0.028) 
Log of Total Route Miles*Percent Special 
Program Riders   -0.0077*** 
   (0.002) 
Log of Total Route Miles*Percent Special 
Program Miles   0.0004 
   (0.001) 
Log of Total Route Miles*Percent District 
Buses Less than 5 y.o.   -0.0013** 
   (0.001) 
Log of Total Route Miles*Rural District   -0.0816** 
   (0.041) 
Log of Total Route Miles*Micropolitan District   -0.1047*** 
   (0.040) 
Log of Fuel Price 2.0681* 0.4688 -2.6556*** 
 (1.231) (0.980) (1.029) 
Log of Fuel Price, sq. -0.4742 -0.9184 1.9390*** 
 (0.724) (0.577) (0.460) 
Log of Fuel Price*Log of APCI -1.5175 0.3856 1.3425** 
 (0.935) (0.745) (0.594) 
Log of District Total Vehicles 0.1058 0.4879*** 0.316 
 (0.149) (0.119) (0.362) 
Log of District Total Vehicles, sq. 0.0116 0.0075 0.1150*** 
 (0.011) (0.009) (0.022) 
Log of District Total Vehicles*Log of Riders 
per Mile   -0.0384 
   (0.028) 
Log of District Total Vehicles*Log of Total 
Route Miles   -0.1578*** 
   (0.036) 
Log of District Total Vehicles*Log of Fuel 
Price -0.0413 -0.0421 -0.0001 
 (0.061) (0.048) (0.104) 
Log of District Total Vehicles*Log of APCI -0.2105 -0.8088*** 1.4563*** 
 (0.157) (0.125) (0.294) 
Log of District Total Vehicles*Log of 
Population Density -0.0367*** 0.0288*** 0.0118 
 (0.013) (0.010) (0.019) 
Log of District Total Vehicles*Log of Roadway 
Congestion 0.0011 0.0590*** -0.036 
 (0.026) (0.021) (0.036) 



 

189 | P a g e  
 

Variables 

First Stage 
Regression 
z1 

First Stage 
Regression 
z2 

Final 
Regression 
SFA 

Log of District Total Vehicles*Percent Special 
Program Riders -0.0012 0.0005 0.0072*** 
 (0.001) (0.001) (0.002) 
Log of District Total Vehicles*Percent Special 
Program Miles 0.0027*** -0.0026*** 0.0001 
 (0.001) (0.001) (0.001) 
Log of District Total Vehicles*Percent District 
Buses Less than 5 y.o. -0.0003 -0.0002 0.0016** 
 (0.000) (0.000) (0.001) 
Log of District Total Vehicles*Rural District 0.0131 -0.0654** 0.2387*** 
 (0.034) (0.027) (0.053) 
Log of District Total Vehicles*Micropolitan 
District 0.1101*** -0.0068 0.0685 
 (0.029) (0.023) (0.053) 
Log of Riders per Mile   0.7904*** 
   (0.219) 
Log of Riders per Mile, sq.   0.0459*** 
   (0.012) 
Log of Riders per Mile*Log of Total Route 
Miles   0.0585*** 
   (0.023) 
Log of Riders per Mile*Log of Fuel Price   -0.0633 
   (0.066) 
Log of Riders per Mile*Log of APCI   -0.6333*** 
   (0.193) 
Log of Riders per Mile*Log of Population 
Density   -0.0505*** 
   (0.011) 
Log of Riders per Mile*Log of Roadway 
Congestion   0.0147 
   (0.021) 
Log of Riders per Mile*Percent Special 
Program Riders   -0.0083*** 
   (0.001) 
Log of Riders per Mile*Percent Special 
Program Riders   0.0024*** 
   (0.001) 
Log of Riders per Mile*Percent District Buses 
Less than 5 y.o.   0.0001 
   (0.000) 
Log of Riders per Mile*Rural District   -0.0263 
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Variables 

First Stage 
Regression 
z1 

First Stage 
Regression 
z2 

Final 
Regression 
SFA 

   (0.034) 
Log of Riders per Mile*Micropolitan District   -0.0398 
   (0.033) 
Log of Total Route Miles   -0.1395 
   (0.31) 
Log of Total Route Miles, sq.   0.0653*** 
   (0.016) 
Log of Total Route Miles*Log of Fuel Price   0.0157 
   (0.085) 
Log of Total Route Miles*Log of APCI   -0.3656 
   (0.245) 
Log of Total Route Miles*Log of Population 
Density   -0.0281** 
   (0.015) 
Log of Total Route Miles*Log of Roadway 
Congestion   -0.0016 
   (0.028) 
Log of Total Route Miles*Percent Special 
Program Riders   -0.0077*** 
   (0.002) 
Log of Total Route Miles*Percent Special 
Program Miles   0.0004 
   (0.001) 
Log of Total Route Miles*Percent District 
Buses Less than 5 y.o.   -0.0013** 
   (0.001) 
Log of Total Route Miles*Rural District   -0.0816** 
   (0.041) 
Log of Total Route Miles*Micropolitan District   -0.1047*** 
   (0.040) 
Log of Fuel Price 2.0681* 0.4688 -2.6556*** 
 (1.231) (0.980) (1.029) 
Log of Fuel Price, sq. -0.4742 -0.9184 1.9390*** 
 (0.724) (0.577) (0.460) 
Log of Fuel Price*Log of APCI -1.5175 0.3856 1.3425** 
 (0.935) (0.745) (0.594) 
Log of District Total Vehicles 0.1058 0.4879*** 0.316 
 (0.149) (0.119) (0.362) 
Log of District Total Vehicles, sq. 0.0116 0.0075 0.1150*** 
 (0.011) (0.009) (0.022) 
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Variables 

First Stage 
Regression 
z1 

First Stage 
Regression 
z2 

Final 
Regression 
SFA 

Log of District Total Vehicles*Log of Riders 
per Mile   -0.0384 
   (0.028) 
Log of District Total Vehicles*Log of Total 
Route Miles   -0.1578*** 
   (0.036) 
Log of District Total Vehicles*Log of Fuel 
Price -0.0413 -0.0421 -0.0001 
 (0.061) (0.048) (0.104) 
Log of District Total Vehicles*Log of APCI -0.2105 -0.8088*** 1.4563*** 
 (0.157) (0.125) (0.294) 
Log of District Total Vehicles*Log of 
Population Density -0.0367*** 0.0288*** 0.0118 
 (0.013) (0.010) (0.019) 
Log of District Total Vehicles*Log of Roadway 
Congestion 0.0011 0.0590*** -0.036 
 (0.026) (0.021) (0.036) 
Log of District Total Vehicles*Percent Special 
Program Riders -0.0012 0.0005 0.0072*** 
 (0.001) (0.001) (0.002) 
Log of District Total Vehicles*Percent Special 
Program Miles 0.0027*** -0.0026*** 0.0001 
 (0.001) (0.001) (0.001) 
Log of District Total Vehicles*Percent District 
Buses Less than 5 y.o. -0.0003 -0.0002 0.0016** 
 (0.000) (0.000) (0.001) 
Log of District Total Vehicles*Rural District 0.0131 -0.0654** 0.2387*** 
 (0.034) (0.027) (0.053) 
Log of District Total Vehicles*Micropolitan 
District 0.1101*** -0.0068 0.0685 
 (0.029) (0.023) (0.053) 
Log of Riders per Mile   0.7904*** 
   (0.219) 
Log of Riders per Mile, sq.   0.0459*** 
   (0.012) 
Log of Riders per Mile*Log of Total Route 
Miles   0.0585*** 
   (0.023) 
Log of Riders per Mile*Log of Fuel Price   -0.0633 
   (0.066) 
Log of Riders per Mile*Log of APCI   -0.6333*** 
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Variables 

First Stage 
Regression 
z1 

First Stage 
Regression 
z2 

Final 
Regression 
SFA 

   (0.193) 
Log of Riders per Mile*Log of Population 
Density   -0.0505*** 
   (0.011) 
Log of Riders per Mile*Log of Roadway 
Congestion   0.0147 
   (0.021) 
Log of Riders per Mile*Percent Special 
Program Riders   -0.0083*** 
   (0.001) 
Log of Riders per Mile*Percent Special 
Program Riders   0.0024*** 
   (0.001) 
Log of Riders per Mile*Percent District Buses 
Less than 5 y.o.   0.0001 
   (0.000) 
Log of Riders per Mile*Rural District   -0.0263 
   (0.034) 
Log of Riders per Mile*Micropolitan District   -0.0398 
   (0.033) 
Log of Total Route Miles   -0.1395 
   (0.31) 
Log of Total Route Miles, sq.   0.0653*** 
   (0.016) 
Log of Total Route Miles*Log of Fuel Price   0.0157 
   (0.085) 
Log of Total Route Miles*Log of APCI   -0.3656 
   (0.245) 
Log of Total Route Miles*Log of Population 
Density   -0.0281** 
   (0.015) 
Log of Total Route Miles*Log of Roadway 
Congestion   -0.0016 
   (0.028) 
Log of Total Route Miles*Percent Special 
Program Riders   -0.0077*** 
   (0.002) 
Log of Total Route Miles*Percent Special 
Program Miles   0.0004 
   (0.001) 
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Variables 

First Stage 
Regression 
z1 

First Stage 
Regression 
z2 

Final 
Regression 
SFA 

Log of Total Route Miles*Percent District 
Buses Less than 5 y.o.   -0.0013** 
   (0.001) 
Log of Total Route Miles*Rural District   -0.0816** 
   (0.041) 
Log of Total Route Miles*Micropolitan District   -0.1047*** 

Note: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 
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